切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (01) : 44 -48. doi: 10.3877/cma.j.issn.1674-134X.2022.01.007

综述

单细胞测序技术在骨关节炎病因诊断中的研究进展
朱仔燕1, 薛松1, 马金忠1,()   
  1. 1. 201620 上海交通大学附属上海市第一人民医院
  • 收稿日期:2020-11-12 出版日期:2022-02-01
  • 通信作者: 马金忠

Research progress of single cell sequencing technology in etiological diagnosis of osteoarthritis

Ziyan Zhu1, Song Xue1, Jinzhong Ma1,()   

  1. 1. Shanghai Jiaotong University Shanghai General Hospital, Shanghai 201620, China
  • Received:2020-11-12 Published:2022-02-01
  • Corresponding author: Jinzhong Ma
引用本文:

朱仔燕, 薛松, 马金忠. 单细胞测序技术在骨关节炎病因诊断中的研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(01): 44-48.

Ziyan Zhu, Song Xue, Jinzhong Ma. Research progress of single cell sequencing technology in etiological diagnosis of osteoarthritis[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2022, 16(01): 44-48.

骨关节炎是最常见的关节退行性病变之一,病因至今仍不明确,亟待进一步深入研究。单细胞测序技术通过单细胞分离、全基因组扩增和高通量测序等方法从单个细胞水平测序并分析细胞的遗传信息,对细胞进行来源分析和谱系追踪,在细胞水平上对骨关节炎的病理基础进行精准诊断与分型。将单细胞测序技术应用于骨关节炎的病因诊断已有长足进展,分离并鉴定了骨关节炎患者关节软骨、滑膜、软骨下骨中不同细胞簇,揭示其在骨关节炎疾病进展过程中参与的不同作用,为骨关节炎的预防与早期诊断提供了理论依据,在骨关节炎的治疗方面也有广阔的应用前景。

Osteoarthritis is one of the most common degenerative diseases of joints. As the etiology remains unclear, further research is urgently needed. Single-cell sequencing technology uses single-cell isolation, whole-genome amplification, and high-throughput sequencing to sequence and analyze the genetic information of cells at the level of individual cells, and perform source analysis and lineage tracing of cells. Accurate diagnosis and classification based on pathology. The application of single-cell sequencing technology to the diagnosis of the cause of osteoarthritis has made great progress. Different cell clusters in the articular cartilage, synovium, and subchondral bone of patients with osteoarthritis have been isolated and identified, revealing their role in the progression of osteoarthritis. The different roles of participation provide a theoretical basis for the prevention and early diagnosis of osteoarthritis, and it also has broad application prospects in the treatment of osteoarthritis.

[1]
Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis[J/OL]. Nat Rev Dis Primers, 2016, 2(9991): 16072. DOI: 10.1038/nrdp.2016.72.
[2]
Sun X, Zhen XE, Hu X, et al. Osteoarthritis in the middle-aged and elderly in China: prevalence and influencing factors[J/OL]. Int J Environ Res Public Health, 2019, 16(23): 4701. DOI: 10.1038/nrdp.2016.72.
[3]
Tang FC, Barbacioru C, Wang YZ, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5): 377-382.
[4]
Wang Y, Navin NE. Advances and applications of single-cell sequencing technologies[J]. Mol Cell, 2015, 58(4): 598-609.
[5]
Whitesides GM. The origins and the future of microfluidics[J]. Nature, 2006, 442(711): 368-373.
[6]
Espina V, Wulfkuhle JD, Calvert VS, et al. Laser-capture microdissection[J]. Nat Protoc, 2006, 1(2): 586-603.
[7]
Grün D, Van Oudenaarden A. Design and analysis of single-cell sequencing experiments[J]. Cell, 2015, 163(4): 799-810.
[8]
Wang Y, Waters J, Leung ML, et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing[J]. Nature, 2014, 512(7513): 155-160.
[9]
Zong C, Lu S, Chapman AR, et al. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell[J]. Science, 2012, 338(6114): 1622-1626.
[10]
Chen C, Xing D, Tan L, et al. Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI)[J]. Science, 2017, 356(6334): 189-194.
[11]
Tang FC, Barbacioru C, Wang YZ, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5): 377-382.
[12]
Sasagawa Y, Nikaido I, Hayashi T, et al. Quartz-seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity [J/OL]. Genome Biol, 2013, 14(4): R31. DOI: 10.1186/gb-2013-14-4-r31..
[13]
Zhu YY, Machleder EM, Chenchik A, et al. Reverse transcriptase template switching:a SMART™approach for Full-Length cDNA library construction[J]. Bio Techniques, 2001, 30(4): 892-897.
[14]
Picelli S, Bjorklund AK, Faridani OR, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods, 2013, 10(11): 1096-1098.
[15]
Hashimshony T, Wagner F, Sher N, et al. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification[J]. Cell Rep, 2012, 2(3): 666-673.
[16]
Hashimshony T, Senderovich N, Avital G, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq[J/OL]. Genome Biol, 2016, 17: 77.DOI: 10.1186/s13059-016-0938-8.
[17]
Islam S, Kjällquist U, Moliner A, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq[J]. Genome Res, 2011, 21(7): 1160-1167.
[18]
Ji Q, Zheng Y, Zhang G, et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis[J]. Ann Rheum Dis, 2019, 78(1): 100-110.
[19]
Rushton MD, Reynard LN, Barter MJ, et al. Characterization of the cartilage DNA methylome in knee and hip osteoarthritis[J]. Arthritis Rheumatol, 2014, 66(9): 2450-2460.
[20]
Fernández-Tajes J, Soto-Hermida A, Vázquez-Mosquera ME, et al. Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients[J]. Ann Rheum Dis, 2014, 73(4): 668-677.
[21]
Li C, Luo J, Xu X, et al. Single cell sequencing revealed the underlying pathogenesis of the development of osteoarthritis[J/OL]. Gene, 2020, 757:144939. DOI:10.1016/j.gene.2020.144939.
[22]
Aigner T, Hambach L, Söder S, et al. The C5 domain of Col6A3 is cleaved off from the Col6 fibrils immediately after secretion[J]. Biochem Biophys Res Commun, 2002, 290(2): 743-748.
[23]
Bunnell TM, Burbach BJ, Shimizu Y, et al. β-Actin specifically controls cell growth, migration, and the g-actin pool[J]. Mol Biol Cell, 2011, 22(21): 4047-4058.
[24]
Luo Y, Kong F, Wang Z, et al. Loss of ASAP3 destabilizes cytoskeletal protein ACTG1 to suppress cancer cell migration[J]. Mol Med Rep, 2014, 9(2): 387-394.
[25]
Lagares D, Kapoor M. Targeting focal adhesion kinase in fibrotic diseases[J]. BioDrugs, 2013, 27(1): 15-23.
[26]
Culemann S, Grüneboom A, Nicolás-ávila J, et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint[J]. Nature, 2019, 572(7771): 670-675.
[27]
Zhang F, Wei K, Slowikowski K, et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry[J]. Nat Immunol, 2019, 20(7): 928-942.
[28]
Zhou J, Zhao Z, He C, et al. Single-cell transcriptome analysis profile of meniscal tissue macrophages in human osteoarthritis[J/OL]. J Immunol Res, 2020: 8127281. DOI:10.1155/2020/8127281.
[29]
Burr DB. Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis[J]. Osteoarthritis Cartilage, 2004, 12(Suppl A): S20-S30.
[30]
Weinans H, Siebelt M, Agricola R, et al. Pathophysiology of peri-articular bone changes in osteoarthritis[J]. Bone, 2012, 51(2): 190-196.
[31]
Burr DB, Gallant MA. Bone remodelling in osteoarthritis[J]. Nat Rev Rheumatol, 2012, 8(11): 665-673.
[32]
Watt SM, Gullo F, Van DM, et al. The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential[J]. Br Med Bull, 2013, 108(1): 25-53.
[33]
Zhen G, Wen C, Jia X, et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis[J]. Nat Med, 2013, 19(6): 704-712.
[34]
Liu S, Stroncek DF, Zhao Y, et al. Single cell sequencing reveals gene expression signatures associated with bone marrow stromal cell subpopulations and time in culture[J/OL]. J Transl Med, 2019, 17(1): 23. DOI: 10.1186/s12967-018-1766-2.
[35]
Rodriguez-Fontan F, Piuzzi NS, Chahla J, et al. Stem and progenitor cells for cartilage repair:source,safety,evidence,and efficacy[J]. Oper Tech Sports Med, 2017, 25(1): 25-33.
[36]
Jo CH, Lee YG, Shin WH, et al. Intra-Articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial[J]. Stem Cells, 2014, 32(5): 1254-1266.
[37]
Reinisch A, Etchart N, Thomas D, et al. Epigenetic and in vivo comparison of diverse MSC sources reveals an endochondral signature for human hematopoietic niche formation[J]. Blood, 2015, 125(2): 249-260.
[38]
Lee CC, Christensen JE, Yoder MC, et al. Clonal analysis and hierarchy of human bone marrow mesenchymal stem and progenitor cells[J]. Exp Hematol, 2010, 38(1): 46-54.
[39]
Zhou W, Lin J, Zhao K, et al. Single-Cell profiles and clinically useful properties of human mesenchymal stem cells of adipose and bone marrow origin[J]. Am J Sports Med, 2019, 47(7): 1722-1733.
[40]
Jevotovsky DS, Alfonso AR, Einhorn T, et al. Osteoarthritis and stem cell therapy in humans: a systematic review[J]. Osteoarthritis Cartilage, 2018, 26(6): 711-729.
[41]
Wu Z, Shou L, Wang J, et al. Identification of the key gene and pathways associated with osteoarthritis via single-cell RNA sequencing on synovial fibroblasts[J/OL]. Medicine, 2020, 99(33): e21707. DOI:10.1097/MD.0000000000021707.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 蒋佳纯, 王晓冰, 陈培荣, 许世豪. 血清学指标联合常规超声及超声造影评分诊断原发性干燥综合征的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 622-630.
[3] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[4] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[5] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[6] 杨雪, 张伟, 尚培中, 宋创业, 尚丹丹, 张蔚. 胆囊十二指肠瘘结石经瘘口排出后自愈一例报道[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 707-708.
[7] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[8] 姜明, 罗锐, 龙成超. 闭孔疝的诊断与治疗:10年73例患者诊疗经验总结[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 706-710.
[9] 许丁伟, 马江云, 李新成, 黄洁. Alagille综合征疑诊为先天性胆道闭锁一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 681-687.
[10] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[11] 杨红杰, 张智春, 孙轶. 直肠癌淋巴结转移诊断研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 512-518.
[12] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[13] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[14] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[15] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
阅读次数
全文


摘要