切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (04) : 528 -533. doi: 10.3877/cma.j.issn.1674-134X.2023.04.010

综述

机械敏感蛋白Piezo1介导创伤后骨关节炎的作用及机制
罗璠, 饶志涛()   
  1. 200092 上海,同济大学医学院
    200065 上海市同济医院,同济大学附属同济医院骨科
  • 收稿日期:2022-10-04 出版日期:2023-08-01
  • 通信作者: 饶志涛
  • 基金资助:
    上海市"浦江人才"计划(2021PJD064); 上海市"科技创新行动计划"医学创新研究专项(22Y11911900)

Advances in role and mechanism of Piezo1 in mediating post-traumatic osteoarthritis

Fan Luo, Zhitao Rao()   

  1. School of Medicine, Tongji University, Shanghai 200092, China
    Shanghai Tongji Hospital, Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
  • Received:2022-10-04 Published:2023-08-01
  • Corresponding author: Zhitao Rao
引用本文:

罗璠, 饶志涛. 机械敏感蛋白Piezo1介导创伤后骨关节炎的作用及机制[J]. 中华关节外科杂志(电子版), 2023, 17(04): 528-533.

Fan Luo, Zhitao Rao. Advances in role and mechanism of Piezo1 in mediating post-traumatic osteoarthritis[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(04): 528-533.

创伤后骨关节炎是因创伤导致的关节退行性疾病,病理基础主要是软骨细胞代谢调节异常导致的软骨退行性改变,有关节力学和细胞生物学共同参与,但产生的具体机制不明。研究表明,位于软骨细胞上能够介导机械转导的机械敏感蛋白Piezo1,作为机械力受体,感受细胞膜力学刺激,将机械信号转化为电化学信号,与创伤后骨关节炎的病理发生和疾病发展密切相关。本文就目前Piezo1介导创伤后骨关节炎的作用机制相关研究进行综述,探讨Piezo1在创伤后骨关节炎治疗过程中作为靶点干预的可能性。

Post-traumatic osteoarthritis is a degenerative joint disease following trauma, mainly characterized by the abnormal regulation of chondrocytes cartilage degeneration. The pathogenesis of post-traumatic osteoarthritis is the result of biomechanics and cell biology, but the key mechanism is unclear.Studies have shown that mechanical sensitive protein Piezo1, as a mechanical receptor, converts mechanical - electrochemical signals by sensing cell membrane mechanical stimulation, which is closely related to the pathological occurrence and progression of post-traumatic osteoarthritis.This review showed the related studies on the mechanism of Piezo1-mediated post-traumatic osteoarthritis and discusses the possibility of Piezo1 as an intervention target for post-traumatic osteoarthritis in the future.

[1]
Carbone A, Rodeo S. Review of current understanding of post-traumatic osteoarthritis resulting from sports injuries[J]. J Orthop Res, 2017, 35(3): 397-405.
[2]
Roemer FW, Kwoh CK, Hannon MJ, et al. What comes first? Multitissue involvement leading to radiographic osteoarthritis: magnetic resonance imaging-based trajectory analysis over four years in the osteoarthritis initiative[J]. Arthritis Rheumatol, 2015, 67(8): 2085-2096.
[3]
Felka T, Rothdiener M, Bast S, et al. Loss of spatial organization and destruction of the pericellular matrix in early osteoarthritis in vivo and in a novel in vitro methodology[J]. Osteoarthritis Cartilage, 2016, 24(7): 1200-1209.
[4]
Lee W, Nims RJ, Savadipour A, et al. Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis[J/OL]. Proc Natl Acad Sci USA, 2021, 118(13): e2001611118. DOI: 10.1073/pnas.2001611118.
[5]
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis[J]. Lancet, 2019, 393(10182): 1745-1759.
[6]
Coste B, Mathur J, Schmidt M, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels[J]. Science, 2010, 330(6000): 55-60.
[7]
Qin L, He T, Chen S, et al. Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues[J]. Bone Reserch, 2021, 9(4): 456-472.
[8]
Zhao Q, Zhou H, Chi S, et al. Structure and mechanogating mechanism of the Piezo1 channel[J]. Nature, 2018, 554(7693): 487-492.
[9]
Saotome K, Murthy SE, Kefauver JM, et al. Structure of the mechanically activated ion channel Piezo1[J]. Nature, 2018, 554(7693): 481-486.
[10]
Coste B, Xiao B, Santos JS, et al. Piezo proteins are pore-forming subunits of mechanically activated channels[J]. Nature, 2012, 483(7388): 176-181.
[11]
Yang X, Lin C, Chen X, et al. Structure deformation and curvature sensing of PIEZO1 in lipid membranes[J]. Nature, 2022, 604(7905): 377-383.
[12]
Li J, Hou B, Tumova S, et al. Piezo1 integration of vascular architecture with physiological force[J]. Nature, 2014, 515(7526): 279-282.
[13]
Miyamoto T, Mochizuki T, Nakagomi H, et al. Functional role for Piezo1 in stretch-evoked Ca2+ influx and ATP release in urothelial cell cultures[J]. J Biol Chem, 2014, 289(23): 16565-16575.
[14]
Sugimoto A, Miyazaki A, Kawarabayashi K, et al. Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells[J/OL]. Sci Rep, 2017, 7(1): 17696. DOI: 10.1038/s41598-017-18089-0.
[15]
Taberner FJ, Prato V, Schaefer I, et al. Structure-guided examination of the mechanogating mechanism of PIEZO2[J]. Proc Natl Acad Sci USA, 2019, 116(28): 14260-14269.
[16]
Lee W, Leddy HA, Chen Y, et al. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage[J/OL]. Proc Natl Acad Sci USA, 2014, 111(47): E5114-E5122. DOI: 10.1073/pnas.1414298111.
[17]
Chery DR, Han B, Li Q, et al. Early changes in cartilage pericellular matrix micromechanobiology portend the onset of post-traumatic osteoarthritis[J]. Acta Biomater, 2020, 111: 267-278.
[18]
Cecil DL, Johnson K, Rediske J, et al. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products[J]. J Immunol, 2005, 175(12): 8296-8302.
[19]
Takebe K, Nishiyama T, Hayashi S, et al. Regulation of p38 MAPK phosphorylation inhibits chondrocyte apoptosis in response to heat stress or mechanical stress[J]. Int J Mol Med, 2011, 27(3): 329-335.
[20]
Park S, Arai Y, Bello A, et al. SPRY4 acts as an indicator of osteoarthritis severity and regulates chondrocyte hypertrophy and ECM protease expression[J/OL]. NPJ Regen Med, 2021, 6(1): 56. DOI: 10.1038/s41536-021-00165-9.
[21]
李晓飞,张钊,王天宝,等. Piezo1蛋白经MAPK/ERK5信号通路介导软骨细胞凋亡的机制研究[J]. 中华骨科杂志2016, 36(12): 795-803.
[22]
李晓飞,张钊,李晓东,等. 新型机械激活离子通道蛋白Piezo1通过MAPK/ERK1/2信号通路介导软骨细胞凋亡的机制[J]. 中华医学杂志2016, 96(31): 2472-2477.
[23]
Iotsova V, Caamaño J, Loy J, et al. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2[J]. Nat Med, 1997, 3(11): 1285-1289.
[24]
Roman-Blas JA, Jimenez SA. NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis[J]. Osteoarthritis Cartilage, 2006, 14(9): 839-848.
[25]
Benabdoune H, Rondon EP, Shi Q, et al. The role of resolvin D1 in the regulation of inflammatory and catabolic mediators in osteoarthritis[J]. Inflamm Res, 2016, 65(8): 635-645.
[26]
Durand JK, Baldwin AS. Targeting IKK and NF-κB for therapy[M]//Chromatin Proteins and Transcription Factors as Therapeutic Targets. Amsterdam: Elsevier, 2017: 77-115.
[27]
Atcha H, Jairaman A, Holt JR, et al. Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing[J/OL]. Nat Commun, 2021, 12(1): 3256. DOI: 10.1038/s41467-021-23482-5.
[28]
Wu J, Chen Y, Liao Z, et al. Self-amplifying loop of NF-κB and periostin initiated by PIEZO1 accelerates mechano-induced senescence of nucleus pulposus cells and intervertebral disc degeneration[J]. Mol Ther, 2022, 30(10): 3241-3256.
[29]
Aaronson DS, Horvath CM. A road map for those who don't know JAK-STAT[J]. Science, 2002, 296(5573): 1653-1655.
[30]
Lim H, Kim HP. Matrix metalloproteinase-13 expression in IL-1β-treated chondrocytes by activation of the p38 MAPK/c-Fos/AP-1 and JAK/STAT pathways[J]. Arch Pharm Res, 2011, 34(1): 109-117.
[31]
李晓飞,孙一,张钊,等. 机械激活离子通道压力蛋白与细胞骨架的相关性研究[J/CD]. 中华关节外科杂志(电子版), 2020, 14(6): 691-697.
[32]
Zhao L, Huang J, Fan Y, et al. Exploration of CRISPR/Cas9-based gene editing as therapy for osteoarthritis[J]. Ann Rheum Dis, 2019, 78(5): 676-682.
[33]
Sun Y, Leng P, Guo P, et al. G protein coupled estrogen receptor attenuates mechanical stress-mediated apoptosis of chondrocyte in osteoarthritis via suppression of Piezo1[J/OL]. Mol Med, 2021, 27(1): 96. DOI: 10.1186/s10020-021-00360-w.
[34]
Andersson A, Bernardi AI, Stubelius A, et al. Selective oestrogen receptor modulators lasofoxifene and bazedoxifene inhibit joint inflammation and osteoporosis in ovariectomised mice with collagen-induced arthritis[J]. Rheumatology, 2016, 55(3): 553-563.
[35]
厉玲玲,李晓飞,张建一,等. 应用影像导航精准注射小干扰RNA-Piezo1修饰骨髓间充质干细胞来源外泌体在骨关节炎动物模型中的修复研究[J]. 中国骨伤2021, 34(12): 1171-1178.
[36]
Syeda R, Xu J, Dubin AE, et al. Chemical activation of the mechanotransduction channel Piezo1[J/OL]. Elife, 2015, 4: e07369. DOI: 10.7554/eLife.07369.
[37]
Wang Y, Chi S, Guo H, et al. A lever-like transduction pathway for long-distance chemical- and mechano-gating of the mechanosensitive Piezo1 channel[J/OL]. Nat Commun, 2018, 9(1): 1300. DOI: 10.1038/s41467-018-03570-9.
[38]
Steinecker-Frohnwieser B, Weigl L, Kullich W, et al. The disease modifying osteoarthritis drug diacerein is able to antagonize pro inflammatory state of chondrocytes under mild mechanical stimuli[J]. Osteoarthritis Cartilage, 2014, 22(7): 1044-1052.
[39]
Ward CW, Sachs F, Bush ED, et al. GsMTx4-D provides protection to the D2.mdx mouse[J]. Neuromuscul Disord, 2018, 28(10): 868-877.
[40]
Sun W, Chi S, Li Y, et al. The mechanosensitive Piezo1 channel is required for bone formation[J/OL]. Elife, 2019, 8: e47454. DOI: 10.7554/eLife.47454.
[41]
Li X, Han L, Nookaew I, et al. Stimulation of Piezo1 by mechanical signals promotes bone anabolism[J/OL]. Elife, 2019, 8: e49631. DOI: 10.7554/eLife.49631.
[42]
赵钟涵,杜玉香,张玲莉. 机械敏感性离子通道蛋白Piezo1响应力学刺激的研究进展[J]. 生命的化学2021, 41(4): 804-811.
[43]
Wang L, You X, Lotinun S, et al. Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk[J/OL]. Nat Commun, 2020, 11(1): 282. DOI: 10.1038/s41467-019-14146-6.
[44]
Hendrickx G, Fischer V, Liedert A, et al. Piezo1 inactivation in chondrocytes impairs trabecular bone formation[J]. J Bone Miner Res, 2021, 36(2): 369-384.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[3] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[4] 刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东. 机器人辅助膝关节单髁置换术的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 715-721.
[5] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[6] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[7] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[8] 赵之栋, 李众利. 骨关节炎早期诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 689-693.
[9] 胡银华, 薛龙. 中国中老年人症状性膝骨关节炎的发病率及危险因素[J]. 中华关节外科杂志(电子版), 2023, 17(04): 470-478.
[10] 利洪艺, 杨浪, 温国洪, 关鸿, 茹江英, 王湘江. 全膝股骨假体矢状面位置与术后膝前痛及功能的关系[J]. 中华关节外科杂志(电子版), 2023, 17(04): 479-484.
[11] 闫兆龙, 张镇斌, 李广兴, 赵璋, 张业勇, 殷鲁旭, 李树锋. 胫骨高位截骨术治疗膝骨关节炎的早期效果及影响因素[J]. 中华关节外科杂志(电子版), 2023, 17(04): 492-499.
[12] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[13] 周晓强, 孙超, 虞宵, 金宇杰, 李志强, 张向鑫, 陈广祥. 同一患者同期行全膝和单髁置换术的早期临床疗效[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 275-281.
[14] 马聪, 李雪靖, 郑晓佐, 张晓阳, 段坤峰, 刘国强, 郄素会. 关节腔内注射富血小板血浆与透明质酸钠治疗Ⅰ-Ⅲ期膝骨关节炎的对比研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 282-288.
[15] 张镇斌, 闫兆龙, 王功腾, 张文琦, 王旭凤, 李广兴, 孙华强, 李树锋. 关节镜对胫骨高位截骨术治疗膝骨关节炎的效果研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 218-225.
阅读次数
全文


摘要