| [1] |
Hatzikotoulas K, Roposch A, DDH Case Control Consortium, et al. Genome-wide association study of developmental dysplasia of the hip identifies an association with GDF5[J/OL]. Commun Biol, 2018, 1: 56. DOI: 10.1038/s42003-018-0052-4.
|
| [2] |
Loder RT, Skopelja EN. The epidemiology and demographics of hip dysplasia[J/OL]. ISRN Orthop, 2011, 2011: 238607. DOI: 10.5402/2011/238607.
|
| [3] |
Tian FD, Zhao DW, Wang W, et al. Prevalence of developmental dysplasia of the hip in Chinese adults: across-sectional survey[J]. Chin Med J (Engl), 2017, 130(11): 1261-1268.
|
| [4] |
Dezateux C, Rosendahl K. Developmental dysplasia of the hip[J].Lancet, 2007, 369(9572): 1541-1552.
|
| [5] |
Ning B,Jin R, Wang D, et al. The H19/let-7 feedback loop contributes to developmental dysplasia and dislocation of the hip[J]. Physiol Res, 2019: 275-284.
|
| [6] |
Chen H, Cui Y, Zhang D, et al. The role of fibroblast growth factor 8 in cartilage development and disease[J]. J Cell Mol Med, 2022, 26(4): 990-999.
|
| [7] |
Liu X, Deng X, Ding R, et al. Chondrocyte suppression is mediated by miR-129-5p via GDF11/SMAD3 signaling in developmental dysplasia of the hip[J]. J Orthop Res, 2020, 38(12): 2559-2572.
|
| [8] |
BohačekI, PlečkoM, Duvančić T, et al. Current knowledge on the genetic background of developmental dysplasia of the hip and the histomorphological status of the cartilage[J]. Croat Med J, 2020, 61(3): 260-270.
|
| [9] |
Bo N, Peng W, Xinghong P, et al. Early cartilage degeneration in a rat experimental model of developmental dysplasia of the hip[J]. Connect Tissue Res, 2012, 53(6): 513-520.
|
| [10] |
Ning B, Jin R, Wan L, et al. Cellular and molecular changes to chondrocytes in an in vitro model of developmental dysplasia of the hip-an experimental model of DDH with swaddling position[J].Mol Med Rep, 2018, 18(4): 3873-3881.
|
| [11] |
Ortiz-Neira CL, Paolucci EO, Donnon T. A meta-analysis of common risk factors associated with the diagnosis of developmental dysplasia of the hip in newborns[J/OL]. Eur J Radiol, 2012, 81(3): e344-51. DOI: 10.1016/j.ejrad.2011.11.003.
|
| [12] |
鲁宁, 胡侦明, 浦波, 等. 云南地区先天性髋关节脱位4个家系22号与7号染色体易感基因连锁分析[J/OL]. 中华关节外科杂志(电子版), 2008, 2(4): 427-434.
|
| [13] |
何淳诺, 田志敏, 李焕玺, 等.小儿发育性髋关节发育不良诊治的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 497-504.
|
| [14] |
Stevenson DA,MineauG, Kerber RA, et al. Familial predisposition to developmental dysplasia of the hip [J]. J Pediatr Orthop, 2009, 29(5): 463-466.
|
| [15] |
KenanidisE, GkekasNK, Karasmani A, et al. Genetic predisposition to developmental dysplasia of the hip[J]. J Arthroplasty, 2020, 35(1): 291-300.e1.
|
| [16] |
Cheng B, Jia Y, Wen Y, et al. Integrative analysis of microRNA and mRNA sequencing data identifies novel candidate genes and pathways for developmental dysplasia of hip [J]. Cartilage, 2021, 13(2_suppl): 1618S-1626S.
|
| [17] |
Xu Z, Lefevre GM, Felsenfeld G. Chromatin structure, epigenetic mechanisms and long-range interactions in the human insulin locus[J]. Diabetes Obes Metab, 2012, 14(Suppl 3): 1-11.
|
| [18] |
Wu X, Yang Y, Zhong C, et al. Integration of ATAC-seq and RNA-sequnravels chromatin accessibility during sex reversal in orange-spotted grouper (Epinepheluscoioides)[J/OL]. Int J Mol Sci, 2020, 21(8):E2800. DOI: 10.3390/ijms21082800.
|
| [19] |
Dong K, Zhang S. Joint reconstruction of Cis-regulatory interaction networks across multiple tissues using single-cell chromatin accessibility data [J/OL]. Brief Bioinform, 2021, 22(3):bbaa120. DOI: 10.1093/bib/bbaa120.
|
| [20] |
Andueza A, Kumar S, Kim J, et al. Endothelial reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study [J/OL]. Cell Rep, 2020, 33(11): 108491. DOI: 10.1016/j.celrep.2020.108491.
|
| [21] |
Morabito S, Miyoshi E, Michael N, et al. Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s disease[J]. Nat Genet, 2021, 53(8): 1143-1155.
|
| [22] |
ChiouJ, Zeng C, Cheng Z, et al. Single-cell chromatin accessibility identifies pancreatic islet cell type- and state-specific regulatory programs of diabetes risk[J]. Nat Genet, 2021, 53(4): 455-466.
|
| [23] |
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J/OL]. EMBnet J, 2011, 17(1): 10 DOI: 10.14806/ej.17.1.200.
|
| [24] |
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM [DB/OL]. arXiv e-prints, 2013. DOI: 10.48550/arXiv.1303.3997.
|
| [25] |
Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data[J]. Cell, 2019, 177(7): 1888-1902.e21.
|
| [26] |
Pervolarakis N, Nguyen QH, Williams J, et al. Integrated single-cell transcriptomics and chromatin accessibility analysis reveals regulators of mammary epithelial cell identity[J/OL]. Cell Rep, 2020, 33(3): 108273. DOI: 10.1016/j.celrep.2020.108273.
|
| [27] |
Quinlan AR, Hall IM. BED Tools: a flexible suite of utilities for comparing genomic features[J]. Bioinformatics, 2010, 26(6): 841-842.
|
| [28] |
Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium [J]. Nat Genet, 2000, 25(1): 25-29.
|
| [29] |
Kanehisa M, Furumichi M, Sato Y, et al. KEGG: integrating viruses and cellular organisms [J]. Nucleic Acids Res, 2021, 49(d1): D545-D551.
|
| [30] |
Akkiraju H, Nohe A. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration [J]. J Dev Biol, 2015, 3(4): 177-192.
|
| [31] |
Ji Q, Zheng Y, Zhang G, et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis[J]. Ann Rheum Dis, 2019, 78(1): 100-110.
|
| [32] |
Zhang X, Huang N, Huang R, et al. Single-cell RNAseq analysis identifies the biomarkers and differentiation of chondrocyte in human osteoarthritis [J]. Am J Transl Res, 2020, 12(11): 7326-7339.
|
| [33] |
Feng WJ, Wang H, Shen C, et al. Severe cartilage degeneration in patients with developmental dysplasia of the hip[J]. IUBMB Life, 2017, 69(3): 179-187.
|
| [34] |
LianC, Wang X, Qiu X, et al. Collagen type II suppresses articular chondrocyte hypertrophy and osteoarthritis progression by promoting integrin β1-SMAD1 interaction [J/OL]. Bone Res, 2019, 7: 8. DOI: 10.1038/s41413-019-0046-y.
|
| [35] |
StuderK, Williams N, Studer P, et al. Obstacles to reduction in infantile developmental dysplasia of the hip[J]. J Child Orthop, 2017, 11(5): 358-366.
|
| [36] |
Ding M, Lu Y,Abbassi S, et al. Targeting runx2 expression in hypertrophic chondrocytes impairs endochondral ossification during early skeletal development [J]. J Cell Physiol, 2012, 227(10): 3446-3456.
|
| [37] |
VieyraD, Toyama T, Hara Y, et al. ING1 isoforms differentially affect apoptosis in a cell age-dependent manner [J]. Cancer Res, 2002, 62(15): 4445-4452.
|
| [38] |
Thiel G, Backes TM, Guethlein LA, et al. Critical protein-protein interactions determine the biological activity of elk-1, a master regulator of stimulus-induced gene transcription [J/OL]. Molecules, 2021, 26(20):6125. DOI: 10.3390/molecules26206125.
|
| [39] |
Shen M, Kawamoto T, Yan W, et al. Molecular characterization of the novel basic helix-loop-helix protein DEC1 expressed in differentiated human embryo chondrocytes[J]. Biochem Biophys Res Commun, 1997, 236(2): 294-298.
|
| [40] |
Yao J, Wang L, Chen L, et al. Cloning and developmental expression of the DEC1 ortholog gene in zebrafish[J]. Gene Expr Patterns, 2006, 6(8): 919-927.
|
| [41] |
Camponeschi A, Todi L,Cristofoletti C, et al. DEC1/STRA13 is a key negative regulator of activation-induced proliferation of human B cells highly expressed in anergic cells[J]. Immunol Lett, 2018, 198: 7-11.
|
| [42] |
Mitra P, Xie RL, Medina R, et al. Identification of HiNF-P, a key activator of cell cycle-controlled histone H4 genes at the onset of S phase[J]. Mol Cell Biol, 2003, 23(22): 8110-8123.
|
| [43] |
Wigner NA, Soung do Y, Einhorn TA, et al. Functional role of Runx3 in the regulation of aggrecan expression during cartilage development[J]. J Cell Physiol, 2013, 228(11): 2232-2242.
|
| [44] |
Mixon A, Savage A, Bahar-Moni AS, et al. An in vitro investigation to understand the synergistic role of MMPs-1 and 9 on articular cartilage biomechanical properties[J/OL]. Sci Rep, 2021, 11(1): 14409. DOI: 10.1038/s41598-021-93744-1.
|
| [45] |
Ning B, Sun J, Yuan Y, et al. Early articular cartilage degeneration in a developmental dislocation of the hip model results from activation of β-catenin[J]. Int J Clin Exp Pathol, 2014, 7(4): 1369-1378.
|
| [46] |
Karsdal MA, Sumer EU, Wulf H, et al. Induction of increased cAMP levels in articular chondrocytes blocks matrix metalloproteinase-mediated cartilage degradation, but not aggrecanase-mediated cartilage degradation [J]. Arthritis Rheum, 2007, 56(5): 1549-1558.
|
| [47] |
Wu Y, Lu X, Li M, et al. Renin-angiotensin system in osteoarthritis: a new potential therapy[J/OL]. Int Immunopharmacol, 2019, 75: 105796. DOI: 10.1016/j.intimp.2019.105796.
|