切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (06) : 717 -721. doi: 10.3877/cma.j.issn.1674-134X.2020.06.012

所属专题: 文献

综述

三磷酸鸟苷酶相关蛋白激酶在骨关节炎的研究进展
黄勇1, 朱伟民1, 陆伟1, 熊建义1, 王大平1, 邓桢翰1,()   
  1. 1. 518035 深圳大学第一附属医院,深圳市第二人民医院运动医学科
  • 收稿日期:2020-03-17 出版日期:2020-12-01
  • 通信作者: 邓桢翰
  • 基金资助:
    国家自然科学基金(81902303,81672234); 广东省基础与应用基础研究基金项目(2018A030313834); 深圳市科技计划项目(GJHZ20180416164801042,JCYJ20180305124912336); 深圳市第二人民医院临床研究项目(20173357201814)

Research progress in Rho-associated protein kinase in osteoarthritis

Yong Huang1, Weimin Zhu1, Wei Lu1, Jianyi Xiong1, Daping Wang1, Zhenhan Deng1,()   

  1. 1. Department of Sports Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
  • Received:2020-03-17 Published:2020-12-01
  • Corresponding author: Zhenhan Deng
引用本文:

黄勇, 朱伟民, 陆伟, 熊建义, 王大平, 邓桢翰. 三磷酸鸟苷酶相关蛋白激酶在骨关节炎的研究进展[J/OL]. 中华关节外科杂志(电子版), 2020, 14(06): 717-721.

Yong Huang, Weimin Zhu, Wei Lu, Jianyi Xiong, Daping Wang, Zhenhan Deng. Research progress in Rho-associated protein kinase in osteoarthritis[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(06): 717-721.

Rho相关蛋白激酶(ROCK)是Ras同源基因家族成员A(RhoA)的下游靶标,参与多种细胞生物学过程。RhoA/ROCK在骨关节炎进展机制中发挥重要作用。目前已有研究开发靶向抑制RhoA/ROCK的药物用于治疗骨关节炎,发现对关节软骨具有保护作用。本文通过对RhoA/ROCK在骨关节炎发病机制中的作用和治疗骨关节炎的研究进展进行综述。

Rho-associated protein kinase (ROCK) is the downstream target of Ras homolog gene family member A (RhoA) and participates in a variety of cellular biological processes. RhoA / ROCK plays an important role in the mechanism of osteoarthritis progression. At present, research and development of drugs that target the inhibition of RhoA / ROCK for the treatment of osteoarthritis have been found to have protective effects on articular cartilage. This article reviewed the role of RhoA / ROCK in the pathogenesis of osteoarthritis and its research progress in the treatment of osteoarthritis.

图1 RhoA/ROCK(Ras同源基因家族成员A/Rho相关蛋白激酶)信号通路。GTP(三磷酸鸟苷);MLC(肌球蛋白轻链); LIMK(lin11、isl-1和mec-3蛋白激酶)
图2 OA(骨关节炎)发病机制
表1 RhoA/ROCK抑制剂治疗OA的机制
[1]
Cernuda-Morollón E, Ridley AJ. Rho GTPases and leukocyte adhesion receptor expression and function in endothelial cells[J]. Circ Res, 2006, 98(6): 757-767.
[2]
Touyz RM, Alves-Lopes R, Rios FJ, et al. Vascular smooth muscle contraction in hypertension[J]. Cardiovasc Res, 2018, 114(4): 529-539.
[3]
Kim JG, Kwon HJ, Wu G, et al. RhoA GTPase oxidation stimulates cell proliferation via nuclear factor-κB activation[J]. Free Radic Biol Med, 2017, 103: 57-68.
[4]
Mu G, Ding Q, Li H, et al. Gastrin stimulates pancreatic cancer cell directional migration by activating the Gα12/13-RhoA-ROCK signaling pathway[J]. Exp Mol Med, 2018, 50(5): 1-14.
[5]
Wen J, Tan D, Li L, et al. RhoA regulates Schwann cell differentiation through JNK pathway[J]. Exp Neurol, 2018, 308: 26-34.
[6]
Mcbeath R, Pirone DM, Nelson CM, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment[J]. Dev Cell, 2004, 6(4): 483-495.
[7]
Yamamoto T, Ugawa Y, Yamashiro K, et al. Osteogenic differentiation regulated by Rho-kinase in periodontal ligament cells[J]. Differentiation, 2014, 88(2/3): 33-41.
[8]
Liang J, Feng J, Wu WK, et al. Leptin-mediated cytoskeletal remodeling in chondrocytes occurs via the RhoA/ROCK pathway[J]. J Orthop Res, 2011, 29(3): 369-374.
[9]
Ueyama T. Rho-Family small GTPases: from highly polarized sensory neurons to cancer cells[J/OL]. Cells, 2019, 8(2): 92. doi: 10.3390/cells8020092.
[10]
Xie Y, Song T, Huo M, et al. Fasudil alleviates hepatic fibrosis in type 1 diabetic rats: involvement of the inflammation and RhoA/ROCK pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(17): 5665-5677.
[11]
Gu Z, Yan T, Yan F. Rational design and improvement of the dimerization-disrupting peptide selectivity between ROCK-I and ROCK-II kinase isoforms in cerebrovascular diseases[J/OL]. J Mol Recognit, 2020, 33(6): e2835. doi: 10.1002/jmr.2835.
[12]
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis[J]. Lancet, 2019, 393(1182): 1745-1759.
[13]
Nelson AE. Osteoarthritis year in review 2017: clinical [J]. Osteoarthritis Cartilage, 2018, 26(3): 319-325.
[14]
Vos T, Allen C, Arora M, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the global burden of disease study 2015[J]. Lancet, 2016, 388(153): 1545-1602.
[15]
Block JA. Osteoarthritis: OA guidelines: improving care or merely codifying practice?[J]. Nat Rev Rheumatol, 2014, 10(6): 324-326.
[16]
Ferket BS, Feldman Z, Zhou J, et al. Impact of total knee replacement practice: cost effectiveness analysis of data from the osteoarthritis initiative[J/OL]. BMJ, 2017, 356: j1131. doi: 10.1136/bmj.j1131.
[17]
Im GI. Perspective on intra-articular injection cell therapy for osteoarthritis treatment[J]. Tissue Eng Regen Med, 2019, 16(4): 357-363.
[18]
Ravalli S, Castrogiovanni P, Musumeci G. Exercise as medicine to be prescribed in osteoarthritis[J]. World J Orthop, 2019, 10(7): 262-267.
[19]
Julian L, Olson MF. Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions[J/OL]. Small GTPases, 2014, 5: e29846. doi: 10.4161/sgtp.29846.
[20]
Song X, He R, Han W, et al. Protective effects of the ROCK inhibitor fasudil against cognitive dysfunction following status epilepticus in male rats[J]. J Neurosci Res, 2019, 97(4): 506-519.
[21]
Miyake S, Muramatsu R, Hamaguchi M, et al. Prolyl hydroxylase regulates axonal rewiring and motor recovery after traumatic brain injury[J/OL]. Cell Death Dis, 2015, 6(2): e1638. doi: 10.1038/cddis.2015.5.
[22]
Boureux A, Vignal E, Faure S, et al. Evolution of the Rho family of ras-like GTPases in eukaryotes[J]. Mol Biol Evol, 2007, 24(1): 203-216.
[23]
Hartmann S, Ridley AJ, Lutz S. The function of Rho-Associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease[J/OL]. Front Pharmacol, 2015, 6: 276. doi: 10.3389/fphar.2015.00276.
[24]
Ricker E, Chowdhury L, Yi W, et al. The RhoA-ROCK pathway in the regulation of T and B cell responses[J/OL]. F1000Res, 2016, 5: F1000 Faculty Rev-F1000 Faculty2295. doi: 10.12688/f1000research.7522.1.
[25]
Boyle ST, Kular J, Nobis M, et al. Acute compressive stress activates RHO/ROCK-mediated cellular processes[J]. Small GTPases, 2020, 11(5): 354-370.
[26]
Takeda Y, Matoba K, Kawanami D, et al. ROCK2 regulates monocyte migration and cell to cell adhesion in vascular endothelial cells[J/OL]. Int J Mol Sci, 2019, 20(6): 1331. doi: 10.3390/ijms20061331.
[27]
Liu J, Wada Y, Katsura M, et al. Rho-associated coiled-coil kinase (ROCK) in molecular regulation of angiogenesis[J]. Theranostics, 2018, 8(21): 6053-6069.
[28]
Lunardi P, Sachser RM, Sierra RO, et al. Effects of hippocampal LIMK inhibition on memory acquisition, consolidation, retrieval, reconsolidation, and extinction[J]. Mol Neurobiol, 2018, 55(2): 958-967.
[29]
Singh P, Marcu KB, Goldring MB, et al. Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy[J]. Ann N Y Acad Sci, 2019, 1442(1): 17-34.
[30]
Pernis AB, Ricker E, Weng CH, et al. Rho kinases in autoimmune diseases[J]. Annu Rev Med, 2016, 67: 355-374.
[31]
Chen C, Xie J, Rajappa R, et al. Interleukin-1β and tumor necrosis factor-α increase stiffness and impair contractile function of articular chondrocytes[J]. Acta Biochim Biophys Sin (Shanghai), 2015, 47(2): 121-129.
[32]
Appleton C, Usmani SE, Mort JS. Rho/ROCK and MEK/ERK activation by transforming growth factor-alpha induces articular cartilage degradation[J]. Lab Invest, 2010, 90(1): 20-30.
[33]
Lv M, Zhou Y, Polson SW, et al. Identification of chondrocyte genes and signaling pathways in response to acute joint inflammation[J/OL]. Sci Rep, 2019, 9(1): 93. doi: 10.1038/s41598-018-36500-2.
[34]
Zhu S, Liu H, Wu Y, et al. Wnt and Rho GTPase signaling in osteoarthritis development and intervention: implications for diagnosis and therapy[J/OL]. Arthritis Res Ther, 2013, 15(4): 217. doi: 10.1186/ar4240.
[35]
Wang G, Woods A, Sabari S, et al. RhoA/ROCK signaling suppresses hypertrophic chondrocyte differentiation[J]. J Biol Chem, 2004, 279(13): 13205-13214.
[36]
Woods A, Wang G, Beier F. RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis[J]. J Biol Chem, 2005, 280(12): 11626-11634.
[37]
Haudenschild DR, Nguyen B, Chen J, et al. Rho kinase-dependent CCL20 induced by dynamic compression of human chondrocytes[J]. Arthritis Rheum, 2008, 58(9): 2735-2742.
[38]
Pritchard S, Votta BJ, Kumar S, et al. Interleukin-1 inhibits osmotically induced Calcium signaling and volume regulation in articular chondrocytes[J]. Osteoarthritis Cartilage, 2008, 16(12): 1466-1473.
[39]
Doggrell SA. Rho-kinase inhibitors show promise in pulmonary hypertension[J]. Expert Opin Investig Drugs, 2005, 14(9): 1157-1159.
[40]
Amano M, Nakayama M, Kaibuchi K. Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity[J]. Cytoskeleton (Hoboken), 2010, 67(9): 545-554.
[41]
Dyberg C, Fransson S, Andonova T, et al. Rho-associated kinase is a therapeutic target in neuroblastoma[J]. Proc Natl Acad Sci U S A, 2017, 114(32): E6603-E6612.
[42]
Takeshita N, Yoshimi E, Hatori C, et al. Alleviating effects of AS1892802, a Rho kinase inhibitor, on osteoarthritic disorders in rodents[J]. J Pharmacol Sci, 2011, 115(4): 481-489.
[43]
Joshi AR, Muke I, Bobylev I, et al. ROCK inhibition improves axonal regeneration in a preclinical model of amyotrophic lateral sclerosis[J]. J Comp Neurol, 2019, 527(14): 2334-2340.
[44]
Woods A, Beier F. RhoA/ROCK signaling regulates chondrogenesis in a context-dependent manner[J]. J Biol Chem, 2006, 281(19): 13134-13140.
[45]
Woods A, Pala D, Kennedy L, et al. Rac1 signaling regulates CTGF/CCN2 gene expression via TGFbeta/Smad signaling in chondrocytes[J]. Osteoarthritis Cartilage, 2009, 17(3): 406-413.
[46]
Nishida T, Kubota S, Kojima S, et al. Regeneration of defects in articular cartilage in rat knee joints by CCN2 (connective tissue growth factor)[J]. J Bone Miner Res, 2004, 19(8): 1308-1319.
[1] 许银峰, 盛璞义, 余世明, 张阳春. 偏心性髋臼旋转截骨术治疗发育性髋关节发育不良[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 568-574.
[2] 刘鹏, 罗天, 许珂媛, 邓红美, 李瑄, 唐翠萍. 八段锦对膝关节炎疗效的初步步态分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 590-595.
[3] 苏介茂, 齐岩松, 王永祥, 魏宝刚, 马秉贤, 张鹏飞, 魏兴华, 徐永胜. 关节镜手术在早中期膝骨关节炎治疗的应用进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 646-652.
[4] 谢佳乐, 李琦, 芦升升, 姜劲松. 内侧膝骨关节炎伴胫股关节冠状半脱位的手术治疗[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 653-657.
[5] 庄若语, 杭明辉, 李文华, 张霆, 侯炜. 膝骨关节炎半定量磁共振评分研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 545-552.
[6] 李志文, 李远志, 李华, 方志远. 糖皮质激素治疗膝骨关节炎疗效的网状Meta分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 484-496.
[7] 王冰, 孙海宁, 于秀淳, 周珂, 翟凯, 苗族康. 膝骨关节炎的活动衬垫型单髁置换疗效与假体生存率[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 337-345.
[8] 张江礼, 刘金辉, 潘西庆, 刘光源, 范虓. 全膝关节置换应用智能辅助手术导航系统治疗膝骨关节炎[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 346-351.
[9] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[10] 陈松, 黄玲巧, 余清卿, 魏志鑫, 付琰. 单细胞RNA测序技术在骨关节炎软骨中的研究应用[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 363-371.
[11] 王颉, 周游. 二甲双胍治疗骨关节炎的机制及其研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 372-378.
[12] 杨士慷, 曹光磊. 膝骨关节炎三种术式患者满意度的术前影响因素[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 390-397.
[13] 蒋政, 郑楠, 毛彦杰, 何阿祥, 林蔚铭, 郭瀚, 刘语嫣, 臧慧, 王聪, 刘万军. 关于胫骨高位截骨术后髌股关节变化的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 398-404.
[14] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[15] 高广涵, 张耀南, 石磊, 王林, 王飞, 郑子天, 王鸿禹, 郭民政, 薛庆云. 膝骨关节炎患者前交叉韧带功能影像学影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 301-307.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?