切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (01) : 44 -48. doi: 10.3877/cma.j.issn.1674-134X.2022.01.007

综述

单细胞测序技术在骨关节炎病因诊断中的研究进展
朱仔燕1, 薛松1, 马金忠1,()   
  1. 1. 201620 上海交通大学附属上海市第一人民医院
  • 收稿日期:2020-11-12 出版日期:2022-02-01
  • 通信作者: 马金忠

Research progress of single cell sequencing technology in etiological diagnosis of osteoarthritis

Ziyan Zhu1, Song Xue1, Jinzhong Ma1,()   

  1. 1. Shanghai Jiaotong University Shanghai General Hospital, Shanghai 201620, China
  • Received:2020-11-12 Published:2022-02-01
  • Corresponding author: Jinzhong Ma
引用本文:

朱仔燕, 薛松, 马金忠. 单细胞测序技术在骨关节炎病因诊断中的研究进展[J/OL]. 中华关节外科杂志(电子版), 2022, 16(01): 44-48.

Ziyan Zhu, Song Xue, Jinzhong Ma. Research progress of single cell sequencing technology in etiological diagnosis of osteoarthritis[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2022, 16(01): 44-48.

骨关节炎是最常见的关节退行性病变之一,病因至今仍不明确,亟待进一步深入研究。单细胞测序技术通过单细胞分离、全基因组扩增和高通量测序等方法从单个细胞水平测序并分析细胞的遗传信息,对细胞进行来源分析和谱系追踪,在细胞水平上对骨关节炎的病理基础进行精准诊断与分型。将单细胞测序技术应用于骨关节炎的病因诊断已有长足进展,分离并鉴定了骨关节炎患者关节软骨、滑膜、软骨下骨中不同细胞簇,揭示其在骨关节炎疾病进展过程中参与的不同作用,为骨关节炎的预防与早期诊断提供了理论依据,在骨关节炎的治疗方面也有广阔的应用前景。

Osteoarthritis is one of the most common degenerative diseases of joints. As the etiology remains unclear, further research is urgently needed. Single-cell sequencing technology uses single-cell isolation, whole-genome amplification, and high-throughput sequencing to sequence and analyze the genetic information of cells at the level of individual cells, and perform source analysis and lineage tracing of cells. Accurate diagnosis and classification based on pathology. The application of single-cell sequencing technology to the diagnosis of the cause of osteoarthritis has made great progress. Different cell clusters in the articular cartilage, synovium, and subchondral bone of patients with osteoarthritis have been isolated and identified, revealing their role in the progression of osteoarthritis. The different roles of participation provide a theoretical basis for the prevention and early diagnosis of osteoarthritis, and it also has broad application prospects in the treatment of osteoarthritis.

[1]
Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis[J/OL]. Nat Rev Dis Primers, 2016, 2(9991): 16072. DOI: 10.1038/nrdp.2016.72.
[2]
Sun X, Zhen XE, Hu X, et al. Osteoarthritis in the middle-aged and elderly in China: prevalence and influencing factors[J/OL]. Int J Environ Res Public Health, 2019, 16(23): 4701. DOI: 10.1038/nrdp.2016.72.
[3]
Tang FC, Barbacioru C, Wang YZ, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5): 377-382.
[4]
Wang Y, Navin NE. Advances and applications of single-cell sequencing technologies[J]. Mol Cell, 2015, 58(4): 598-609.
[5]
Whitesides GM. The origins and the future of microfluidics[J]. Nature, 2006, 442(711): 368-373.
[6]
Espina V, Wulfkuhle JD, Calvert VS, et al. Laser-capture microdissection[J]. Nat Protoc, 2006, 1(2): 586-603.
[7]
Grün D, Van Oudenaarden A. Design and analysis of single-cell sequencing experiments[J]. Cell, 2015, 163(4): 799-810.
[8]
Wang Y, Waters J, Leung ML, et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing[J]. Nature, 2014, 512(7513): 155-160.
[9]
Zong C, Lu S, Chapman AR, et al. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell[J]. Science, 2012, 338(6114): 1622-1626.
[10]
Chen C, Xing D, Tan L, et al. Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI)[J]. Science, 2017, 356(6334): 189-194.
[11]
Tang FC, Barbacioru C, Wang YZ, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5): 377-382.
[12]
Sasagawa Y, Nikaido I, Hayashi T, et al. Quartz-seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity [J/OL]. Genome Biol, 2013, 14(4): R31. DOI: 10.1186/gb-2013-14-4-r31..
[13]
Zhu YY, Machleder EM, Chenchik A, et al. Reverse transcriptase template switching:a SMART™approach for Full-Length cDNA library construction[J]. Bio Techniques, 2001, 30(4): 892-897.
[14]
Picelli S, Bjorklund AK, Faridani OR, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods, 2013, 10(11): 1096-1098.
[15]
Hashimshony T, Wagner F, Sher N, et al. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification[J]. Cell Rep, 2012, 2(3): 666-673.
[16]
Hashimshony T, Senderovich N, Avital G, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq[J/OL]. Genome Biol, 2016, 17: 77.DOI: 10.1186/s13059-016-0938-8.
[17]
Islam S, Kjällquist U, Moliner A, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq[J]. Genome Res, 2011, 21(7): 1160-1167.
[18]
Ji Q, Zheng Y, Zhang G, et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis[J]. Ann Rheum Dis, 2019, 78(1): 100-110.
[19]
Rushton MD, Reynard LN, Barter MJ, et al. Characterization of the cartilage DNA methylome in knee and hip osteoarthritis[J]. Arthritis Rheumatol, 2014, 66(9): 2450-2460.
[20]
Fernández-Tajes J, Soto-Hermida A, Vázquez-Mosquera ME, et al. Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients[J]. Ann Rheum Dis, 2014, 73(4): 668-677.
[21]
Li C, Luo J, Xu X, et al. Single cell sequencing revealed the underlying pathogenesis of the development of osteoarthritis[J/OL]. Gene, 2020, 757:144939. DOI:10.1016/j.gene.2020.144939.
[22]
Aigner T, Hambach L, Söder S, et al. The C5 domain of Col6A3 is cleaved off from the Col6 fibrils immediately after secretion[J]. Biochem Biophys Res Commun, 2002, 290(2): 743-748.
[23]
Bunnell TM, Burbach BJ, Shimizu Y, et al. β-Actin specifically controls cell growth, migration, and the g-actin pool[J]. Mol Biol Cell, 2011, 22(21): 4047-4058.
[24]
Luo Y, Kong F, Wang Z, et al. Loss of ASAP3 destabilizes cytoskeletal protein ACTG1 to suppress cancer cell migration[J]. Mol Med Rep, 2014, 9(2): 387-394.
[25]
Lagares D, Kapoor M. Targeting focal adhesion kinase in fibrotic diseases[J]. BioDrugs, 2013, 27(1): 15-23.
[26]
Culemann S, Grüneboom A, Nicolás-ávila J, et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint[J]. Nature, 2019, 572(7771): 670-675.
[27]
Zhang F, Wei K, Slowikowski K, et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry[J]. Nat Immunol, 2019, 20(7): 928-942.
[28]
Zhou J, Zhao Z, He C, et al. Single-cell transcriptome analysis profile of meniscal tissue macrophages in human osteoarthritis[J/OL]. J Immunol Res, 2020: 8127281. DOI:10.1155/2020/8127281.
[29]
Burr DB. Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis[J]. Osteoarthritis Cartilage, 2004, 12(Suppl A): S20-S30.
[30]
Weinans H, Siebelt M, Agricola R, et al. Pathophysiology of peri-articular bone changes in osteoarthritis[J]. Bone, 2012, 51(2): 190-196.
[31]
Burr DB, Gallant MA. Bone remodelling in osteoarthritis[J]. Nat Rev Rheumatol, 2012, 8(11): 665-673.
[32]
Watt SM, Gullo F, Van DM, et al. The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential[J]. Br Med Bull, 2013, 108(1): 25-53.
[33]
Zhen G, Wen C, Jia X, et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis[J]. Nat Med, 2013, 19(6): 704-712.
[34]
Liu S, Stroncek DF, Zhao Y, et al. Single cell sequencing reveals gene expression signatures associated with bone marrow stromal cell subpopulations and time in culture[J/OL]. J Transl Med, 2019, 17(1): 23. DOI: 10.1186/s12967-018-1766-2.
[35]
Rodriguez-Fontan F, Piuzzi NS, Chahla J, et al. Stem and progenitor cells for cartilage repair:source,safety,evidence,and efficacy[J]. Oper Tech Sports Med, 2017, 25(1): 25-33.
[36]
Jo CH, Lee YG, Shin WH, et al. Intra-Articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial[J]. Stem Cells, 2014, 32(5): 1254-1266.
[37]
Reinisch A, Etchart N, Thomas D, et al. Epigenetic and in vivo comparison of diverse MSC sources reveals an endochondral signature for human hematopoietic niche formation[J]. Blood, 2015, 125(2): 249-260.
[38]
Lee CC, Christensen JE, Yoder MC, et al. Clonal analysis and hierarchy of human bone marrow mesenchymal stem and progenitor cells[J]. Exp Hematol, 2010, 38(1): 46-54.
[39]
Zhou W, Lin J, Zhao K, et al. Single-Cell profiles and clinically useful properties of human mesenchymal stem cells of adipose and bone marrow origin[J]. Am J Sports Med, 2019, 47(7): 1722-1733.
[40]
Jevotovsky DS, Alfonso AR, Einhorn T, et al. Osteoarthritis and stem cell therapy in humans: a systematic review[J]. Osteoarthritis Cartilage, 2018, 26(6): 711-729.
[41]
Wu Z, Shou L, Wang J, et al. Identification of the key gene and pathways associated with osteoarthritis via single-cell RNA sequencing on synovial fibroblasts[J/OL]. Medicine, 2020, 99(33): e21707. DOI:10.1097/MD.0000000000021707.
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[3] 唐金侨, 叶宇佳, 王港, 赵彬, 马艳宁. 医学影像学检查方法在颞下颌关节紊乱病中临床应用研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 406-411.
[4] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[5] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[6] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[7] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[8] 郑大雯, 王健东. 胆囊癌辅助诊断研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 769-773.
[9] 王秋生. 胆道良性疾病诊疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 779-782.
[10] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[11] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[12] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[13] 王子阳, 王宏宾, 刘晓旌. 血清标志物对甲胎蛋白阴性肝细胞癌诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 677-681.
[14] 陈慧, 邹祖鹏, 周田田, 张艺丹, 张海萍. 皮肤镜对头皮红斑性皮肤病辅助鉴别诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 692-698.
[15] 胡云鹤, 周玉焯, 付瑞瑛, 于凡, 李爱东. CHS-DRG付费制度下GB1分组住院费用影响因素分析与管理策略探讨[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 568-574.
阅读次数
全文


摘要