切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (05) : 570 -579. doi: 10.3877/cma.j.issn.1674-134X.2025.05.007

基础论著

成人发育性髋关节发育不良的单细胞染色质可及性图谱
许珂1, 杨雪娜2, 程仕强2, 侯卫坤1, 刘林1, 彭侃1, 文嫣2, 贾雨萌2, 张峰2, 许鹏1,()   
  1. 1710054 西安市红会医院关节外科
    2710061 西安交通大学医学部公共卫生学院,国家卫健委环境与地方性疾病重点实验室,丝路区域地方病与健康促进协同创新中心
  • 收稿日期:2024-11-06 出版日期:2025-10-01
  • 通信作者: 许鹏
  • 基金资助:
    陕西省自然科学重点项目(2024JC-ZDXM-55)

Single-cell chromatin accessibility atlas of adult developmental dysplasia of hip

Ke Xu1, Xuena Yang2, Shiqiang Cheng2, Weikun Hou1, Lin Liu1, Kan Peng1, Yan Wen2, Yumeng Jia2, Feng Zhang2, Peng Xu1,()   

  1. 1Joint Surery Dpartment of Xi’an Honghui Hospital, Xi’an 710054, China
    2School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Environment and Endemic Diseases of National Health Commission, Collaborative Innovation Center for Endemic Diseases and Health Promotion in the Silk Road Region, Xi’an 710061, China
  • Received:2024-11-06 Published:2025-10-01
  • Corresponding author: Peng Xu
引用本文:

许珂, 杨雪娜, 程仕强, 侯卫坤, 刘林, 彭侃, 文嫣, 贾雨萌, 张峰, 许鹏. 成人发育性髋关节发育不良的单细胞染色质可及性图谱[J/OL]. 中华关节外科杂志(电子版), 2025, 19(05): 570-579.

Ke Xu, Xuena Yang, Shiqiang Cheng, Weikun Hou, Lin Liu, Kan Peng, Yan Wen, Yumeng Jia, Feng Zhang, Peng Xu. Single-cell chromatin accessibility atlas of adult developmental dysplasia of hip[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2025, 19(05): 570-579.

目的

本研究旨在利用单细胞染色质转座酶可及性的高通量测序(scATAC-seq)技术解析发育性髋关节发育不良(DDH)患者髋臼软骨发育不良及软骨细胞降解过程的表观遗传调控机制,为揭示DDH的细胞特异性分子病理提供新见解。

方法

本研究使用scATAC-seq分析6例来自西安市红会医院的DDH患者(排除了既往有髋关节手术史、感染或全身性疾病的患者)和6例创伤性股骨颈骨折(TNOF)对照者的64 053个髋臼软骨细胞,绘制了全基因组的单细胞染色质可及性,并揭示了细胞异质性。使用Mann-Whitney U检验分析两组中细胞类型所占比例是否存在差异。

结果

DDH软骨组织的单细胞染色质可及性图谱定义了6个细胞亚群,如纤维软骨细胞(FC)、稳态软骨细胞(HomC)、前肥大软骨细胞(preHTC)、肥大软骨细胞(HTC)和调节性软骨细胞(RegC)。DDH组中FC(U=35,P=0.004)、HomC(U=36,P=0.002)和preHTC(U=35,P=0.004)的比例显著高于对照组,而RegC的比例在DDH组中显著低于对照组(U=1,P=0.004)。并进一步揭示了两组间6种细胞类型的差异可及性峰相关基因和转录因子,如在HomC中发现的组蛋白H4转录因子(HINFP)(log2 FC=2.84,P=6.31×10-4)和HTC中的矮小相关转录因子2(RUNX2)(log2 FC =1.02,P=1.95×10-5)。

结论

本研究识别出的细胞类型在DDH的发生发展过程中发挥不同的作用,这可能是由差异可及性峰的关键转录因子调控所致。本研究为理解DDH的病因和发病机制以及潜在的治疗靶点提供了新的线索。

Objective

To elucidate the epigenetic regulatory mechanisms underlying acetabular cartilage dysplasia and chondrocyte degradation in patients with developmental dysplasia of hip (DDH) using single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) technology and provide new insights into the cell-specific molecular pathology of DDH.

Methods

A total of 64 053 acetabular chondrocytes were collected from six DDH patients (those with a history of hip surgery, infection, or systemic diseases were excluded) and six patients with traumatic femoral neck fracture (TNOF) as controls in Xi’an Honghui Hospital. These cells were analyzed by scATAC-seq to construct a map of genome-wide single-cell chromatin accessibility and reveal cellular heterogeneity. The differences in the proportions of cell types between the two groups were analyzed using Mann-Whitney U test.

Results

Six distinct cell populations in DDH cartilage were identified, such as fibrocartilage chondrocytes (FC), homeostatic chondrocytes (HomC), prehypertrophic chondrocytes (preHTC) and hypertrophic chondrocyte (HTC) as well as regulatory chondrocytes (RegC). The percentage of FC (U=35, P=0.004), HomC (U=36, P=0.002) and preHTC (U=35, P=0.004) were significantly higher in the DDH group than those in the control group. While compared to the control group, the percentage of RegC was remarkably lower in the DDH group (U=1, P=0.004). Disease associated candidate differentially accessible peaks and transcription factors (TF) were revealed, such as HINFP (log2 FC= 2.84, P=6.31×10−4) for HomC population and runt related transcription factor 2 (RUNX2) (log2 FC=1.02, P=1.95×10−5) for RegC population.

Conclusions

The identified cell types exerted different influences on the development of DDH, which may be driven by corresponding key transcription factor of differential accessible peaks. These findings may provide novel clues for understanding etiology and pathogenesis as well as therapeutic targets of DDH.

图1 典型DDH(发育性髋关节发育不良)患者X光片。图A为骨盆正位片;图B为髋关节侧位片
Figure 1 X-ray images of typical DDH patients. A is a pelvic radiograph at anteroposterior view; B is a radiograph of hip joint at lateral view
图2 ScATAC-seq(单细胞染色质转座酶可及性的高通量测序)数据集的UMAP(统一流形近似与投影)图注:不同颜色表示根据ScRNA-seq数据的聚类分析所识别的各细胞类型。EC-效应软骨细胞;FC-纤维软骨细胞;HomC-稳态软骨细胞;HTC-肥大软骨细胞;preHTC-前肥大软骨细胞;RegC-调节性软骨细胞
Figure 2 UMAP diagram of ScATAC-seq data setNote: color coding represents distinct cell populations identified through scRNA-seq clustering analysis. EC-effector chondrocytes; FC-ibrocartilage chondrocytes; HomC-homeostatic chondrocytes; HTC-hypertrophic chondrocytes; preHTC-prehypertrophic chondrocytes; RegC-regulatory chondrocytes
图3 DDH(发育性髋关节发育不良)组与对照组中各细胞类型的UMAP(统一流形近似与投影)可视化及细胞比例。图A为ScATAC-seq(单细胞染色质转座酶可及性的高通量测序)的UMAP可视化,按DDH组和对照组分割;图B为DDH组和对照组中各细胞类型的百分比;图C为DDH组和对照组中各细胞类型的比例注:EC-效应软骨细胞;FC-纤维软骨细胞;HomC-稳态软骨细胞;HTC-肥大软骨细胞;preHTC-前肥大软骨细胞;RegC-调节性软骨细胞;ns- P>0.05;**-P<0.01
Figure 3 UMAP visualization and cell proportion of each cell type in DDH group and control group. A is UMAP visualization of ScATAC-seq, divided into DDH group and control group; B is percentage of each cell type in DDH group and control group; C is the proportion of each cell type in DDH group and control groupNote: EC-effector chondrocytes; FC-fibrocartilage chondrocytes; HomC-homeostatic chondrocytes; HTC-hypertrophic chondrocytes; preHTC-prehypertrophic chondrocytes; RegC-regulatory chondrocytes; ns-P>0.05;**-P<0.01
图4 DDH(发育性髋关节发育不良)组与对照组中各细胞类型差异可及性峰相关基因的火山图。图A为EC;图B为FC;图C为HomC;图D为HTC;图E为preHTC;图F为RegC注:EC-效应软骨细胞;FC-纤维软骨细胞;HomC-稳态软骨细胞;HTC-肥大软骨细胞;preHTC-前肥大软骨细胞;RegC-调节性软骨细胞
Figure 4 Volcano plots showing genes associated with differentially accessible peaks between DDH and control groups across cell types. A is EC; B is FC; C is HomC; D is HTC; E is preHTC; F is RegCNote: EC-effector chondrocytes; FC-fibrocartilage chondrocytes; HomC-homeostatic chondrocytes; HTC-hypertrophic chondrocytes; preHTC-prehypertrophic chondrocytes; RegC-regulatory chondrocytes
图5 DDH(发育性髋关节发育不良)组与对照组中各细胞类型差异可及性峰相关基因的KEGG(京都基因与基因组百科全书)富集分析,示显著富集的KEGG通路。图A为EC;图B为FC;图C为HTC;图D为RegC注:EC-效应软骨细胞;FC-纤维软骨细胞;HTC-肥大软骨细胞;RegC-调节性软骨细胞
Figure 5 KEGG pathway enrichment analysis of genes associated with differentially accessible peaks between DDH and control groups across cell types, showing significantly enriched KEGG pathways. A is EC; B is FC; C is HTC; D is RegCNote: EC-effector chondrocytes; FC-ibrocartilage chondrocytes; HTC-hypertrophic chondrocytes; RegC-regulatory chondrocytes
[1]
Hatzikotoulas K,Roposch A, DDH Case Control Consortium, et al. Genome-wide association study of developmental dysplasia of the hip identifies an association with GDF5[J/OL].Commun Biol, 2018, 1: 56. DOI:10.1038/s42003-018-0052-4.
[2]
Loder RT,Skopelja EN. The epidemiology and demographics of hip dysplasia[J/OL]. ISRN Orthop, 2011, 2011: 238607. DOI:10.5402/2011/238607.
[3]
Tian FD, Zhao DW, Wang W, et al. Prevalence of developmental dysplasia of the hip in Chinese adults: across-sectional survey[J]. Chin Med J (Engl), 2017, 130(11): 1261-1268.
[4]
Dezateux C, Rosendahl K. Developmental dysplasia of the hip[J].Lancet, 2007, 369(9572): 1541-1552.
[5]
Ning B,Jin R, Wang D, et al. The H19/let-7 feedback loop contributes to developmental dysplasia and dislocation of the hip[J]. Physiol Res, 2019: 275-284.
[6]
Chen H, Cui Y, Zhang D, et al. The role of fibroblast growth factor 8 in cartilage development and disease[J]. J Cell Mol Med, 2022, 26(4): 990-999.
[7]
Liu X, Deng X, Ding R, et al. Chondrocyte suppression is mediated by miR-129-5p via GDF11/SMAD3 signaling in developmental dysplasia of the hip[J]. J Orthop Res, 2020, 38(12): 2559-2572.
[8]
BohačekI, PlečkoM, Duvančić T, et al. Current knowledge on the genetic background of developmental dysplasia of the hip and the histomorphological status of the cartilage[J]. Croat Med J, 2020, 61(3): 260-270.
[9]
Bo N, Peng W, Xinghong P, et al. Early cartilage degeneration in a rat experimental model of developmental dysplasia of the hip[J]. Connect Tissue Res, 2012, 53(6): 513-520.
[10]
Ning B, Jin R, Wan L, et al. Cellular and molecular changes to chondrocytes in an in vitro model of developmental dysplasia of the hip-an experimental model of DDH with swaddling position[J].Mol Med Rep, 2018, 18(4): 3873-3881.
[11]
Ortiz-Neira CL, Paolucci EO, Donnon T. A meta-analysis of common risk factors associated with the diagnosis of developmental dysplasia of the hip in newborns[J/OL].Eur J Radiol, 2012, 81(3): e344-51. DOI:10.1016/j.ejrad.2011.11.003.
[12]
鲁宁, 胡侦明, 浦波, 等. 云南地区先天性髋关节脱位4个家系22号与7号染色体易感基因连锁分析[J/OL]. 中华关节外科杂志(电子版), 2008, 2(4): 427-434.
[13]
何淳诺, 田志敏, 李焕玺, 等.小儿发育性髋关节发育不良诊治的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 497-504.
[14]
Stevenson DA,MineauG, Kerber RA, et al. Familial predisposition to developmental dysplasia of the hip [J]. J Pediatr Orthop, 2009, 29(5): 463-466.
[15]
KenanidisE, GkekasNK, Karasmani A, et al. Genetic predisposition to developmental dysplasia of the hip[J]. J Arthroplasty, 2020, 35(1): 291-300.e1.
[16]
Cheng B, Jia Y, Wen Y, et al. Integrative analysis of microRNA and mRNA sequencing data identifies novel candidate genes and pathways for developmental dysplasia of hip [J]. Cartilage, 2021, 13(2_suppl): 1618S-1626S.
[17]
Xu Z, Lefevre GM, Felsenfeld G. Chromatin structure, epigenetic mechanisms and long-range interactions in the human insulin locus[J]. Diabetes Obes Metab, 2012, 14(Suppl 3): 1-11.
[18]
Wu X, Yang Y, Zhong C, et al. Integration of ATAC-seq and RNA-sequnravels chromatin accessibility during sex reversal in orange-spotted grouper (Epinepheluscoioides)[J/OL]. Int J Mol Sci, 2020, 21(8):E2800. DOI:10.3390/ijms21082800.
[19]
Dong K, Zhang S. Joint reconstruction of Cis-regulatory interaction networks across multiple tissues using single-cell chromatin accessibility data [J/OL]. Brief Bioinform, 2021, 22(3):bbaa120. DOI:10.1093/bib/bbaa120.
[20]
Andueza A, Kumar S, Kim J, et al. Endothelial reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study [J/OL]. Cell Rep, 2020, 33(11): 108491. DOI:10.1016/j.celrep.2020.108491.
[21]
Morabito S, Miyoshi E, Michael N, et al. Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s disease[J]. Nat Genet, 2021, 53(8): 1143-1155.
[22]
ChiouJ, Zeng C, Cheng Z, et al. Single-cell chromatin accessibility identifies pancreatic islet cell type- and state-specific regulatory programs of diabetes risk[J]. Nat Genet, 2021, 53(4): 455-466.
[23]
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J/OL]. EMBnet J, 2011, 17(1): 10 DOI:10.14806/ej.17.1.200.
[24]
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM [DB/OL]. arXiv e-prints, 2013. DOI:10.48550/arXiv.1303.3997.
[25]
Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data[J]. Cell, 2019, 177(7): 1888-1902.e21.
[26]
Pervolarakis N, Nguyen QH, Williams J, et al. Integrated single-cell transcriptomics and chromatin accessibility analysis reveals regulators of mammary epithelial cell identity[J/OL]. Cell Rep, 2020, 33(3): 108273. DOI:10.1016/j.celrep.2020.108273.
[27]
Quinlan AR, Hall IM. BED Tools: a flexible suite of utilities for comparing genomic features[J]. Bioinformatics, 2010, 26(6): 841-842.
[28]
Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium [J]. Nat Genet, 2000, 25(1): 25-29.
[29]
Kanehisa M, Furumichi M, Sato Y, et al. KEGG: integrating viruses and cellular organisms [J]. Nucleic Acids Res, 2021, 49(d1): D545-D551.
[30]
Akkiraju H, Nohe A. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration [J]. J Dev Biol, 2015, 3(4): 177-192.
[31]
Ji Q, Zheng Y, Zhang G, et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis[J]. Ann Rheum Dis, 2019, 78(1): 100-110.
[32]
Zhang X, Huang N, Huang R, et al. Single-cell RNAseq analysis identifies the biomarkers and differentiation of chondrocyte in human osteoarthritis [J]. Am J Transl Res, 2020, 12(11): 7326-7339.
[33]
Feng WJ, Wang H, Shen C, et al. Severe cartilage degeneration in patients with developmental dysplasia of the hip[J]. IUBMB Life, 2017, 69(3): 179-187.
[34]
LianC, Wang X,Qiu X, et al. Collagen type II suppresses articular chondrocyte hypertrophy and osteoarthritis progression by promoting integrin β1-SMAD1 interaction [J/OL]. Bone Res, 2019, 7: 8. DOI:10.1038/s41413-019-0046-y.
[35]
StuderK, Williams N, Studer P, et al. Obstacles to reduction in infantile developmental dysplasia of the hip[J]. J Child Orthop, 2017, 11(5): 358-366.
[36]
Ding M, Lu Y,Abbassi S, et al. Targeting runx2 expression in hypertrophic chondrocytes impairs endochondral ossification during early skeletal development [J]. J Cell Physiol, 2012, 227(10): 3446-3456.
[37]
VieyraD, Toyama T, Hara Y, et al. ING1 isoforms differentially affect apoptosis in a cell age-dependent manner [J]. Cancer Res, 2002, 62(15): 4445-4452.
[38]
Thiel G, Backes TM,Guethlein LA, et al. Critical protein-protein interactions determine the biological activity of elk-1, a master regulator of stimulus-induced gene transcription [J/OL]. Molecules, 2021, 26(20):6125. DOI:10.3390/molecules26206125.
[39]
Shen M, Kawamoto T, Yan W, et al. Molecular characterization of the novel basic helix-loop-helix protein DEC1 expressed in differentiated human embryo chondrocytes[J]. Biochem Biophys Res Commun, 1997, 236(2): 294-298.
[40]
Yao J, Wang L, Chen L, et al. Cloning and developmental expression of the DEC1 ortholog gene in zebrafish[J]. Gene Expr Patterns, 2006, 6(8): 919-927.
[41]
Camponeschi A, Todi L,Cristofoletti C, et al. DEC1/STRA13 is a key negative regulator of activation-induced proliferation of human B cells highly expressed in anergic cells[J]. Immunol Lett, 2018, 198: 7-11.
[42]
Mitra P, Xie RL, Medina R, et al. Identification of HiNF-P, a key activator of cell cycle-controlled histone H4 genes at the onset of S phase[J]. Mol Cell Biol, 2003, 23(22): 8110-8123.
[43]
Wigner NA, Soung do Y, Einhorn TA, et al. Functional role of Runx3 in the regulation of aggrecan expression during cartilage development[J]. J Cell Physiol, 2013, 228(11): 2232-2242.
[44]
Mixon A, Savage A,Bahar-Moni AS, et al. An in vitro investigation to understand the synergistic role of MMPs-1 and 9 on articular cartilage biomechanical properties[J/OL]. Sci Rep, 2021, 11(1): 14409. DOI:10.1038/s41598-021-93744-1.
[45]
Ning B, Sun J, Yuan Y, et al. Early articular cartilage degeneration in a developmental dislocation of the hip model results from activation of β-catenin[J]. Int J Clin Exp Pathol, 2014, 7(4): 1369-1378.
[46]
Karsdal MA, Sumer EU, Wulf H, et al. Induction of increased cAMP levels in articular chondrocytes blocks matrix metalloproteinase-mediated cartilage degradation, but not aggrecanase-mediated cartilage degradation [J]. Arthritis Rheum, 2007, 56(5): 1549-1558.
[47]
Wu Y, Lu X, Li M, et al. Renin-angiotensin system in osteoarthritis: a new potential therapy[J/OL]. Int Immunopharmacol, 2019, 75: 105796. DOI:10.1016/j.intimp.2019.105796.
[1] 黄宇阳, 李永生, 罗程, 何奕君, 潘骞. 微孔水凝胶与双细胞因子协同促软骨分化的实验研究[J/OL]. 中华关节外科杂志(电子版), 2025, 19(05): 560-569.
[2] 陈博, 李向毅. 骨关节炎中软骨细胞铜死亡的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 207-213.
[3] 黄晓芳, 刘澍雨, 黄子荣, 胡艳, 梁家敏, 朱伟民. 软骨细胞来源外泌体对于软骨损伤修复的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 751-758.
[4] 陈松, 黄玲巧, 余清卿, 魏志鑫, 付琰. 单细胞RNA测序技术在骨关节炎软骨中的研究应用[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 363-371.
[5] 李朋, 苗立帅, 朱智奇. 四氢嘧啶对大鼠关节软骨细胞的保护作用[J/OL]. 中华关节外科杂志(电子版), 2024, 18(01): 69-77.
[6] 罗璠, 饶志涛. 机械敏感蛋白Piezo1介导创伤后骨关节炎的作用及机制[J/OL]. 中华关节外科杂志(电子版), 2023, 17(04): 528-533.
[7] 傅子财, 黄勇, 陈斐, 刘澍雨, 朱伟民. 间充质干细胞来源外泌体在骨关节炎治疗中的研究进展[J/OL]. 中华关节外科杂志(电子版), 2022, 16(02): 196-201.
[8] 朱仔燕, 薛松, 马金忠. 单细胞测序技术在骨关节炎病因诊断中的研究进展[J/OL]. 中华关节外科杂志(电子版), 2022, 16(01): 44-48.
[9] 李晓飞, 孙一, 张钊, 张海宁. 机械激活离子通道压力蛋白与细胞骨架的相关性研究[J/OL]. 中华关节外科杂志(电子版), 2020, 14(06): 691-697.
[10] 郭道瑞, 曲春霞, 战怀杰. 自体软骨细胞联合Ⅰ型胶原治疗剥脱性膝骨软骨炎[J/OL]. 中华关节外科杂志(电子版), 2020, 14(06): 773-775.
[11] 黄勇, 朱伟民, 陆伟, 熊建义, 王大平, 邓桢翰. 三磷酸鸟苷酶相关蛋白激酶在骨关节炎的研究进展[J/OL]. 中华关节外科杂志(电子版), 2020, 14(06): 717-721.
[12] 罗新乐, 朱伟民, 张昊, 胡亚威, 陈少初, 龚铭. 人间充质干细胞成软骨分化中DNA甲基化调控Ⅹ型胶原表达[J/OL]. 中华关节外科杂志(电子版), 2020, 14(02): 167-172.
[13] 李灿锋, 尤田, 沈彬. 微小RNA-140与骨关节炎关系的研究进展[J/OL]. 中华关节外科杂志(电子版), 2020, 14(01): 68-72.
[14] 邢超, 徐灵巧, 廖文婷, 孙养鹏, 叶钟泰, 张志光. 骨髓间充质干细胞来源的外泌体促进髁突软骨细胞再生的研究[J/OL]. 中华口腔医学研究杂志(电子版), 2021, 15(04): 207-214.
[15] 徐高丽, 张建兴, 周健, 沈文俊, 谷志远, 徐国超. 静压力下缺氧诱导因子-1α信号通路对髁突软骨细胞增殖与凋亡的调控作用[J/OL]. 中华老年病研究电子杂志, 2021, 08(03): 24-29.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?