切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (06) : 717 -721. doi: 10.3877/cma.j.issn.1674-134X.2020.06.012

所属专题: 文献

综述

三磷酸鸟苷酶相关蛋白激酶在骨关节炎的研究进展
黄勇1, 朱伟民1, 陆伟1, 熊建义1, 王大平1, 邓桢翰1,()   
  1. 1. 518035 深圳大学第一附属医院,深圳市第二人民医院运动医学科
  • 收稿日期:2020-03-17 出版日期:2020-12-01
  • 通信作者: 邓桢翰
  • 基金资助:
    国家自然科学基金(81902303,81672234); 广东省基础与应用基础研究基金项目(2018A030313834); 深圳市科技计划项目(GJHZ20180416164801042,JCYJ20180305124912336); 深圳市第二人民医院临床研究项目(20173357201814)

Research progress in Rho-associated protein kinase in osteoarthritis

Yong Huang1, Weimin Zhu1, Wei Lu1, Jianyi Xiong1, Daping Wang1, Zhenhan Deng1,()   

  1. 1. Department of Sports Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
  • Received:2020-03-17 Published:2020-12-01
  • Corresponding author: Zhenhan Deng
引用本文:

黄勇, 朱伟民, 陆伟, 熊建义, 王大平, 邓桢翰. 三磷酸鸟苷酶相关蛋白激酶在骨关节炎的研究进展[J]. 中华关节外科杂志(电子版), 2020, 14(06): 717-721.

Yong Huang, Weimin Zhu, Wei Lu, Jianyi Xiong, Daping Wang, Zhenhan Deng. Research progress in Rho-associated protein kinase in osteoarthritis[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(06): 717-721.

Rho相关蛋白激酶(ROCK)是Ras同源基因家族成员A(RhoA)的下游靶标,参与多种细胞生物学过程。RhoA/ROCK在骨关节炎进展机制中发挥重要作用。目前已有研究开发靶向抑制RhoA/ROCK的药物用于治疗骨关节炎,发现对关节软骨具有保护作用。本文通过对RhoA/ROCK在骨关节炎发病机制中的作用和治疗骨关节炎的研究进展进行综述。

Rho-associated protein kinase (ROCK) is the downstream target of Ras homolog gene family member A (RhoA) and participates in a variety of cellular biological processes. RhoA / ROCK plays an important role in the mechanism of osteoarthritis progression. At present, research and development of drugs that target the inhibition of RhoA / ROCK for the treatment of osteoarthritis have been found to have protective effects on articular cartilage. This article reviewed the role of RhoA / ROCK in the pathogenesis of osteoarthritis and its research progress in the treatment of osteoarthritis.

图1 RhoA/ROCK(Ras同源基因家族成员A/Rho相关蛋白激酶)信号通路。GTP(三磷酸鸟苷);MLC(肌球蛋白轻链); LIMK(lin11、isl-1和mec-3蛋白激酶)
图2 OA(骨关节炎)发病机制
表1 RhoA/ROCK抑制剂治疗OA的机制
[1]
Cernuda-Morollón E, Ridley AJ. Rho GTPases and leukocyte adhesion receptor expression and function in endothelial cells[J]. Circ Res, 2006, 98(6): 757-767.
[2]
Touyz RM, Alves-Lopes R, Rios FJ, et al. Vascular smooth muscle contraction in hypertension[J]. Cardiovasc Res, 2018, 114(4): 529-539.
[3]
Kim JG, Kwon HJ, Wu G, et al. RhoA GTPase oxidation stimulates cell proliferation via nuclear factor-κB activation[J]. Free Radic Biol Med, 2017, 103: 57-68.
[4]
Mu G, Ding Q, Li H, et al. Gastrin stimulates pancreatic cancer cell directional migration by activating the Gα12/13-RhoA-ROCK signaling pathway[J]. Exp Mol Med, 2018, 50(5): 1-14.
[5]
Wen J, Tan D, Li L, et al. RhoA regulates Schwann cell differentiation through JNK pathway[J]. Exp Neurol, 2018, 308: 26-34.
[6]
Mcbeath R, Pirone DM, Nelson CM, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment[J]. Dev Cell, 2004, 6(4): 483-495.
[7]
Yamamoto T, Ugawa Y, Yamashiro K, et al. Osteogenic differentiation regulated by Rho-kinase in periodontal ligament cells[J]. Differentiation, 2014, 88(2/3): 33-41.
[8]
Liang J, Feng J, Wu WK, et al. Leptin-mediated cytoskeletal remodeling in chondrocytes occurs via the RhoA/ROCK pathway[J]. J Orthop Res, 2011, 29(3): 369-374.
[9]
Ueyama T. Rho-Family small GTPases: from highly polarized sensory neurons to cancer cells[J/OL]. Cells, 2019, 8(2): 92. doi: 10.3390/cells8020092.
[10]
Xie Y, Song T, Huo M, et al. Fasudil alleviates hepatic fibrosis in type 1 diabetic rats: involvement of the inflammation and RhoA/ROCK pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(17): 5665-5677.
[11]
Gu Z, Yan T, Yan F. Rational design and improvement of the dimerization-disrupting peptide selectivity between ROCK-I and ROCK-II kinase isoforms in cerebrovascular diseases[J/OL]. J Mol Recognit, 2020, 33(6): e2835. doi: 10.1002/jmr.2835.
[12]
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis[J]. Lancet, 2019, 393(1182): 1745-1759.
[13]
Nelson AE. Osteoarthritis year in review 2017: clinical [J]. Osteoarthritis Cartilage, 2018, 26(3): 319-325.
[14]
Vos T, Allen C, Arora M, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the global burden of disease study 2015[J]. Lancet, 2016, 388(153): 1545-1602.
[15]
Block JA. Osteoarthritis: OA guidelines: improving care or merely codifying practice?[J]. Nat Rev Rheumatol, 2014, 10(6): 324-326.
[16]
Ferket BS, Feldman Z, Zhou J, et al. Impact of total knee replacement practice: cost effectiveness analysis of data from the osteoarthritis initiative[J/OL]. BMJ, 2017, 356: j1131. doi: 10.1136/bmj.j1131.
[17]
Im GI. Perspective on intra-articular injection cell therapy for osteoarthritis treatment[J]. Tissue Eng Regen Med, 2019, 16(4): 357-363.
[18]
Ravalli S, Castrogiovanni P, Musumeci G. Exercise as medicine to be prescribed in osteoarthritis[J]. World J Orthop, 2019, 10(7): 262-267.
[19]
Julian L, Olson MF. Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions[J/OL]. Small GTPases, 2014, 5: e29846. doi: 10.4161/sgtp.29846.
[20]
Song X, He R, Han W, et al. Protective effects of the ROCK inhibitor fasudil against cognitive dysfunction following status epilepticus in male rats[J]. J Neurosci Res, 2019, 97(4): 506-519.
[21]
Miyake S, Muramatsu R, Hamaguchi M, et al. Prolyl hydroxylase regulates axonal rewiring and motor recovery after traumatic brain injury[J/OL]. Cell Death Dis, 2015, 6(2): e1638. doi: 10.1038/cddis.2015.5.
[22]
Boureux A, Vignal E, Faure S, et al. Evolution of the Rho family of ras-like GTPases in eukaryotes[J]. Mol Biol Evol, 2007, 24(1): 203-216.
[23]
Hartmann S, Ridley AJ, Lutz S. The function of Rho-Associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease[J/OL]. Front Pharmacol, 2015, 6: 276. doi: 10.3389/fphar.2015.00276.
[24]
Ricker E, Chowdhury L, Yi W, et al. The RhoA-ROCK pathway in the regulation of T and B cell responses[J/OL]. F1000Res, 2016, 5: F1000 Faculty Rev-F1000 Faculty2295. doi: 10.12688/f1000research.7522.1.
[25]
Boyle ST, Kular J, Nobis M, et al. Acute compressive stress activates RHO/ROCK-mediated cellular processes[J]. Small GTPases, 2020, 11(5): 354-370.
[26]
Takeda Y, Matoba K, Kawanami D, et al. ROCK2 regulates monocyte migration and cell to cell adhesion in vascular endothelial cells[J/OL]. Int J Mol Sci, 2019, 20(6): 1331. doi: 10.3390/ijms20061331.
[27]
Liu J, Wada Y, Katsura M, et al. Rho-associated coiled-coil kinase (ROCK) in molecular regulation of angiogenesis[J]. Theranostics, 2018, 8(21): 6053-6069.
[28]
Lunardi P, Sachser RM, Sierra RO, et al. Effects of hippocampal LIMK inhibition on memory acquisition, consolidation, retrieval, reconsolidation, and extinction[J]. Mol Neurobiol, 2018, 55(2): 958-967.
[29]
Singh P, Marcu KB, Goldring MB, et al. Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy[J]. Ann N Y Acad Sci, 2019, 1442(1): 17-34.
[30]
Pernis AB, Ricker E, Weng CH, et al. Rho kinases in autoimmune diseases[J]. Annu Rev Med, 2016, 67: 355-374.
[31]
Chen C, Xie J, Rajappa R, et al. Interleukin-1β and tumor necrosis factor-α increase stiffness and impair contractile function of articular chondrocytes[J]. Acta Biochim Biophys Sin (Shanghai), 2015, 47(2): 121-129.
[32]
Appleton C, Usmani SE, Mort JS. Rho/ROCK and MEK/ERK activation by transforming growth factor-alpha induces articular cartilage degradation[J]. Lab Invest, 2010, 90(1): 20-30.
[33]
Lv M, Zhou Y, Polson SW, et al. Identification of chondrocyte genes and signaling pathways in response to acute joint inflammation[J/OL]. Sci Rep, 2019, 9(1): 93. doi: 10.1038/s41598-018-36500-2.
[34]
Zhu S, Liu H, Wu Y, et al. Wnt and Rho GTPase signaling in osteoarthritis development and intervention: implications for diagnosis and therapy[J/OL]. Arthritis Res Ther, 2013, 15(4): 217. doi: 10.1186/ar4240.
[35]
Wang G, Woods A, Sabari S, et al. RhoA/ROCK signaling suppresses hypertrophic chondrocyte differentiation[J]. J Biol Chem, 2004, 279(13): 13205-13214.
[36]
Woods A, Wang G, Beier F. RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis[J]. J Biol Chem, 2005, 280(12): 11626-11634.
[37]
Haudenschild DR, Nguyen B, Chen J, et al. Rho kinase-dependent CCL20 induced by dynamic compression of human chondrocytes[J]. Arthritis Rheum, 2008, 58(9): 2735-2742.
[38]
Pritchard S, Votta BJ, Kumar S, et al. Interleukin-1 inhibits osmotically induced Calcium signaling and volume regulation in articular chondrocytes[J]. Osteoarthritis Cartilage, 2008, 16(12): 1466-1473.
[39]
Doggrell SA. Rho-kinase inhibitors show promise in pulmonary hypertension[J]. Expert Opin Investig Drugs, 2005, 14(9): 1157-1159.
[40]
Amano M, Nakayama M, Kaibuchi K. Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity[J]. Cytoskeleton (Hoboken), 2010, 67(9): 545-554.
[41]
Dyberg C, Fransson S, Andonova T, et al. Rho-associated kinase is a therapeutic target in neuroblastoma[J]. Proc Natl Acad Sci U S A, 2017, 114(32): E6603-E6612.
[42]
Takeshita N, Yoshimi E, Hatori C, et al. Alleviating effects of AS1892802, a Rho kinase inhibitor, on osteoarthritic disorders in rodents[J]. J Pharmacol Sci, 2011, 115(4): 481-489.
[43]
Joshi AR, Muke I, Bobylev I, et al. ROCK inhibition improves axonal regeneration in a preclinical model of amyotrophic lateral sclerosis[J]. J Comp Neurol, 2019, 527(14): 2334-2340.
[44]
Woods A, Beier F. RhoA/ROCK signaling regulates chondrogenesis in a context-dependent manner[J]. J Biol Chem, 2006, 281(19): 13134-13140.
[45]
Woods A, Pala D, Kennedy L, et al. Rac1 signaling regulates CTGF/CCN2 gene expression via TGFbeta/Smad signaling in chondrocytes[J]. Osteoarthritis Cartilage, 2009, 17(3): 406-413.
[46]
Nishida T, Kubota S, Kojima S, et al. Regeneration of defects in articular cartilage in rat knee joints by CCN2 (connective tissue growth factor)[J]. J Bone Miner Res, 2004, 19(8): 1308-1319.
[1] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[2] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[3] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[4] 刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东. 机器人辅助膝关节单髁置换术的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 715-721.
[5] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[6] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[7] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[8] 赵之栋, 李众利. 骨关节炎早期诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 689-693.
[9] 胡银华, 薛龙. 中国中老年人症状性膝骨关节炎的发病率及危险因素[J]. 中华关节外科杂志(电子版), 2023, 17(04): 470-478.
[10] 利洪艺, 杨浪, 温国洪, 关鸿, 茹江英, 王湘江. 全膝股骨假体矢状面位置与术后膝前痛及功能的关系[J]. 中华关节外科杂志(电子版), 2023, 17(04): 479-484.
[11] 闫兆龙, 张镇斌, 李广兴, 赵璋, 张业勇, 殷鲁旭, 李树锋. 胫骨高位截骨术治疗膝骨关节炎的早期效果及影响因素[J]. 中华关节外科杂志(电子版), 2023, 17(04): 492-499.
[12] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[13] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[14] 马聪, 李雪靖, 郑晓佐, 张晓阳, 段坤峰, 刘国强, 郄素会. 关节腔内注射富血小板血浆与透明质酸钠治疗Ⅰ-Ⅲ期膝骨关节炎的对比研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 282-288.
[15] 周晓强, 孙超, 虞宵, 金宇杰, 李志强, 张向鑫, 陈广祥. 同一患者同期行全膝和单髁置换术的早期临床疗效[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 275-281.
阅读次数
全文


摘要