切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 69 -77. doi: 10.3877/cma.j.issn.1674-134X.2024.01.010

基础论著

四氢嘧啶对大鼠关节软骨细胞的保护作用
李朋1,(), 苗立帅1, 朱智奇1   
  1. 1. 518000 香港中文大学(深圳)附属第二医院,深圳市龙岗区人民医院骨科
  • 收稿日期:2023-04-07 出版日期:2024-02-01
  • 通信作者: 李朋
  • 基金资助:
    深圳市龙岗区医疗卫生科技计划项目(LGW2021-037)

Protective effects of ectoine on articular chondrocytes in rats

Peng Li1,(), Lishuai Miao1, Zhiqi Zhu1   

  1. 1. Orthopedic Surgery Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong(Shenzhen), Longgang District People’ s Hospital of Shenzhen, Shenzhen 518000, China
  • Received:2023-04-07 Published:2024-02-01
  • Corresponding author: Peng Li
引用本文:

李朋, 苗立帅, 朱智奇. 四氢嘧啶对大鼠关节软骨细胞的保护作用[J/OL]. 中华关节外科杂志(电子版), 2024, 18(01): 69-77.

Peng Li, Lishuai Miao, Zhiqi Zhu. Protective effects of ectoine on articular chondrocytes in rats[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2024, 18(01): 69-77.

目的

探讨相容性溶质四氢嘧啶(ectoine)在体外对大鼠关节软骨细胞的影响。

方法

取4周龄Sprague-Dawley大鼠进行原代软骨细胞培养,配置0.5%、1.0%、1.5%(w/v)三种质量浓度的四氢嘧啶溶液。以不同浓度四氢嘧啶处理软骨细胞,观察胰酶刺激2 min后软骨细胞形态上的变化及50℃高温刺激下软骨细胞的存活率。用活性氧(ROS)实验检测软骨细胞用四氢嘧啶预处理后以H2O2刺激下细胞内ROS水平并检测细胞色素C氧化酶1(MTCO1)基因的表达。以四氢嘧啶预处理后,用白细胞介素(IL)-1β刺激软骨细胞建立骨关节炎模型,用实时定量PCR(RT-qPCR)检测软骨细胞环氧化酶-2(COX-2)、金属基质蛋白酶-3,-9(MMP-3,MMP-9)、Ⅱ型胶原(Col2A1)mRNA的表达,并进行Ⅱ型胶原的免疫荧光染色。用单因素方差分析统计各组间差异。

结果

四氢嘧啶可明显增加软骨细胞耐消化性,在胰酶刺激2 min后保持软骨细胞无明显形态变化;以未经四氢嘧啶预处理的软骨细胞作为对照组,在50 ℃高温下不同浓度四氢嘧啶组的软骨细胞存活率分别为(68±5)%、(83±7)%及(89±4)%,高于对照组(38±7)%的存活率(F=77.16,P<0.001);另外,四氢嘧啶还能抵抗细胞氧化,经四氢嘧啶预处理的软骨细胞内ROS水平均低于对照组(F=157.2,P<0.05)。与单纯IL-1β处理相比,经四氢嘧啶预处理后可降低软骨细胞COX-2(F=110.4)和MMP-3(F=154.4)、MMP-9(F=125.5)的表达水平(均为P<0.001),并维持Ⅱ型胶原的生成。

结论

四氢嘧啶对关节软骨细胞具有多种保护作用,可作为治疗骨关节炎的一种潜在药物。

Objective

To explore the protective effects of Ectoine, a compatible solute in nature, on articular chondrocytes in rats through in vitro study.

Methods

Four-week-old Sprague-Dawley rats were used for primary chondrocyte culture. Ectoine solutions were prepared at 0.5%, 1.0%, 1.5% (w/v) concentrations. After treated with ectoine, the morphology of chondrocytes after trypsin digestion for two minutes and the viability of chondrocytes at 50°C were observed. Reactive oxygen species (ROS) assay was used to detect the ROS lever and the expression of cytochrome C oxidase one (MTCO1) gene in chondrocytes pre-treated with ectoine and post-stimulated with H2O2. Chondrocytes were pre-treated with ectoine and stimulated with interleukin (IL)-1β to establish a model of osteoarthritis (OA). Cells not treated with ectoine were used as a control group. mRNA of cyclooxygenase-2 (COX-2), matrix metalloproteinase (MMP)-3, MMP-9 and collagen type Ⅱ alpha-1 (Col2A1)were measured by real-time quantitative PCR (RT-qPCR). Immunofluorescence was used to assess the expression of Col2A1. Data were analyzed by one-way ANOVA.

Results

Ectoine significantly increased the digestive tolerance of chondrocytes. There was no obvious morphological change of chondrocytes after trypsin treatment for two minutes. The viability of chondrocytes in different concentrations of ectoine groups was (68±5)%, (83±7)% and (89±4)%, respectively, which was significantly higher than that in the control group (38±7)% at 50 ℃ (F=77.16, P<0.001). In addition, ectoine also resisted cell oxidation, and the level of ROS in ectoine pretreated chondrocytes was significantly lower than that in control group (F=157.2, P<0.05). Compared with only IL-1β treatment, ectoine pre-treatment significantly reduced the expression of COX-2, MMP-3, MMP-9 and maintained the synthesis of type Ⅱcollagen in chondrocytes (F=110.4, 154.4, both P<0.001).

Conclusion

The results of this study provide potent evidence that ectoine has the protective effects on chondrocytes, and could be utilized as a potentially therapeutic agent in the treatment of OA.

图1 四氢嘧啶(ectoine)的结构及作用机制。图A为四氢嘧啶的化学结构;图B为四氢嘧啶的作用机制,示四氢嘧啶能改善细胞表面的水合作用、增加分子间的间距、提高细胞膜脂质头部基团的流动性
Figure 1 Structure and mechanism of ectoine. A is structure of ectoine; B is the mechanism of ectoine, that improves the fluidity of the lipid head groups in the cell membraneand stabilizes macromolecules
图2 RT-qPCR(实时定量PCR)的引物序列注:COX-2-炎症因子环氧化酶-2;MMP-金属基质蛋白酶;MTCO1-细胞色素C氧化酶1;Col2A1-Ⅱ型胶原;β-actin-β-肌动蛋白
Figure 2 Primer sequences for RT-qPCR Note: COX-2- cyclooxygenase-2;MMP- matrix metalloproteinase;MTCO1- cytochrome C oxidase 1;Col2A1- collagen type II alpha-1
表2 高温刺激下各组细胞存活率之间比较[%,(±s)]
Table 2 Comparison of viability among groups at high temperature
图3 胰酶消化2 min后软骨细胞形态变化注:图中标尺为10 μm;Ectoine-四氢嘧啶;对照组软骨细胞明显收缩成点状,随着四氢嘧啶浓度增加,收缩成点状的软骨细胞逐渐变少
Figure 3 Morphologicl changes of chondrocytes after trypsin treatment for two minutes Note: the scale bar is 10 μm;chondrocytes in the control group had contracted and turned into spot-like cells; with increasing ectoine concentration, fewer chondrocytes contracted into spot-like cells after treatment with trypsin
图4 软骨细胞ROS(活性氧)荧光染色及MTCO1(细胞色素C氧化酶1)表达。图A为四氢嘧啶或DEX(地塞米松)预处理+H2O2刺激软骨细胞后ROS实验荧光图片,示DEX组及不同浓度四氢嘧啶组软骨细胞内的荧光强度均低于H2O2对照组;图B为不同浓度四氢嘧啶组软骨细胞内的荧光强度值;图C为MTCO1基因的表达在各组间的比较注:图中标尺为10 μm;Ec-四氢嘧啶;DEX-地塞米松;*-P<0.05,**-P<0.01,***-P<0.001
Figure 4 ROS assay and MTCO1 relative expression in chondrocytes. A are fluorescent images of ROS in chondrocytes pretreated with ectoine or DEX and stimulated with H2O2, showing that fluorescence intensities in different concentration ectoine groups were lower than that in the H2O2 control group;B is the average fluorescence intensity in chondrocytes from different concentration ectoine groups; C is the expression of MTCO1 in different groups Note:scale bar is 10 μm;Ec- ectoine; DEX- dexamethasone;*-P<0.05,**-P<0.01,***-P<0.001
图5 软骨细胞COX(环氧化酶)-2、MMP(基质金属蛋白酶)-3和MMP-9的相对表达量。图A为COX-2的相对表达量;图B为MMP-3的相对表达量;图C为MMP-9的相对表达量注:Ec-四氢嘧啶;IL-白介素;DEX-地塞米松;*-P<0.05,**-P<0.01,***-P<0.001
Figure 5 Relative expression of COX-2, MMP-3 and MMP-9 in chondrocytes. A is the relative expression of COX-2; B is the relative expression of MMP-3;C is the relative expression of MMP-9 Note:Ec- ectoine; IL-interlukin; DEX- dexamethasone; *-P<0.05,**-P<0.01,***-P<0.001
图6 软骨细胞COL2A1(Ⅱ型胶原)免疫荧光染色及qPCR。图A为四氢嘧啶或DEX(地塞米松)预处理+IL(白介素)-1β刺激后,软骨细胞的COL2A1免疫荧光染色图像,示DEX组及不同浓度四氢嘧啶组软骨细胞内的荧光强度均高于IL-1β组;图B为不同浓度四氢嘧啶组软骨细胞内的荧光强度值;图C为各组间Col2A1基因表达的比较注:图中标尺为10 μm;Ec-四氢嘧啶;IL-白介素;DEX-地塞米松;*-P<0.05,**-P<0.01,***-P<0.001
Figure 6 Immunofluorescence staining and qPCR analysis of COL2A1 in chondrocytes. A are immunofluorescence staining images of chondrocytes after pretreated with ectoine or DEX and stimulated with IL-1β,showing that fluorescence intensity of COL2A1 in chondrocytes in different ectoine concentration groups was greater than that in IL-1β group; B is the average fluorescence intensity value in chondrocytes from different ectoine concentration groups; C is Col2A1 expression in different groups Note:scale bar is 10 μm;Ec- ectoine; IL-interlukin; DEX- dexamethasone;*-P<0.05,**-P<0.01,***-P<0.001
[1]
王波,余楠生. 膝骨关节炎阶梯治疗专家共识(2018年版)[J/CD]. 中华关节外科杂志(电子版), 2019, 13(1): 124-130.
[2]
Galinski EA, Pfeiffer HP, Trüper HG. 1, 4, 5, 6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira[J]. Eur J Biochem, 1985, 149(1): 135-139.
[3]
Bownik A, Stępniewska Z. Ectoine as a promising protective agent in humans and animals[J]. Arh Hig Rada Toksikol, 2016, 67(4): 260-265.
[4]
Bethlehem L, van Echten-Deckert G. Ectoines as novel anti-inflammatory and tissue protective lead compounds with special focus on inflammatory bowel disease and lung inflammation[J/OL]. Pharmacol Res, 2021, 164: 105389. DOI: 10.1016/j.phrs.2020.105389.
[5]
Bilstein A, Heinrich A, Rybachuk A, et al. Ectoine in the treatment of irritations and inflammations of the eye surface[J/OL]. Biomed Res Int, 2021, 2021: 8885032. DOI: 10.1155/2021/8885032.
[6]
Shu M, Shen W, Wang X, et al. Expression, activation and characterization of porcine trypsin in Pichiapastoris GS115[J]. ProteinExprPurif, 2015, 114: 149-155.
[7]
Kolp S, Pietsch M, Galinski EA, et al. Compatible solutes as protectants for zymogens against proteolysis[J].Biochim Biophys Acta, 2006, 1764(7): 1234-1242.
[8]
Gao JT, Liu SH, Yan YE, et al. Quinacrine protects neuronal cells against heat-induced injury[J]. Cell Biol Int, 2009, 33(8): 874-881.
[9]
Parwata IP, Wahyuningrum D, Suhandono S, et al. Ability of ectoine to stabilize lipase against elevated temperatures and methanol concentrations[J/OL]. Indones J Chem, 2021, 21(2): 494.DOI:10.22146/ijc.54931.
[10]
Graf R, Anzali S, Buenger J, et al. The multifunctional role of ectoine as a natural cell protectant[J]. Clin Dermatol, 2008, 26(4): 326-333.
[11]
Chaiswing L, St Clair WH, St Clair DK. Redox paradox: anovelapproach to therapeutics-resistant cancer[J]. Antioxid Redox Signal, 2018, 29(13): 1237-1272.
[12]
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology[J]. Physiol Rev, 2007, 87(1): 245-313.
[13]
Bouchez C, Devin A. Mitochondrial biogenesis and mitochondrial reactive oxygen species (ROS): acomplexrelationship regulated by the cAMP/PKA signaling pathway[J/OL]. Cells, 2019, 8(4): 287. DOI: 10.3390/cells8040287.
[14]
West AP, Khoury-Hanold W, Staron M, et al. Mitochondrial DNA stress primes the antiviral innate immune response[J]. Nature, 2015, 520(7548): 553-557.
[15]
Wang H, Yao X, Huang K, et al. Low-dose dexamethasone in combination with luteolin improves myocardial infarction recovery by activating the antioxidativeresponse[J/OL]. Biomed Pharmacother, 2022, 151: 113121. DOI: 10.1016/j.biopha.2022.113121.
[16]
Jia Y, Pang C, Zhao K, et al. Garcinol suppresses IL-1β-induced chondrocyte inflammation and osteoarthritis via inhibition of the NF-κB signaling pathway[J]. Inflammation, 2019, 42(5): 1754-1766.
[17]
Fei J, Liang B, Jiang C, et al. Luteolin inhibits IL-1β-induced inflammation in rat chondrocytes and attenuates osteoarthritis progression in a rat model[J]. Biomed Pharmacother, 2019, 109: 1586-1592.
[18]
Nakata K, Hanai T, Take Y, et al. Disease-modifying effects of COX-2 selective inhibitors and non-selective NSAIDs in osteoarthritis: a systematic review[J]. Osteoarthritis Cartilage, 2018, 26(10): 1263-1273.
[19]
Fuchs S, Skwara A, Bloch M, et al. Differential induction and regulation of matrix metalloproteinases in osteoarthritic tissue and fluid synovial fibroblasts[J]. Osteoarthritis Cartilage, 2004, 12(5): 409-418.
[20]
Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in arthritis[J]. Front Biosci, 2006, 11: 529-543.
[21]
Pech T, Ohsawa I, Praktiknjo M, et al. A natural tetrahydropyrimidine, ectoine, ameliorates ischemia reperfusion injury after intestinal transplantation in rats[J]. Pathobiology, 2013, 80(2): 102-110.
[22]
Müller D, Lindemann T, Shah-Hosseini K, et al. Efficacy and tolerability of an ectoine mouth and throat spray compared with those of saline lozenges in the treatment of acute pharyngitis and/or laryngitis: a prospective, controlled, observational clinical trial[J]. Eur Arch Otorhinolaryngol, 2016, 273(9): 2591-2597.
[23]
Werkhäuser N, Bilstein A, Mahlstedt K, et al. Observational study investigating ectoin® rhinitis nasal spray as natural treatment option of acute rhinosinusitis compared to treatment with xylometazoline[J]. Eur Arch Otorhinolaryngol, 2022, 279(3): 1371-1381.
[24]
黄昌辉,武明鑫. 小剂量地塞米松对全髋关节置换术后功能的影响[J/CD]. 中华关节外科杂志(电子版), 2019, 13(5): 530-535.
[1] 刘思锐, 赵辰阳, 张睿, 张一休, 杨萌. 多普勒超声对孕鼠子宫动脉不同节段血流动力学参数的评估[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 877-883.
[2] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[3] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[4] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[5] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[6] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[7] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[8] 邢嘉翌, 龚佳晟, 祝佳佳, 陆群. 肺癌化疗患者继发肺部感染的病原菌耐药性及炎症因子变化分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 714-718.
[9] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[10] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[11] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[12] 高广涵, 张耀南, 石磊, 王林, 王飞, 郑子天, 王鸿禹, 郭民政, 薛庆云. 膝骨关节炎患者前交叉韧带功能影像学影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 301-307.
[13] 杭丽, 张耀辉, 孙文恺. 参菝抗瘤液对结直肠腺瘤性息肉术后肠道功能、炎症指标及复发情况的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 413-416.
[14] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
[15] 欧春影, 李晓宾, 郭靖, 朱亮, 许可, 王梦, 安晓雷. 丁苯酞对血管性认知障碍大鼠炎症因子的影响及对认知障碍的改善作用[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 483-487.
阅读次数
全文


摘要