切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (02) : 167 -172. doi: 10.3877/cma.j.issn.1674-134X.2020.02.007

所属专题: 文献

基础论著

人间充质干细胞成软骨分化中DNA甲基化调控Ⅹ型胶原表达
罗新乐1, 朱伟民2, 张昊1, 胡亚威1, 陈少初1, 龚铭1,()   
  1. 1. 518100 深圳,南方医科大学附属深圳市龙华区人民医院脊柱外科
    2. 518100 深圳市第二人民医院运动医学科
  • 收稿日期:2020-01-02 出版日期:2020-04-01
  • 通信作者: 龚铭
  • 基金资助:
    广东省医学科学技术研究基金(A2018379); 深圳市龙华区2018年科技创新专项资金(2017003)

Epigenetic regulation of collagen Ⅹ in human mesenchymal stem cells during chondrogenic differentiation

Xinle Luo1, Weimin Zhu2, Hao Zhang1, Yawei Hu1, Shaochu Chen1, Ming Gong1,()   

  1. 1. Department of Spinal Surgery, Longhua People’s hospital, Southern Medical University, Shenzhen 518100, China
    2. Sports Medicine Department, The Second people’s hospital of Shenzhen, Shenzhen 518100, China
  • Received:2020-01-02 Published:2020-04-01
  • Corresponding author: Ming Gong
  • About author:
    Corresponding author: Gong Ming, Email:
引用本文:

罗新乐, 朱伟民, 张昊, 胡亚威, 陈少初, 龚铭. 人间充质干细胞成软骨分化中DNA甲基化调控Ⅹ型胶原表达[J]. 中华关节外科杂志(电子版), 2020, 14(02): 167-172.

Xinle Luo, Weimin Zhu, Hao Zhang, Yawei Hu, Shaochu Chen, Ming Gong. Epigenetic regulation of collagen Ⅹ in human mesenchymal stem cells during chondrogenic differentiation[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(02): 167-172.

目的

在人间充质干细胞(hMSCs)诱导成软骨分化过程中,探讨Ⅹ型胶原与其启动子甲基化状态之间的关系,为揭示表观遗传学调控参与成软骨分化的可能机制提供理论基础。

方法

收集6例来源于深圳市第二人民医院脊柱外科患者的腰椎椎体骨髓间充质干细胞为研究对象,运用离心沉淀法进行细胞微球培养,用含有转化生长因子β3(TGF-β3)及2%胎牛血清(FBS)的高糖细胞培养基(DMEM)进行成软骨诱导并作为实验组(3例);在该诱导液中加入5’-氮杂胞苷(5’-AZA)作为诱导组(3例);不含TGF-β3的2%胎牛血清的高糖细胞培养基的为对照组(3例)。在分化3 d后进行定量PCR,检测成软骨分化相关基因表达以及Ⅹ型胶原启动子区域甲基化改变情况,采用方差分析及多样本间的均数比较(q检验)分析基因水平表达差异;组间DNA甲基化水平差异采用Kruskal-Wallis检验统计学差异。

结果

通过生物信息学预测Ⅹ型胶原的启动子区域可能存在CpG富集区域,在含有5’-氮杂胞苷的成软骨诱导分化过程中,Ⅹ型胶原表达逐渐上升,与对照组相比差异具有统计学意义(F=37.526, P<0.001),而Ⅹ型胶原启动子区域的甲基化水平与对照组相比逐渐下降,差异也具有统计学意义(F=11.066,P<0.01)。

结论

在体外诱导人间充质干细胞成软骨分化过程中,参与维持Ⅹ型胶原启动子甲基化状态降低,分化能力得到增强;提示表观遗传学调控方式是影响干细胞分化方式之一。

Objective

To evaluate the relationship between collagen Ⅹ and the methylation status of its promoter during the initial period of human mesenchymal stem cells (hMSCs) chondrogenic differentiation. ]

Methods

The hMSCs were collected from six patients who underwent the intervertebral fusion and informed the ethical agreement. The pellet was cultured by centrifugal precipitation, within 2% fetal bovine serum (FBS) high-glucose Dulbecco's modified Eagle medium containing TGF-β3. Quantitative PCR was performed 3 d after differentiation to detect the expression of cartilage -related genes and methylation changes in the collagen Ⅹ promoter region. The data were analyzed by variance analysis and Kruskal-Wallis test.

Results

Bioinformatics indicated that there might be CpG-rich regions in the promoter region of collagenⅩ(F=37.526, P<0.001). During the process of chondrogenic differentiation, the expression of collagen Ⅹgradually increased, and the difference was statistically significant compared with the control group. Compared with the control group, the methylation level of the collagen Ⅹ promoter region gradually decreased, and the difference was also statistically significant(F=11.066, P<0.01).

Conclusion

In the process of the hMSCs′ chondrogenic differentiation in vitro, the results would suggest that the methylation status of the collagen Ⅹ promoter may involve and enhance the differentiation ability; which implies that epigenetic regulation would affect stem cell differentiation.

表1 q-PCR扩增片段及引物序列
图1 分离培养hMSCs(人间充质干细胞)及其表面标志物的检测。图A 为抽取术中骨髓血体外培养hMSCs相差显微镜图像,图B 为hMSCs表面标志物的流式细胞检测结果
表2 hMSCs成软骨分化调控基因相对表达量对比(±s)
表3 hMSCs成软骨分化关键标志基因表达(±s)
图2 Col-Xa1启动子区域的CpG岛甲基化比率比较。图A 为Col-Xa1启动子上游约1000bp的序列及CpG位点;图B 为30个克隆子经测序显示Col-Xa1启动子区域的CpG岛甲基化程度差异;图C 为比较各组间Col-Xa1启动子区域的CpG岛甲基化率,对照组vs诱导组(F=11.066, P>0.05),*-对照组与诱导+5'-AZA组比较(P<0.05)
[1]
Andrés MD, Kingham E, Imagawa K, et al. Epigenetic regulation during fetal femur development: DNA methylation matters[J/OL]. PLoS One, 2013, 8(1): e54957. doi: 10.1371/journal.pone.0054957.
[2]
Bird A. DNA methylation patterns and epigenetic memory[J]. Genes Dev, 2002, 16(1): 6-21.
[3]
Sato-Kusubata K, Jiang YB, Ueno Y, et al. Adipogenic histone mark regulation by matrix metalloproteinase 14 in collagen-rich microenvironments[J]. Mol Endocrinol, 2011, 25(5): 745-753.
[4]
Pelttari K, Steck E, Richter W, et al. The use of mesenchymal stem cells for chondrogenesis[J]. Injury, 2008, 39 Suppl 1: S58-S65.
[5]
Ji-Yun K, Kyung-Il K, Siyeon P, et al. In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells[J]. Biomaterials, 2014, 35(11): 3571-3581.
[6]
Petralia MC, Mazzon E, Basile MS, et al. Effects of treatment with the hypomethylating agent 5-aza-2′-deoxycytidine in murine type II Collagen-Induced arthritis [J/OL]. Pharmaceuticals (Basel), 2019, 12(4): 174. doi: 10.3390/ph12040174.
[7]
Zimmermann P, Boeuf S, Dickhut A, et al. Correlation of COL10A1 induction during chondrogenesis of mesenchymal stem cells with demethylation of two CpG sites in the COL10A1 promoter[J]. Arthritis Rheum, 2008, 58(9): 2743-2753.
[8]
Johnstone B, Hering TM, Caplan AI, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells[J]. Exp Cell Res, 1998, 238(1): 265-272.
[9]
Nham GTH, Zhang X, Asou Y, et al. Expression of type II collagen and aggrecan genes is regulated through distinct epigenetic modifications of their multiple enhancer elements[J]. Gene, 2019, 704(704): 134-141.
[10]
Mimura I, Hirakawa Y, Kanki Y, et al. Genome-wide analysis revealed that DZNep reduces tubulointerstitial fibrosis via down-regulation of pro-fibrotic genes[J/OL]. Sci Rep, 2018, 8(1): 3779. doi: 10.1038/s41598-018-22180-5.
[11]
Isabela TP, Edneia AR, Erico TC, et al. Fibronectin affects transient MMP2 gene expression through DNA demethylation changes in Non-Invasive breast cancer cell lines[J/OL]. PLoS One, 2014, 9(9): e105806. doi: 10.1371/journal.pone.0105806.eCollection 2014.
[12]
Maeng YS, Lee GH, Choi SI, et al. Histone methylation levels correlate with TGFBIp and extracellular matrix gene expression in normal and granular corneal dystrophy type 2 corneal fibroblasts[J]. BMC Med Genomics, 2015, 8: 74. doi: 10.1186/s12920-015-0151-8.
[13]
Megan CC, Deng CY, Lynette BN, et al. Effects of culture condition on epigenomic profiles of brain tumor cells[J]. ACS Biomater Sci Eng, 2019, 5(3): 1544-1552.
[14]
Eckhardt F, Lewin J, Cortese R, et al. DNA methylation profiling of human chromosomes 6, 20 and 22[J]. Nat Genet, 2006, 38(12): 1378-1385.
[15]
Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond[J]. Nat Rev Genet, 2012, 13(7): 484-492.
[16]
Bogdanović O, Lister R. DNA methylation and the preservation of cell identity[J]. Curr Opin Genet Dev, 2017, 46(46): 9-14.
[17]
Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing[J]. Nat Rev Genet, 2018, 19(6): 371-384.
[18]
Poschl E. DNA methylation is not likely to be responsible for aggrecan down regulation in aged or osteoarthritic cartilage[J]. Ann Rheum Dis, 2004, 64(3): 477-480.
[19]
Watson CJ, Horgan S, Neary R, et al. Epigenetic therapy for the treatment of hypertension-induced cardiac hypertrophy and fibrosis[J]. J Cardiovasc Pharmacol Ther, 2016, 21(1): 127-137.
[20]
Asano Y, Trojanowska M. Fli1 represses transcription of the human α2(I) collagen gene by recruitment of the HDAC1/p300 complex[J/OL]. PLoS One, 2013, 8(9): e74930. doi: 10.1371/journal.pone.0074930.
[1] 罗璠, 饶志涛. 机械敏感蛋白Piezo1介导创伤后骨关节炎的作用及机制[J]. 中华关节外科杂志(电子版), 2023, 17(04): 528-533.
[2] 沈纵, 魏晨如, 朱邦晖, 包郁露, 伍国胜, 孙瑜. 间充质干细胞治疗吸入性损伤的动物实验研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 180-183.
[3] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[4] 李埝, 赵建军, 张建勇, 赵睿桢. hAMSCs调控MAPK信号通路对急性肺损伤AQP1的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 156-163.
[5] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[6] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[7] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[8] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[9] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[10] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[11] 陈玉婷, 周影, 陆雅斐, 江滨. 缺氧预处理间充质干细胞的功能及机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 115-120.
[12] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[13] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[14] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要