切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (01) : 68 -72. doi: 10.3877/cma.j.issn.1674-134X.2020.01.012

所属专题: 文献

综述

微小RNA-140与骨关节炎关系的研究进展
李灿锋1, 尤田2, 沈彬3,()   
  1. 1. 518036 深圳,北京大学深圳医院运动医学与康复医学中心;610041 成都,四川大学华西医院骨科
    2. 518036 深圳,北京大学深圳医院运动医学与康复医学中心
    3. 610041 成都,四川大学华西医院骨科
  • 收稿日期:2016-05-25 出版日期:2020-02-01
  • 通信作者: 沈彬
  • 基金资助:
    国家自然科学基金面上项目(81974347、81672219); 深圳市医学三名工程项目(SZSM201612078); 广东省医学科学技术研究基金项目(A2017202); 广东省自然科学基金项目(2017A030310616)

Role of microRNA-140 in pathogenesis of osteoarthritis

Canfeng Li1, Tian You2, Bin Shen3,()   

  1. 1. Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China; Department of Orthopedics, West China Hospital of Sichuan University, Chengdu 610041, China
    2. Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
    3. Department of Orthopedics, West China Hospital of Sichuan University, Chengdu 610041, China
  • Received:2016-05-25 Published:2020-02-01
  • Corresponding author: Bin Shen
  • About author:
    Corresponding author: Shen Bin, Email:
引用本文:

李灿锋, 尤田, 沈彬. 微小RNA-140与骨关节炎关系的研究进展[J/OL]. 中华关节外科杂志(电子版), 2020, 14(01): 68-72.

Canfeng Li, Tian You, Bin Shen. Role of microRNA-140 in pathogenesis of osteoarthritis[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(01): 68-72.

骨关节炎是一种以关节软骨退变为主的退行性疾病,但其具体发病机制目前尚不清楚。微小RNA-140(miR-140)是一种在软骨细胞中特异性高表达的microRNA,为软骨细胞调控信号网络中重要的一员,参与了软骨细胞形成、增殖、分化、衰老及凋亡的调控作用。然而,由于miR-140作用的复杂性,其参与骨关节炎(OA)软骨退变的具体分子机制目前仍不明确。本文针对miR-140在软骨形成与稳态维持、软骨退变及OA早期诊断方面的作用进行综述。

Osteoarthritis is a degenerative diseases mainly in articular cartilage, but its pathogenesis has not been elucidated yet. MicroRNA-140(miR-140) is a specific and high expression microRNA in cartilage, which plays an essential role in chondrogenesis, proliferation, mature, differentiation, aging as well as apoptosis. However, due to its complex role, the molecular mechanism of miR-140 in the pathogenesis of osteoarthritis is unclear yet. Thus, this article reviewed recent literatures in order to discuss the role of miR-140 in chondorgenesis, cartilage homeostasis and degeneration as well as early diagnosis of osteoarthritis.

[1]
Sarzi-Puttini P, Cimmino MA, Scarpa R, et al. Osteoarthritis: an overview of the disease and its treatment strategies[J]. Semin Arthritis Rheum, 2005, 35(1, 1): 1-10.
[2]
刘琦,吴景明.骨关节炎的诊治[J/CD].中华关节外科杂志(电子版),2007,1(3):184-187.
[3]
Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options[J]. Med Clin North Am, 2020, 104(2): 293-311.
[4]
Nik Mohamed Kamal N, Shahidan WNS. Non-Exosomal and exosomal circulatory MicroRNAs: which are more valid as biomarkers?[J]. Front Pharmacol, 2019, 10:1500. doi: 10.3389/fphar.2019.01500.
[5]
Swingler TE, Niu L, Smith P, et al. The function of microRNAs in cartilage and osteoarthritis[J]. Clin Exp Rheumatol, 2019, 37 Suppl 120(5): 40-47.
[6]
Wang Y, Shen S, Li Z, et al. MIR-140-5p affects chondrocyte proliferation, apoptosis, and inflammation by targeting HMGB1 in osteoarthritis[J]. Inflamm Res, 2020, 69(1): 63-73.
[7]
Miyaki S, Sato T, Inoue A, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis[J]. Genes Dev, 2010, 24(11): 1173-1185.
[8]
Li CF, Hu QS, Chen Z, et al. MicroRNA-140 suppresses human chondrocytes hypertrophy by targeting SMAD1 and controlling the bone morphogenetic protein pathway in osteoarthritis[J]. Am J Med Sci, 2018, 355(5): 477-487.
[9]
Mokuda S, Nakamichi R, Matsuzaki T, et al. WWP2 maintains cartilage homeostasis through regulation of Adamts5[J/OL]. Nat Commun, 2019, 10(1): 2429. doi: 10.1038/s41467-019-10177-1.
[10]
Nakamura Y, He X, Kobayashi T, et al. Unique roles of microRNA140 and its host gene WWP2 in cartilage biology[J]. J Musculoskelet Neuronal Interact, 2008, 8(4): 321-322.
[11]
Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II[J]. EMBO J, 2004, 23(20): 4051-4060.
[12]
Yamashita S, Miyaki S, Kato Y, et al. L-Sox5 and Sox6 proteins enhance chondrogenic miR-140 MicroRNA expression by strengthening dimeric Sox9 activity[J]. J Biol Chem, 2012, 287(26): 22206-22215.
[13]
Miyaki S, Nakasa T, Otsuki S, et al. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses[J]. Arthritis Rheum, 2009, 60(9): 2723-2730.
[14]
Yang J, Qin SY, Yi CQ, et al. MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation[J]. FEBS Lett, 2011, 585(19): 2992-2997.
[15]
Choudhuri S. Small noncoding RNAs: biogenesis, function, and emerging significance in toxicology[J]. J Biochem Mol Toxicol, 2010, 24(3): 195-216.
[16]
Kai Y, Peng W, Ling W, et al. Reciprocal effects between microRNA-140-5p and Adam10 suppress migration and invasion of human tongue cancer cells[J]. Biochem Biophys Res Commun, 2014, 448(3): 308-314.
[17]
Karlsen TA, Jakobsen RB, Mikkelsen TS, et al. MicroRNA-140 targets RALA and regulates chondrogenic differentiation of human mesenchymal stem cells by translational enhancement of SOX9 and ACAN[J]. Stem Cells Dev, 2014, 23(3): 290-304.
[18]
Buechli ME, Lamarre J, Koch TG. MicroRNA-140 expression during chondrogenic differentiation of equine cord blood-derived mesenchymal stromal cells[J]. Stem Cells Dev, 2013, 22(8): 1288-1296.
[19]
Nakamura Y, Inloes JB, Katagiri T, et al. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling[J]. Mol Cell Biol, 2011, 31(14): 3019-3028.
[20]
Papaioannou G, Inloes JB, Nakamura Y, et al. Let-7 and miR-140 microRNAs coordinately regulate skeletal development[J]. Proc Natl Acad Sci USA, 2013, 110(35): E3291-E3300.
[21]
Geng Y, Chen J, Alahdal M, et al. Intra-articular injection of hUC-MSCs expressing miR-140-5p induces cartilage self-repairing in the rat osteoarthritis[J/OL]. J Bone Miner Metab, 2019,Nov 23. doi: 10.1007/s00774-019-01055-3.
[22]
Lin L, Shen Q, Zhang C, et al. Assessment of the profiling microRNA expression of differentiated and dedifferentiated human adult articular chondrocytes[J]. J Orthop Res, 2011, 29(10): 1578-1584.
[23]
Liang ZJ, Zhuang H, Wang GX, et al. MiRNA-140 is a negative feedback regulator of MMP-13 in IL-1β-stimulated human articular chondrocyte C28/I2 cells[J]. Inflamm Res, 2012, 61(5): 503-509.
[24]
Si HB, Yang TM, Li L, et al. miR-140 attenuates the progression of Early-Stage osteoarthritis by retarding chondrocyte senescence[J]. Mol Ther Nucleic Acids, 2019, 19(19): 15-30.
[25]
van der Kraan PM. Differential role of transforming growth factor-beta in an osteoarthritic or a healthy joint[J]. J Bone Metab, 2018, 25(2): 65-72.
[26]
Huang J, Zhao L, Chen D. Growth factor signalling in osteoarthritis[J]. Growth Factors, 2018, 36(5/6): 187-195.
[27]
Saitta B, Elphingstone J, Limfat S, et al. CaMKII inhibition in human primary and pluripotent stem cell-derived chondrocytes modulates effects of TGFβ and BMP through SMAD signaling[J]. Osteoarthritis Cartilage, 2019, 27(1): 158-171.
[28]
Yang X, Chen L, Xu X, et al. TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage[J]. J Cell Biol, 2001, 153(1): 35-46.
[29]
Yoon BS, Ovchinnikov DA, Yoshii I, et al. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo[J]. Proc Natl Acad Sci USA, 2005, 102(14): 5062-5067.
[30]
Tsumaki N, Nakase T, Miyaji T, et al. Bone morphogenetic protein signals are required for cartilage formation and differently regulate joint development during skeletogenesis[J]. J Bone Miner Res, 2002, 17(5): 898-906.
[31]
Pais H, Nicolas FE, Soond SM, et al. Analyzing mRNA expression identifies Smad3 as a microRNA-140 target regulated only at protein level[J]. RNA, 2010, 16(3): 489-494.
[32]
Liu Y, Zhang ZC, Qian SW, et al. MicroRNA-140 promotes adipocyte lineage commitment of C3H10T1/2 pluripotent stem cells via targeting osteopetrosis-associated transmembrane protein 1[J]. J Biol Chem, 2013, 288(12): 8222-8230.
[33]
Nicolas FE, Pais H, Schwach F, et al. mRNA expression profiling reveals conserved and non-conserved miR-140 targets[J]. RNA Biol, 2011, 8(4): 607-615.
[34]
张明,刘立宏,肖涛,等.实时荧光定量PCR检测骨性关节炎病人膝关节液中miR-140的表达[J].中南大学学报(医学版),2012,37(12):1210-1214.
[35]
邓黄河,陈志伟.MiR-140与膝关节骨性关节炎严重程度的相关性[J].中国医学创新,2016,13(7):1-3.
[36]
Chao Y, Zhang L, Zhang X, et al. Expression of miR-140 and miR-199 in synovia and its correlation with the progression of knee osteoarthritis[J/OL]. Med Sci Monit. 2020, 20, 26:e918174. doi: 10.12659/MSM.918174.
[1] 刘伟, 牛云峰, 安杰. LINC01232 通过miR-516a-5p/BCL9 轴促进三阴性乳腺癌的恶性进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 330-338.
[2] 于溟璇, 杜华, 张彩虹, 师迎旭. miRNA-192家族在乳腺癌中的作用机制及诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 235-240.
[3] 许银峰, 盛璞义, 余世明, 张阳春. 偏心性髋臼旋转截骨术治疗发育性髋关节发育不良[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 568-574.
[4] 刘鹏, 罗天, 许珂媛, 邓红美, 李瑄, 唐翠萍. 八段锦对膝关节炎疗效的初步步态分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 590-595.
[5] 苏介茂, 齐岩松, 王永祥, 魏宝刚, 马秉贤, 张鹏飞, 魏兴华, 徐永胜. 关节镜手术在早中期膝骨关节炎治疗的应用进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 646-652.
[6] 谢佳乐, 李琦, 芦升升, 姜劲松. 内侧膝骨关节炎伴胫股关节冠状半脱位的手术治疗[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 653-657.
[7] 李志文, 李远志, 李华, 方志远. 糖皮质激素治疗膝骨关节炎疗效的网状Meta分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 484-496.
[8] 庄若语, 杭明辉, 李文华, 张霆, 侯炜. 膝骨关节炎半定量磁共振评分研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 545-552.
[9] 王冰, 孙海宁, 于秀淳, 周珂, 翟凯, 苗族康. 膝骨关节炎的活动衬垫型单髁置换疗效与假体生存率[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 337-345.
[10] 张江礼, 刘金辉, 潘西庆, 刘光源, 范虓. 全膝关节置换应用智能辅助手术导航系统治疗膝骨关节炎[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 346-351.
[11] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[12] 陈松, 黄玲巧, 余清卿, 魏志鑫, 付琰. 单细胞RNA测序技术在骨关节炎软骨中的研究应用[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 363-371.
[13] 王颉, 周游. 二甲双胍治疗骨关节炎的机制及其研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 372-378.
[14] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[15] 高广涵, 张耀南, 石磊, 王林, 王飞, 郑子天, 王鸿禹, 郭民政, 薛庆云. 膝骨关节炎患者前交叉韧带功能影像学影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 301-307.
阅读次数
全文


摘要