切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (01) : 68 -72. doi: 10.3877/cma.j.issn.1674-134X.2020.01.012

所属专题: 文献

综述

微小RNA-140与骨关节炎关系的研究进展
李灿锋1, 尤田2, 沈彬3,()   
  1. 1. 518036 深圳,北京大学深圳医院运动医学与康复医学中心;610041 成都,四川大学华西医院骨科
    2. 518036 深圳,北京大学深圳医院运动医学与康复医学中心
    3. 610041 成都,四川大学华西医院骨科
  • 收稿日期:2016-05-25 出版日期:2020-02-01
  • 通信作者: 沈彬
  • 基金资助:
    国家自然科学基金面上项目(81974347、81672219); 深圳市医学三名工程项目(SZSM201612078); 广东省医学科学技术研究基金项目(A2017202); 广东省自然科学基金项目(2017A030310616)

Role of microRNA-140 in pathogenesis of osteoarthritis

Canfeng Li1, Tian You2, Bin Shen3,()   

  1. 1. Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China; Department of Orthopedics, West China Hospital of Sichuan University, Chengdu 610041, China
    2. Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
    3. Department of Orthopedics, West China Hospital of Sichuan University, Chengdu 610041, China
  • Received:2016-05-25 Published:2020-02-01
  • Corresponding author: Bin Shen
  • About author:
    Corresponding author: Shen Bin, Email:
引用本文:

李灿锋, 尤田, 沈彬. 微小RNA-140与骨关节炎关系的研究进展[J]. 中华关节外科杂志(电子版), 2020, 14(01): 68-72.

Canfeng Li, Tian You, Bin Shen. Role of microRNA-140 in pathogenesis of osteoarthritis[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(01): 68-72.

骨关节炎是一种以关节软骨退变为主的退行性疾病,但其具体发病机制目前尚不清楚。微小RNA-140(miR-140)是一种在软骨细胞中特异性高表达的microRNA,为软骨细胞调控信号网络中重要的一员,参与了软骨细胞形成、增殖、分化、衰老及凋亡的调控作用。然而,由于miR-140作用的复杂性,其参与骨关节炎(OA)软骨退变的具体分子机制目前仍不明确。本文针对miR-140在软骨形成与稳态维持、软骨退变及OA早期诊断方面的作用进行综述。

Osteoarthritis is a degenerative diseases mainly in articular cartilage, but its pathogenesis has not been elucidated yet. MicroRNA-140(miR-140) is a specific and high expression microRNA in cartilage, which plays an essential role in chondrogenesis, proliferation, mature, differentiation, aging as well as apoptosis. However, due to its complex role, the molecular mechanism of miR-140 in the pathogenesis of osteoarthritis is unclear yet. Thus, this article reviewed recent literatures in order to discuss the role of miR-140 in chondorgenesis, cartilage homeostasis and degeneration as well as early diagnosis of osteoarthritis.

[1]
Sarzi-Puttini P, Cimmino MA, Scarpa R, et al. Osteoarthritis: an overview of the disease and its treatment strategies[J]. Semin Arthritis Rheum, 2005, 35(1, 1): 1-10.
[2]
刘琦,吴景明.骨关节炎的诊治[J/CD].中华关节外科杂志(电子版),2007,1(3):184-187.
[3]
Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options[J]. Med Clin North Am, 2020, 104(2): 293-311.
[4]
Nik Mohamed Kamal N, Shahidan WNS. Non-Exosomal and exosomal circulatory MicroRNAs: which are more valid as biomarkers?[J]. Front Pharmacol, 2019, 10:1500. doi: 10.3389/fphar.2019.01500.
[5]
Swingler TE, Niu L, Smith P, et al. The function of microRNAs in cartilage and osteoarthritis[J]. Clin Exp Rheumatol, 2019, 37 Suppl 120(5): 40-47.
[6]
Wang Y, Shen S, Li Z, et al. MIR-140-5p affects chondrocyte proliferation, apoptosis, and inflammation by targeting HMGB1 in osteoarthritis[J]. Inflamm Res, 2020, 69(1): 63-73.
[7]
Miyaki S, Sato T, Inoue A, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis[J]. Genes Dev, 2010, 24(11): 1173-1185.
[8]
Li CF, Hu QS, Chen Z, et al. MicroRNA-140 suppresses human chondrocytes hypertrophy by targeting SMAD1 and controlling the bone morphogenetic protein pathway in osteoarthritis[J]. Am J Med Sci, 2018, 355(5): 477-487.
[9]
Mokuda S, Nakamichi R, Matsuzaki T, et al. WWP2 maintains cartilage homeostasis through regulation of Adamts5[J/OL]. Nat Commun, 2019, 10(1): 2429. doi: 10.1038/s41467-019-10177-1.
[10]
Nakamura Y, He X, Kobayashi T, et al. Unique roles of microRNA140 and its host gene WWP2 in cartilage biology[J]. J Musculoskelet Neuronal Interact, 2008, 8(4): 321-322.
[11]
Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II[J]. EMBO J, 2004, 23(20): 4051-4060.
[12]
Yamashita S, Miyaki S, Kato Y, et al. L-Sox5 and Sox6 proteins enhance chondrogenic miR-140 MicroRNA expression by strengthening dimeric Sox9 activity[J]. J Biol Chem, 2012, 287(26): 22206-22215.
[13]
Miyaki S, Nakasa T, Otsuki S, et al. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses[J]. Arthritis Rheum, 2009, 60(9): 2723-2730.
[14]
Yang J, Qin SY, Yi CQ, et al. MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation[J]. FEBS Lett, 2011, 585(19): 2992-2997.
[15]
Choudhuri S. Small noncoding RNAs: biogenesis, function, and emerging significance in toxicology[J]. J Biochem Mol Toxicol, 2010, 24(3): 195-216.
[16]
Kai Y, Peng W, Ling W, et al. Reciprocal effects between microRNA-140-5p and Adam10 suppress migration and invasion of human tongue cancer cells[J]. Biochem Biophys Res Commun, 2014, 448(3): 308-314.
[17]
Karlsen TA, Jakobsen RB, Mikkelsen TS, et al. MicroRNA-140 targets RALA and regulates chondrogenic differentiation of human mesenchymal stem cells by translational enhancement of SOX9 and ACAN[J]. Stem Cells Dev, 2014, 23(3): 290-304.
[18]
Buechli ME, Lamarre J, Koch TG. MicroRNA-140 expression during chondrogenic differentiation of equine cord blood-derived mesenchymal stromal cells[J]. Stem Cells Dev, 2013, 22(8): 1288-1296.
[19]
Nakamura Y, Inloes JB, Katagiri T, et al. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling[J]. Mol Cell Biol, 2011, 31(14): 3019-3028.
[20]
Papaioannou G, Inloes JB, Nakamura Y, et al. Let-7 and miR-140 microRNAs coordinately regulate skeletal development[J]. Proc Natl Acad Sci USA, 2013, 110(35): E3291-E3300.
[21]
Geng Y, Chen J, Alahdal M, et al. Intra-articular injection of hUC-MSCs expressing miR-140-5p induces cartilage self-repairing in the rat osteoarthritis[J/OL]. J Bone Miner Metab, 2019,Nov 23. doi: 10.1007/s00774-019-01055-3.
[22]
Lin L, Shen Q, Zhang C, et al. Assessment of the profiling microRNA expression of differentiated and dedifferentiated human adult articular chondrocytes[J]. J Orthop Res, 2011, 29(10): 1578-1584.
[23]
Liang ZJ, Zhuang H, Wang GX, et al. MiRNA-140 is a negative feedback regulator of MMP-13 in IL-1β-stimulated human articular chondrocyte C28/I2 cells[J]. Inflamm Res, 2012, 61(5): 503-509.
[24]
Si HB, Yang TM, Li L, et al. miR-140 attenuates the progression of Early-Stage osteoarthritis by retarding chondrocyte senescence[J]. Mol Ther Nucleic Acids, 2019, 19(19): 15-30.
[25]
van der Kraan PM. Differential role of transforming growth factor-beta in an osteoarthritic or a healthy joint[J]. J Bone Metab, 2018, 25(2): 65-72.
[26]
Huang J, Zhao L, Chen D. Growth factor signalling in osteoarthritis[J]. Growth Factors, 2018, 36(5/6): 187-195.
[27]
Saitta B, Elphingstone J, Limfat S, et al. CaMKII inhibition in human primary and pluripotent stem cell-derived chondrocytes modulates effects of TGFβ and BMP through SMAD signaling[J]. Osteoarthritis Cartilage, 2019, 27(1): 158-171.
[28]
Yang X, Chen L, Xu X, et al. TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage[J]. J Cell Biol, 2001, 153(1): 35-46.
[29]
Yoon BS, Ovchinnikov DA, Yoshii I, et al. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo[J]. Proc Natl Acad Sci USA, 2005, 102(14): 5062-5067.
[30]
Tsumaki N, Nakase T, Miyaji T, et al. Bone morphogenetic protein signals are required for cartilage formation and differently regulate joint development during skeletogenesis[J]. J Bone Miner Res, 2002, 17(5): 898-906.
[31]
Pais H, Nicolas FE, Soond SM, et al. Analyzing mRNA expression identifies Smad3 as a microRNA-140 target regulated only at protein level[J]. RNA, 2010, 16(3): 489-494.
[32]
Liu Y, Zhang ZC, Qian SW, et al. MicroRNA-140 promotes adipocyte lineage commitment of C3H10T1/2 pluripotent stem cells via targeting osteopetrosis-associated transmembrane protein 1[J]. J Biol Chem, 2013, 288(12): 8222-8230.
[33]
Nicolas FE, Pais H, Schwach F, et al. mRNA expression profiling reveals conserved and non-conserved miR-140 targets[J]. RNA Biol, 2011, 8(4): 607-615.
[34]
张明,刘立宏,肖涛,等.实时荧光定量PCR检测骨性关节炎病人膝关节液中miR-140的表达[J].中南大学学报(医学版),2012,37(12):1210-1214.
[35]
邓黄河,陈志伟.MiR-140与膝关节骨性关节炎严重程度的相关性[J].中国医学创新,2016,13(7):1-3.
[36]
Chao Y, Zhang L, Zhang X, et al. Expression of miR-140 and miR-199 in synovia and its correlation with the progression of knee osteoarthritis[J/OL]. Med Sci Monit. 2020, 20, 26:e918174. doi: 10.12659/MSM.918174.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[3] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[4] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[5] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[6] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[7] 赵之栋, 李众利. 骨关节炎早期诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 689-693.
[8] 刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东. 机器人辅助膝关节单髁置换术的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 715-721.
[9] 胡银华, 薛龙. 中国中老年人症状性膝骨关节炎的发病率及危险因素[J]. 中华关节外科杂志(电子版), 2023, 17(04): 470-478.
[10] 周东杰, 蒋敏, 范海瑞, 高玲玲, 孔祥, 卢丹, 王丽萍. 非编码RNA在卵泡发育成熟中作用及其机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 387-393.
[11] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[12] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[13] 周晓强, 孙超, 虞宵, 金宇杰, 李志强, 张向鑫, 陈广祥. 同一患者同期行全膝和单髁置换术的早期临床疗效[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 275-281.
[14] 马聪, 李雪靖, 郑晓佐, 张晓阳, 段坤峰, 刘国强, 郄素会. 关节腔内注射富血小板血浆与透明质酸钠治疗Ⅰ-Ⅲ期膝骨关节炎的对比研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 282-288.
[15] 张镇斌, 闫兆龙, 王功腾, 张文琦, 王旭凤, 李广兴, 孙华强, 李树锋. 关节镜对胫骨高位截骨术治疗膝骨关节炎的效果研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 218-225.
阅读次数
全文


摘要