切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (02) : 167 -172. doi: 10.3877/cma.j.issn.1674-134X.2020.02.007

所属专题: 文献

基础论著

人间充质干细胞成软骨分化中DNA甲基化调控Ⅹ型胶原表达
罗新乐1, 朱伟民2, 张昊1, 胡亚威1, 陈少初1, 龚铭1,()   
  1. 1. 518100 深圳,南方医科大学附属深圳市龙华区人民医院脊柱外科
    2. 518100 深圳市第二人民医院运动医学科
  • 收稿日期:2020-01-02 出版日期:2020-04-01
  • 通信作者: 龚铭
  • 基金资助:
    广东省医学科学技术研究基金(A2018379); 深圳市龙华区2018年科技创新专项资金(2017003)

Epigenetic regulation of collagen Ⅹ in human mesenchymal stem cells during chondrogenic differentiation

Xinle Luo1, Weimin Zhu2, Hao Zhang1, Yawei Hu1, Shaochu Chen1, Ming Gong1,()   

  1. 1. Department of Spinal Surgery, Longhua People’s hospital, Southern Medical University, Shenzhen 518100, China
    2. Sports Medicine Department, The Second people’s hospital of Shenzhen, Shenzhen 518100, China
  • Received:2020-01-02 Published:2020-04-01
  • Corresponding author: Ming Gong
  • About author:
    Corresponding author: Gong Ming, Email:
引用本文:

罗新乐, 朱伟民, 张昊, 胡亚威, 陈少初, 龚铭. 人间充质干细胞成软骨分化中DNA甲基化调控Ⅹ型胶原表达[J/OL]. 中华关节外科杂志(电子版), 2020, 14(02): 167-172.

Xinle Luo, Weimin Zhu, Hao Zhang, Yawei Hu, Shaochu Chen, Ming Gong. Epigenetic regulation of collagen Ⅹ in human mesenchymal stem cells during chondrogenic differentiation[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(02): 167-172.

目的

在人间充质干细胞(hMSCs)诱导成软骨分化过程中,探讨Ⅹ型胶原与其启动子甲基化状态之间的关系,为揭示表观遗传学调控参与成软骨分化的可能机制提供理论基础。

方法

收集6例来源于深圳市第二人民医院脊柱外科患者的腰椎椎体骨髓间充质干细胞为研究对象,运用离心沉淀法进行细胞微球培养,用含有转化生长因子β3(TGF-β3)及2%胎牛血清(FBS)的高糖细胞培养基(DMEM)进行成软骨诱导并作为实验组(3例);在该诱导液中加入5’-氮杂胞苷(5’-AZA)作为诱导组(3例);不含TGF-β3的2%胎牛血清的高糖细胞培养基的为对照组(3例)。在分化3 d后进行定量PCR,检测成软骨分化相关基因表达以及Ⅹ型胶原启动子区域甲基化改变情况,采用方差分析及多样本间的均数比较(q检验)分析基因水平表达差异;组间DNA甲基化水平差异采用Kruskal-Wallis检验统计学差异。

结果

通过生物信息学预测Ⅹ型胶原的启动子区域可能存在CpG富集区域,在含有5’-氮杂胞苷的成软骨诱导分化过程中,Ⅹ型胶原表达逐渐上升,与对照组相比差异具有统计学意义(F=37.526, P<0.001),而Ⅹ型胶原启动子区域的甲基化水平与对照组相比逐渐下降,差异也具有统计学意义(F=11.066,P<0.01)。

结论

在体外诱导人间充质干细胞成软骨分化过程中,参与维持Ⅹ型胶原启动子甲基化状态降低,分化能力得到增强;提示表观遗传学调控方式是影响干细胞分化方式之一。

Objective

To evaluate the relationship between collagen Ⅹ and the methylation status of its promoter during the initial period of human mesenchymal stem cells (hMSCs) chondrogenic differentiation. ]

Methods

The hMSCs were collected from six patients who underwent the intervertebral fusion and informed the ethical agreement. The pellet was cultured by centrifugal precipitation, within 2% fetal bovine serum (FBS) high-glucose Dulbecco's modified Eagle medium containing TGF-β3. Quantitative PCR was performed 3 d after differentiation to detect the expression of cartilage -related genes and methylation changes in the collagen Ⅹ promoter region. The data were analyzed by variance analysis and Kruskal-Wallis test.

Results

Bioinformatics indicated that there might be CpG-rich regions in the promoter region of collagenⅩ(F=37.526, P<0.001). During the process of chondrogenic differentiation, the expression of collagen Ⅹgradually increased, and the difference was statistically significant compared with the control group. Compared with the control group, the methylation level of the collagen Ⅹ promoter region gradually decreased, and the difference was also statistically significant(F=11.066, P<0.01).

Conclusion

In the process of the hMSCs′ chondrogenic differentiation in vitro, the results would suggest that the methylation status of the collagen Ⅹ promoter may involve and enhance the differentiation ability; which implies that epigenetic regulation would affect stem cell differentiation.

表1 q-PCR扩增片段及引物序列
图1 分离培养hMSCs(人间充质干细胞)及其表面标志物的检测。图A 为抽取术中骨髓血体外培养hMSCs相差显微镜图像,图B 为hMSCs表面标志物的流式细胞检测结果
表2 hMSCs成软骨分化调控基因相对表达量对比(±s)
表3 hMSCs成软骨分化关键标志基因表达(±s)
图2 Col-Xa1启动子区域的CpG岛甲基化比率比较。图A 为Col-Xa1启动子上游约1000bp的序列及CpG位点;图B 为30个克隆子经测序显示Col-Xa1启动子区域的CpG岛甲基化程度差异;图C 为比较各组间Col-Xa1启动子区域的CpG岛甲基化率,对照组vs诱导组(F=11.066, P>0.05),*-对照组与诱导+5'-AZA组比较(P<0.05)
[1]
Andrés MD, Kingham E, Imagawa K, et al. Epigenetic regulation during fetal femur development: DNA methylation matters[J/OL]. PLoS One, 2013, 8(1): e54957. doi: 10.1371/journal.pone.0054957.
[2]
Bird A. DNA methylation patterns and epigenetic memory[J]. Genes Dev, 2002, 16(1): 6-21.
[3]
Sato-Kusubata K, Jiang YB, Ueno Y, et al. Adipogenic histone mark regulation by matrix metalloproteinase 14 in collagen-rich microenvironments[J]. Mol Endocrinol, 2011, 25(5): 745-753.
[4]
Pelttari K, Steck E, Richter W, et al. The use of mesenchymal stem cells for chondrogenesis[J]. Injury, 2008, 39 Suppl 1: S58-S65.
[5]
Ji-Yun K, Kyung-Il K, Siyeon P, et al. In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells[J]. Biomaterials, 2014, 35(11): 3571-3581.
[6]
Petralia MC, Mazzon E, Basile MS, et al. Effects of treatment with the hypomethylating agent 5-aza-2′-deoxycytidine in murine type II Collagen-Induced arthritis [J/OL]. Pharmaceuticals (Basel), 2019, 12(4): 174. doi: 10.3390/ph12040174.
[7]
Zimmermann P, Boeuf S, Dickhut A, et al. Correlation of COL10A1 induction during chondrogenesis of mesenchymal stem cells with demethylation of two CpG sites in the COL10A1 promoter[J]. Arthritis Rheum, 2008, 58(9): 2743-2753.
[8]
Johnstone B, Hering TM, Caplan AI, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells[J]. Exp Cell Res, 1998, 238(1): 265-272.
[9]
Nham GTH, Zhang X, Asou Y, et al. Expression of type II collagen and aggrecan genes is regulated through distinct epigenetic modifications of their multiple enhancer elements[J]. Gene, 2019, 704(704): 134-141.
[10]
Mimura I, Hirakawa Y, Kanki Y, et al. Genome-wide analysis revealed that DZNep reduces tubulointerstitial fibrosis via down-regulation of pro-fibrotic genes[J/OL]. Sci Rep, 2018, 8(1): 3779. doi: 10.1038/s41598-018-22180-5.
[11]
Isabela TP, Edneia AR, Erico TC, et al. Fibronectin affects transient MMP2 gene expression through DNA demethylation changes in Non-Invasive breast cancer cell lines[J/OL]. PLoS One, 2014, 9(9): e105806. doi: 10.1371/journal.pone.0105806.eCollection 2014.
[12]
Maeng YS, Lee GH, Choi SI, et al. Histone methylation levels correlate with TGFBIp and extracellular matrix gene expression in normal and granular corneal dystrophy type 2 corneal fibroblasts[J]. BMC Med Genomics, 2015, 8: 74. doi: 10.1186/s12920-015-0151-8.
[13]
Megan CC, Deng CY, Lynette BN, et al. Effects of culture condition on epigenomic profiles of brain tumor cells[J]. ACS Biomater Sci Eng, 2019, 5(3): 1544-1552.
[14]
Eckhardt F, Lewin J, Cortese R, et al. DNA methylation profiling of human chromosomes 6, 20 and 22[J]. Nat Genet, 2006, 38(12): 1378-1385.
[15]
Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond[J]. Nat Rev Genet, 2012, 13(7): 484-492.
[16]
Bogdanović O, Lister R. DNA methylation and the preservation of cell identity[J]. Curr Opin Genet Dev, 2017, 46(46): 9-14.
[17]
Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing[J]. Nat Rev Genet, 2018, 19(6): 371-384.
[18]
Poschl E. DNA methylation is not likely to be responsible for aggrecan down regulation in aged or osteoarthritic cartilage[J]. Ann Rheum Dis, 2004, 64(3): 477-480.
[19]
Watson CJ, Horgan S, Neary R, et al. Epigenetic therapy for the treatment of hypertension-induced cardiac hypertrophy and fibrosis[J]. J Cardiovasc Pharmacol Ther, 2016, 21(1): 127-137.
[20]
Asano Y, Trojanowska M. Fli1 represses transcription of the human α2(I) collagen gene by recruitment of the HDAC1/p300 complex[J/OL]. PLoS One, 2013, 8(9): e74930. doi: 10.1371/journal.pone.0074930.
[1] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[2] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[3] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[4] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[5] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[6] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[7] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[8] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[9] 凌淑洵, 涂玥, 刘思逸. 间充质干细胞在慢性肾脏病研究领域现状和趋势的知识图谱可视化分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 73-82.
[10] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[11] 梁国豪, 张茜, 张研. 间充质干细胞及其衍生物治疗高原低氧环境下心血管疾病的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 107-112.
[12] 景水力, 王娟, 刘晔, 周亨, 熊威, 叶青松. 间充质干细胞在脊髓损伤中的应用及研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 113-121.
[13] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[14] 史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.
[15] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
阅读次数
全文


摘要