| [1] |
Saitou T, Kiyomatsu H, Imamura T. Quantitative morphometry for osteochondral tissues using second harmonic generation microscopy and image texture information[J/OL]. Sci Rep, 2018, 8(1): 2826. DOI: 10.1038/s41598-018-21005-9.
|
| [2] |
黄晓芳, 刘澍雨, 黄子荣, 等. 软骨细胞来源外泌体对于软骨损伤修复的研究进展[J/OL]. 中华关节外科杂志电子版, 2024, 18(06): 751-758.
|
| [3] |
Wang P, Zhu P, Yin W, et al. ICA/SDF-1α/PBMSCs loaded onto alginate and gelatin cross-linked scaffolds promote damaged cartilage repair[J/OL]. J Cell Mol Med, 2024, 28(7): e18236. DOI: 10.1111/jcmm.18236.
|
| [4] |
Yang Z, Li H, Yuan Z, et al. Endogenous cell recruitment strategy for articular cartilage regeneration[J]. Acta Biomater, 2020, 114: 31-52.
|
| [5] |
Hu H, Dong L, Bu Z, et al. miR-23a-3p-abundant small extracellular vesicles released from Gelma/nanoclay hydrogel for cartilage regeneration[J/OL]. J Extracell Vesicles, 2020, 9(1): 1778883. DOI: 10.1080/20013078.2020.1778883.
|
| [6] |
He L, He T, Xing J, et al. Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis[J/OL]. Stem Cell Res Ther, 2020, 11(1): 276. DOI: 10.1186/s13287-020-01781-w.
|
| [7] |
Liu W, Jiang H, Chen J, et al. High paracrine activity of hADSCs cartilage microtissues inhibits extracellular matrix degradation and promotes cartilage regeneration[J/OL]. Mater Today Bio, 2024, 30: 101372. DOI: 10.1016/j.mtbio.2024.101372.
|
| [8] |
Ren H, Zhang L, Zhang X, et al. Specific lipid magnetic sphere sorted CD146-positive bone marrow mesenchymal stem cells can better promote articular cartilage damage repair[J/OL]. BMC Musculoskelet Disord, 2024, 25(1): 253. DOI: 10.1186/s12891-024-07381-6.
|
| [9] |
Lamparelli EP, Lovecchio J, Ciardulli MC, et al. Chondrogenic commitment of human bone marrow mesenchymal stem cells in a perfused collagen hydrogel functionalized with hTGF-β1-releasing PLGA microcarrier[J/OL]. Pharmaceutics, 2021, 13(3): 399. DOI: 10.3390/pharmaceutics13030399.
|
| [10] |
Martin AR, Patel JM, Locke RC, et al. Nanofibrous hyaluronic acid scaffolds delivering TGF-β3 and SDF-1α for articular cartilage repair in a large animal model [J]. Acta Biomater, 2021, 126: 170-182.
|
| [11] |
Chen X, Liang XM, Zheng J, et al. Stromal cell-derived factor-1α regulates chondrogenic differentiation via activation of the Wnt/β-catenin pathway in mesenchymal stem cells[J]. World J Stem Cells, 2023, 15(5): 490-501.
|
| [12] |
Du X, Cai L, Xie J, et al. The role of TGF-beta3 in cartilage development and osteoarthritis[J/OL]. Bone Res, 2023, 11(1): 2. DOI: 10.1038/s41413-022-00239-4.
|
| [13] |
Lin J, Wang L, Lin J, et al. Dual delivery of TGF-β3 and ghrelin in microsphere/hydrogel systems for cartilage regeneration[J/OL]. Molecules, 2021, 26 (19): 5732. DOI: 10.3390/molecules26195732.
|
| [14] |
Kong J, Zhou X, Lu J, et al. Maclurin promotes the chondrogenic differentiation of bone marrow mesenchymal stem cells by regulating miR-203a-3p/Smad1[J]. Cell Reprogram, 2022, 24(1): 9-20.
|
| [15] |
Wu Z, Li Q, Xie S, et al. In vitro and in vivo biocompatibility evaluation of a 3D bioprinted gelatin-sodium alginate/rat Schwann-cell scaffold [J/OL]. Mater Sci Eng C Mater Biol Appl, 2020, 109: 110530. DOI: 10.1016/j.msec.2019.110530.
|
| [16] |
Liu Y, Wang M, Luo Y, et al. Enhancing stem cell therapy for cartilage repair in osteoarthritis-a hydrogel focused approach[J/OL]. Gels, 2021, 7(4): 263. DOI: 10.3390/gels7040263.
|
| [17] |
Walker M, Luo J, Pringle EW, et al. ChondroGELesis: Hydrogels to harness the chondrogenic potential of stem cells[J/OL]. Mater Sci Eng C Mater Biol Appl, 2021, 121: 111822. DOI: 10.1016/j.msec.2020.111822.
|
| [18] |
Leijten J, Moreira Teixeira LS, Bolander J, et al. Bioinspired seeding of biomaterials using three dimensional microtissues induces chondrogenic stem cell differentiation and cartilage formation under growth factor free conditions[J/OL]. Sci Rep, 2016, 6: 36011. DOI: 10.1038/srep36011.
|
| [19] |
Naruphontjirakul P, Panpisut P, Patntirapong S. Zinc and strontium-substituted bioactive glass nanoparticle/alginate composites scaffold for bone regeneration[J/OL]. Int J Mol Sci, 2023, 24(7): 6150. DOI: 10.3390/ijms24076150.
|
| [20] |
Zeng L, Chen X, Zhang Q, et al. Redifferentiation of dedifferentiated chondrocytes in a novel three-dimensional microcavitary hydrogel[J]. J Biomed Mater Res A, 2015, 103(5): 1693-1702.
|
| [21] |
Yao Y, Huang Y, Qian D, et al. Effect of various ratios of co-cultured ATDC5 cells and chondrocytes on the expression of cartilaginous phenotype in microcavitary alginate hydrogel [J]. J Cell Biochem, 2017, 118(11): 3607-3615.
|
| [22] |
Yao Y, Chen K, Pan Q, et al. Redifferentiation of genetically modified dedifferentiated chondrocytes in a microcavitary hydrogel[J]. Biotechnol Lett, 2024, 46(3): 483-495.
|
| [23] |
Zhang F, Yao Y, Su K, et al. Co-transduction of lentiviral and adenoviral vectors for co-delivery of growth factor and shRNA genes in mesenchymal stem cells-based chondrogenic system [J]. J Tissue Eng Regen Med, 2015, 9(9): 1036-1045.
|
| [24] |
Pan Q, Gao H, Su W, et al. Enhancement of chondrogenesis by a microcavitary hydrogel coculture system synergizing with SDF-1α and TGF-Β3[J]. Biotechnol Bioeng, 2025, 122(10): 2899-2911.
|
| [25] |
Wang Y, Chen J, Fan W, et al. Stromal cell-derived factor-1α and transforming growth factor-β1 synergistically facilitate migration and chondrogenesis of synovium-derived stem cells through MAPK pathways[J]. Am J Transl Res, 2017, 9(5): 2656-2667.
|
| [26] |
Li J, Chen H, Cai L, et al. SDF-1α promotes chondrocyte autophagy through CXCR4/mTOR signaling axis[J/OL]. Int J Mol Sci, 2023, 24(2): 1710. DOI: 10.3390/ijms24021710.
|
| [27] |
Lefebvre V, Angelozzi M, Haseeb A. SOX9 in cartilage development and disease[J]. Curr Opin Cell Biol, 2019, 61: 39-47.
|
| [28] |
Hotta Y, Nishida K, Yoshida A, et al. Inhibitory effect of a tankyrase inhibitor on mechanical stress-induced protease expression in human articular chondrocytes[J/OL]. Int J Mol Sci, 2024, 25(3): 1443. DOI: 10.3390/ijms25031443.
|
| [29] |
Ying JW, Wen TY, Pei SS, et al. Stromal cell-derived factor-1α promotes recruitment and differentiation of nucleus pulposus-derived stem cells[J]. World J Stem Cells, 2019, 11(3): 196-211.
|
| [30] |
Furumatsu T, Tsuda M, Taniguchi N, et al. Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment[J]. J Biol Chem, 2005, 280(9): 8343-8350.
|
| [31] |
Li J, Dong S. The signaling pathways involved in chondrocyte differentiation and hypertrophic differentiation[J/OL]. Stem Cells Int, 2016, 2016: 2470351. DOI: 10.1155/2016/2470351.
|
| [32] |
Ziff OJ, Bromage DI, Yellon DM, et al. Therapeutic strategies utilizing SDF-1α in ischaemic cardiomyopathy[J]. Cardiovasc Res, 2018, 114(3): 358-367.
|
| [33] |
O’Dwyer J, Cullen M, Fattah S, et al. Development of a sustained release nano-In-gel delivery system for the chemotactic and angiogenic growth factor stromal-derived factor 1α[J/OL]. Pharmaceutics, 2020, 12(6): 513. DOI: 10.3390/pharmaceutics12060513.
|
| [34] |
Wu Y, Lyu Z, Hu F, et al. A chondroitin sulphate hydrogel with sustained release of SDF-1α for extensive cartilage defect repair through induction of cell homing and promotion of chondrogenesis[J/OL]. J Mater Chem B, 2024, 12(35): 8672-8687. DOI: 10.1039/D4TB00624K.
|
| [35] |
Zhao D, Wang X, Cheng B, et al. Degradation-kinetics-controllable and tissue-regeneration-matchable photocross-linked alginate hydrogels for bone repair[J]. ACS Appl Mater Interfaces, 2022, 14(19): 21886-21905.
|
| [36] |
Liang HC, Chang WH, Lin KJ, et al. Genipin-crosslinked gelatin microspheres as a drug carrier for intramuscular administration: in vitro and in vivo studies[J]. J Biomed Mater Res A, 2003, 65(2): 271-282.
|
| [37] |
Venkatesan JK, Liu W, Madry H, et al. Alginate hydrogel-guided rAAV-mediated FGF-2 and TGF-β delivery and overexpression stimulates the biological activities of human meniscal fibrochondrocytes for Meniscus repair[J]. Eur Cell Mater, 2024, 47: 1-14.
|