[1] |
Carbone A, Rodeo S. Review of current understanding of post-traumatic osteoarthritis resulting from sports injuries[J]. J Orthop Res, 2017, 35(3): 397-405.
|
[2] |
Roemer FW, Kwoh CK, Hannon MJ, et al. What comes first? Multitissue involvement leading to radiographic osteoarthritis: magnetic resonance imaging-based trajectory analysis over four years in the osteoarthritis initiative[J]. Arthritis Rheumatol, 2015, 67(8): 2085-2096.
|
[3] |
Felka T, Rothdiener M, Bast S, et al. Loss of spatial organization and destruction of the pericellular matrix in early osteoarthritis in vivo and in a novel in vitro methodology[J]. Osteoarthritis Cartilage, 2016, 24(7): 1200-1209.
|
[4] |
Lee W, Nims RJ, Savadipour A, et al. Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis[J/OL]. Proc Natl Acad Sci USA, 2021, 118(13): e2001611118. DOI: 10.1073/pnas.2001611118.
|
[5] |
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis[J]. Lancet, 2019, 393(10182): 1745-1759.
|
[6] |
Coste B, Mathur J, Schmidt M, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels[J]. Science, 2010, 330(6000): 55-60.
|
[7] |
Qin L, He T, Chen S, et al. Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues[J]. Bone Reserch, 2021, 9(4): 456-472.
|
[8] |
Zhao Q, Zhou H, Chi S, et al. Structure and mechanogating mechanism of the Piezo1 channel[J]. Nature, 2018, 554(7693): 487-492.
|
[9] |
Saotome K, Murthy SE, Kefauver JM, et al. Structure of the mechanically activated ion channel Piezo1[J]. Nature, 2018, 554(7693): 481-486.
|
[10] |
Coste B, Xiao B, Santos JS, et al. Piezo proteins are pore-forming subunits of mechanically activated channels[J]. Nature, 2012, 483(7388): 176-181.
|
[11] |
Yang X, Lin C, Chen X, et al. Structure deformation and curvature sensing of PIEZO1 in lipid membranes[J]. Nature, 2022, 604(7905): 377-383.
|
[12] |
Li J, Hou B, Tumova S, et al. Piezo1 integration of vascular architecture with physiological force[J]. Nature, 2014, 515(7526): 279-282.
|
[13] |
Miyamoto T, Mochizuki T, Nakagomi H, et al. Functional role for Piezo1 in stretch-evoked Ca2+ influx and ATP release in urothelial cell cultures[J]. J Biol Chem, 2014, 289(23): 16565-16575.
|
[14] |
Sugimoto A, Miyazaki A, Kawarabayashi K, et al. Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells[J/OL]. Sci Rep, 2017, 7(1): 17696. DOI: 10.1038/s41598-017-18089-0.
|
[15] |
Taberner FJ, Prato V, Schaefer I, et al. Structure-guided examination of the mechanogating mechanism of PIEZO2[J]. Proc Natl Acad Sci USA, 2019, 116(28): 14260-14269.
|
[16] |
Lee W, Leddy HA, Chen Y, et al. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage[J/OL]. Proc Natl Acad Sci USA, 2014, 111(47): E5114-E5122. DOI: 10.1073/pnas.1414298111.
|
[17] |
Chery DR, Han B, Li Q, et al. Early changes in cartilage pericellular matrix micromechanobiology portend the onset of post-traumatic osteoarthritis[J]. Acta Biomater, 2020, 111: 267-278.
|
[18] |
Cecil DL, Johnson K, Rediske J, et al. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products[J]. J Immunol, 2005, 175(12): 8296-8302.
|
[19] |
Takebe K, Nishiyama T, Hayashi S, et al. Regulation of p38 MAPK phosphorylation inhibits chondrocyte apoptosis in response to heat stress or mechanical stress[J]. Int J Mol Med, 2011, 27(3): 329-335.
|
[20] |
Park S, Arai Y, Bello A, et al. SPRY4 acts as an indicator of osteoarthritis severity and regulates chondrocyte hypertrophy and ECM protease expression[J/OL]. NPJ Regen Med, 2021, 6(1): 56. DOI: 10.1038/s41536-021-00165-9.
|
[21] |
李晓飞,张钊,王天宝,等. Piezo1蛋白经MAPK/ERK5信号通路介导软骨细胞凋亡的机制研究[J]. 中华骨科杂志,2016, 36(12): 795-803.
|
[22] |
李晓飞,张钊,李晓东,等. 新型机械激活离子通道蛋白Piezo1通过MAPK/ERK1/2信号通路介导软骨细胞凋亡的机制[J]. 中华医学杂志,2016, 96(31): 2472-2477.
|
[23] |
Iotsova V, Caamaño J, Loy J, et al. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2[J]. Nat Med, 1997, 3(11): 1285-1289.
|
[24] |
Roman-Blas JA, Jimenez SA. NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis[J]. Osteoarthritis Cartilage, 2006, 14(9): 839-848.
|
[25] |
Benabdoune H, Rondon EP, Shi Q, et al. The role of resolvin D1 in the regulation of inflammatory and catabolic mediators in osteoarthritis[J]. Inflamm Res, 2016, 65(8): 635-645.
|
[26] |
Durand JK, Baldwin AS. Targeting IKK and NF-κB for therapy[M]//Chromatin Proteins and Transcription Factors as Therapeutic Targets. Amsterdam: Elsevier, 2017: 77-115.
|
[27] |
Atcha H, Jairaman A, Holt JR, et al. Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing[J/OL]. Nat Commun, 2021, 12(1): 3256. DOI: 10.1038/s41467-021-23482-5.
|
[28] |
Wu J, Chen Y, Liao Z, et al. Self-amplifying loop of NF-κB and periostin initiated by PIEZO1 accelerates mechano-induced senescence of nucleus pulposus cells and intervertebral disc degeneration[J]. Mol Ther, 2022, 30(10): 3241-3256.
|
[29] |
Aaronson DS, Horvath CM. A road map for those who don't know JAK-STAT[J]. Science, 2002, 296(5573): 1653-1655.
|
[30] |
Lim H, Kim HP. Matrix metalloproteinase-13 expression in IL-1β-treated chondrocytes by activation of the p38 MAPK/c-Fos/AP-1 and JAK/STAT pathways[J]. Arch Pharm Res, 2011, 34(1): 109-117.
|
[31] |
李晓飞,孙一,张钊,等. 机械激活离子通道压力蛋白与细胞骨架的相关性研究[J/CD]. 中华关节外科杂志(电子版), 2020, 14(6): 691-697.
|
[32] |
Zhao L, Huang J, Fan Y, et al. Exploration of CRISPR/Cas9-based gene editing as therapy for osteoarthritis[J]. Ann Rheum Dis, 2019, 78(5): 676-682.
|
[33] |
Sun Y, Leng P, Guo P, et al. G protein coupled estrogen receptor attenuates mechanical stress-mediated apoptosis of chondrocyte in osteoarthritis via suppression of Piezo1[J/OL]. Mol Med, 2021, 27(1): 96. DOI: 10.1186/s10020-021-00360-w.
|
[34] |
Andersson A, Bernardi AI, Stubelius A, et al. Selective oestrogen receptor modulators lasofoxifene and bazedoxifene inhibit joint inflammation and osteoporosis in ovariectomised mice with collagen-induced arthritis[J]. Rheumatology, 2016, 55(3): 553-563.
|
[35] |
厉玲玲,李晓飞,张建一,等. 应用影像导航精准注射小干扰RNA-Piezo1修饰骨髓间充质干细胞来源外泌体在骨关节炎动物模型中的修复研究[J]. 中国骨伤,2021, 34(12): 1171-1178.
|
[36] |
Syeda R, Xu J, Dubin AE, et al. Chemical activation of the mechanotransduction channel Piezo1[J/OL]. Elife, 2015, 4: e07369. DOI: 10.7554/eLife.07369.
|
[37] |
Wang Y, Chi S, Guo H, et al. A lever-like transduction pathway for long-distance chemical- and mechano-gating of the mechanosensitive Piezo1 channel[J/OL]. Nat Commun, 2018, 9(1): 1300. DOI: 10.1038/s41467-018-03570-9.
|
[38] |
Steinecker-Frohnwieser B, Weigl L, Kullich W, et al. The disease modifying osteoarthritis drug diacerein is able to antagonize pro inflammatory state of chondrocytes under mild mechanical stimuli[J]. Osteoarthritis Cartilage, 2014, 22(7): 1044-1052.
|
[39] |
Ward CW, Sachs F, Bush ED, et al. GsMTx4-D provides protection to the D2.mdx mouse[J]. Neuromuscul Disord, 2018, 28(10): 868-877.
|
[40] |
Sun W, Chi S, Li Y, et al. The mechanosensitive Piezo1 channel is required for bone formation[J/OL]. Elife, 2019, 8: e47454. DOI: 10.7554/eLife.47454.
|
[41] |
Li X, Han L, Nookaew I, et al. Stimulation of Piezo1 by mechanical signals promotes bone anabolism[J/OL]. Elife, 2019, 8: e49631. DOI: 10.7554/eLife.49631.
|
[42] |
赵钟涵,杜玉香,张玲莉. 机械敏感性离子通道蛋白Piezo1响应力学刺激的研究进展[J]. 生命的化学,2021, 41(4): 804-811.
|
[43] |
Wang L, You X, Lotinun S, et al. Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk[J/OL]. Nat Commun, 2020, 11(1): 282. DOI: 10.1038/s41467-019-14146-6.
|
[44] |
Hendrickx G, Fischer V, Liedert A, et al. Piezo1 inactivation in chondrocytes impairs trabecular bone formation[J]. J Bone Miner Res, 2021, 36(2): 369-384.
|