[1] |
Cernuda-Morollón E, Ridley AJ. Rho GTPases and leukocyte adhesion receptor expression and function in endothelial cells[J]. Circ Res, 2006, 98(6): 757-767.
|
[2] |
Touyz RM, Alves-Lopes R, Rios FJ, et al. Vascular smooth muscle contraction in hypertension[J]. Cardiovasc Res, 2018, 114(4): 529-539.
|
[3] |
Kim JG, Kwon HJ, Wu G, et al. RhoA GTPase oxidation stimulates cell proliferation via nuclear factor-κB activation[J]. Free Radic Biol Med, 2017, 103: 57-68.
|
[4] |
Mu G, Ding Q, Li H, et al. Gastrin stimulates pancreatic cancer cell directional migration by activating the Gα12/13-RhoA-ROCK signaling pathway[J]. Exp Mol Med, 2018, 50(5): 1-14.
|
[5] |
Wen J, Tan D, Li L, et al. RhoA regulates Schwann cell differentiation through JNK pathway[J]. Exp Neurol, 2018, 308: 26-34.
|
[6] |
Mcbeath R, Pirone DM, Nelson CM, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment[J]. Dev Cell, 2004, 6(4): 483-495.
|
[7] |
Yamamoto T, Ugawa Y, Yamashiro K, et al. Osteogenic differentiation regulated by Rho-kinase in periodontal ligament cells[J]. Differentiation, 2014, 88(2/3): 33-41.
|
[8] |
Liang J, Feng J, Wu WK, et al. Leptin-mediated cytoskeletal remodeling in chondrocytes occurs via the RhoA/ROCK pathway[J]. J Orthop Res, 2011, 29(3): 369-374.
|
[9] |
Ueyama T. Rho-Family small GTPases: from highly polarized sensory neurons to cancer cells[J/OL]. Cells, 2019, 8(2): 92. doi: 10.3390/cells8020092.
|
[10] |
Xie Y, Song T, Huo M, et al. Fasudil alleviates hepatic fibrosis in type 1 diabetic rats: involvement of the inflammation and RhoA/ROCK pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(17): 5665-5677.
|
[11] |
Gu Z, Yan T, Yan F. Rational design and improvement of the dimerization-disrupting peptide selectivity between ROCK-I and ROCK-II kinase isoforms in cerebrovascular diseases[J/OL]. J Mol Recognit, 2020, 33(6): e2835. doi: 10.1002/jmr.2835.
|
[12] |
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis[J]. Lancet, 2019, 393(1182): 1745-1759.
|
[13] |
Nelson AE. Osteoarthritis year in review 2017: clinical [J]. Osteoarthritis Cartilage, 2018, 26(3): 319-325.
|
[14] |
Vos T, Allen C, Arora M, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the global burden of disease study 2015[J]. Lancet, 2016, 388(153): 1545-1602.
|
[15] |
Block JA. Osteoarthritis: OA guidelines: improving care or merely codifying practice?[J]. Nat Rev Rheumatol, 2014, 10(6): 324-326.
|
[16] |
Ferket BS, Feldman Z, Zhou J, et al. Impact of total knee replacement practice: cost effectiveness analysis of data from the osteoarthritis initiative[J/OL]. BMJ, 2017, 356: j1131. doi: 10.1136/bmj.j1131.
|
[17] |
Im GI. Perspective on intra-articular injection cell therapy for osteoarthritis treatment[J]. Tissue Eng Regen Med, 2019, 16(4): 357-363.
|
[18] |
Ravalli S, Castrogiovanni P, Musumeci G. Exercise as medicine to be prescribed in osteoarthritis[J]. World J Orthop, 2019, 10(7): 262-267.
|
[19] |
Julian L, Olson MF. Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions[J/OL]. Small GTPases, 2014, 5: e29846. doi: 10.4161/sgtp.29846.
|
[20] |
Song X, He R, Han W, et al. Protective effects of the ROCK inhibitor fasudil against cognitive dysfunction following status epilepticus in male rats[J]. J Neurosci Res, 2019, 97(4): 506-519.
|
[21] |
Miyake S, Muramatsu R, Hamaguchi M, et al. Prolyl hydroxylase regulates axonal rewiring and motor recovery after traumatic brain injury[J/OL]. Cell Death Dis, 2015, 6(2): e1638. doi: 10.1038/cddis.2015.5.
|
[22] |
Boureux A, Vignal E, Faure S, et al. Evolution of the Rho family of ras-like GTPases in eukaryotes[J]. Mol Biol Evol, 2007, 24(1): 203-216.
|
[23] |
Hartmann S, Ridley AJ, Lutz S. The function of Rho-Associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease[J/OL]. Front Pharmacol, 2015, 6: 276. doi: 10.3389/fphar.2015.00276.
|
[24] |
Ricker E, Chowdhury L, Yi W, et al. The RhoA-ROCK pathway in the regulation of T and B cell responses[J/OL]. F1000Res, 2016, 5: F1000 Faculty Rev-F1000 Faculty2295. doi: 10.12688/f1000research.7522.1.
|
[25] |
Boyle ST, Kular J, Nobis M, et al. Acute compressive stress activates RHO/ROCK-mediated cellular processes[J]. Small GTPases, 2020, 11(5): 354-370.
|
[26] |
Takeda Y, Matoba K, Kawanami D, et al. ROCK2 regulates monocyte migration and cell to cell adhesion in vascular endothelial cells[J/OL]. Int J Mol Sci, 2019, 20(6): 1331. doi: 10.3390/ijms20061331.
|
[27] |
Liu J, Wada Y, Katsura M, et al. Rho-associated coiled-coil kinase (ROCK) in molecular regulation of angiogenesis[J]. Theranostics, 2018, 8(21): 6053-6069.
|
[28] |
Lunardi P, Sachser RM, Sierra RO, et al. Effects of hippocampal LIMK inhibition on memory acquisition, consolidation, retrieval, reconsolidation, and extinction[J]. Mol Neurobiol, 2018, 55(2): 958-967.
|
[29] |
Singh P, Marcu KB, Goldring MB, et al. Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy[J]. Ann N Y Acad Sci, 2019, 1442(1): 17-34.
|
[30] |
Pernis AB, Ricker E, Weng CH, et al. Rho kinases in autoimmune diseases[J]. Annu Rev Med, 2016, 67: 355-374.
|
[31] |
Chen C, Xie J, Rajappa R, et al. Interleukin-1β and tumor necrosis factor-α increase stiffness and impair contractile function of articular chondrocytes[J]. Acta Biochim Biophys Sin (Shanghai), 2015, 47(2): 121-129.
|
[32] |
Appleton C, Usmani SE, Mort JS. Rho/ROCK and MEK/ERK activation by transforming growth factor-alpha induces articular cartilage degradation[J]. Lab Invest, 2010, 90(1): 20-30.
|
[33] |
Lv M, Zhou Y, Polson SW, et al. Identification of chondrocyte genes and signaling pathways in response to acute joint inflammation[J/OL]. Sci Rep, 2019, 9(1): 93. doi: 10.1038/s41598-018-36500-2.
|
[34] |
Zhu S, Liu H, Wu Y, et al. Wnt and Rho GTPase signaling in osteoarthritis development and intervention: implications for diagnosis and therapy[J/OL]. Arthritis Res Ther, 2013, 15(4): 217. doi: 10.1186/ar4240.
|
[35] |
Wang G, Woods A, Sabari S, et al. RhoA/ROCK signaling suppresses hypertrophic chondrocyte differentiation[J]. J Biol Chem, 2004, 279(13): 13205-13214.
|
[36] |
Woods A, Wang G, Beier F. RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis[J]. J Biol Chem, 2005, 280(12): 11626-11634.
|
[37] |
Haudenschild DR, Nguyen B, Chen J, et al. Rho kinase-dependent CCL20 induced by dynamic compression of human chondrocytes[J]. Arthritis Rheum, 2008, 58(9): 2735-2742.
|
[38] |
Pritchard S, Votta BJ, Kumar S, et al. Interleukin-1 inhibits osmotically induced Calcium signaling and volume regulation in articular chondrocytes[J]. Osteoarthritis Cartilage, 2008, 16(12): 1466-1473.
|
[39] |
Doggrell SA. Rho-kinase inhibitors show promise in pulmonary hypertension[J]. Expert Opin Investig Drugs, 2005, 14(9): 1157-1159.
|
[40] |
Amano M, Nakayama M, Kaibuchi K. Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity[J]. Cytoskeleton (Hoboken), 2010, 67(9): 545-554.
|
[41] |
Dyberg C, Fransson S, Andonova T, et al. Rho-associated kinase is a therapeutic target in neuroblastoma[J]. Proc Natl Acad Sci U S A, 2017, 114(32): E6603-E6612.
|
[42] |
Takeshita N, Yoshimi E, Hatori C, et al. Alleviating effects of AS1892802, a Rho kinase inhibitor, on osteoarthritic disorders in rodents[J]. J Pharmacol Sci, 2011, 115(4): 481-489.
|
[43] |
Joshi AR, Muke I, Bobylev I, et al. ROCK inhibition improves axonal regeneration in a preclinical model of amyotrophic lateral sclerosis[J]. J Comp Neurol, 2019, 527(14): 2334-2340.
|
[44] |
Woods A, Beier F. RhoA/ROCK signaling regulates chondrogenesis in a context-dependent manner[J]. J Biol Chem, 2006, 281(19): 13134-13140.
|
[45] |
Woods A, Pala D, Kennedy L, et al. Rac1 signaling regulates CTGF/CCN2 gene expression via TGFbeta/Smad signaling in chondrocytes[J]. Osteoarthritis Cartilage, 2009, 17(3): 406-413.
|
[46] |
Nishida T, Kubota S, Kojima S, et al. Regeneration of defects in articular cartilage in rat knee joints by CCN2 (connective tissue growth factor)[J]. J Bone Miner Res, 2004, 19(8): 1308-1319.
|