切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (04) : 528 -533. doi: 10.3877/cma.j.issn.1674-134X.2023.04.010

综述

机械敏感蛋白Piezo1介导创伤后骨关节炎的作用及机制
罗璠, 饶志涛()   
  1. 200092 上海,同济大学医学院
    200065 上海市同济医院,同济大学附属同济医院骨科
  • 收稿日期:2022-10-04 出版日期:2023-08-01
  • 通信作者: 饶志涛
  • 基金资助:
    上海市"浦江人才"计划(2021PJD064); 上海市"科技创新行动计划"医学创新研究专项(22Y11911900)

Advances in role and mechanism of Piezo1 in mediating post-traumatic osteoarthritis

Fan Luo, Zhitao Rao()   

  1. School of Medicine, Tongji University, Shanghai 200092, China
    Shanghai Tongji Hospital, Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
  • Received:2022-10-04 Published:2023-08-01
  • Corresponding author: Zhitao Rao
引用本文:

罗璠, 饶志涛. 机械敏感蛋白Piezo1介导创伤后骨关节炎的作用及机制[J/OL]. 中华关节外科杂志(电子版), 2023, 17(04): 528-533.

Fan Luo, Zhitao Rao. Advances in role and mechanism of Piezo1 in mediating post-traumatic osteoarthritis[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(04): 528-533.

创伤后骨关节炎是因创伤导致的关节退行性疾病,病理基础主要是软骨细胞代谢调节异常导致的软骨退行性改变,有关节力学和细胞生物学共同参与,但产生的具体机制不明。研究表明,位于软骨细胞上能够介导机械转导的机械敏感蛋白Piezo1,作为机械力受体,感受细胞膜力学刺激,将机械信号转化为电化学信号,与创伤后骨关节炎的病理发生和疾病发展密切相关。本文就目前Piezo1介导创伤后骨关节炎的作用机制相关研究进行综述,探讨Piezo1在创伤后骨关节炎治疗过程中作为靶点干预的可能性。

Post-traumatic osteoarthritis is a degenerative joint disease following trauma, mainly characterized by the abnormal regulation of chondrocytes cartilage degeneration. The pathogenesis of post-traumatic osteoarthritis is the result of biomechanics and cell biology, but the key mechanism is unclear.Studies have shown that mechanical sensitive protein Piezo1, as a mechanical receptor, converts mechanical - electrochemical signals by sensing cell membrane mechanical stimulation, which is closely related to the pathological occurrence and progression of post-traumatic osteoarthritis.This review showed the related studies on the mechanism of Piezo1-mediated post-traumatic osteoarthritis and discusses the possibility of Piezo1 as an intervention target for post-traumatic osteoarthritis in the future.

[1]
Carbone A, Rodeo S. Review of current understanding of post-traumatic osteoarthritis resulting from sports injuries[J]. J Orthop Res, 2017, 35(3): 397-405.
[2]
Roemer FW, Kwoh CK, Hannon MJ, et al. What comes first? Multitissue involvement leading to radiographic osteoarthritis: magnetic resonance imaging-based trajectory analysis over four years in the osteoarthritis initiative[J]. Arthritis Rheumatol, 2015, 67(8): 2085-2096.
[3]
Felka T, Rothdiener M, Bast S, et al. Loss of spatial organization and destruction of the pericellular matrix in early osteoarthritis in vivo and in a novel in vitro methodology[J]. Osteoarthritis Cartilage, 2016, 24(7): 1200-1209.
[4]
Lee W, Nims RJ, Savadipour A, et al. Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis[J/OL]. Proc Natl Acad Sci USA, 2021, 118(13): e2001611118. DOI: 10.1073/pnas.2001611118.
[5]
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis[J]. Lancet, 2019, 393(10182): 1745-1759.
[6]
Coste B, Mathur J, Schmidt M, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels[J]. Science, 2010, 330(6000): 55-60.
[7]
Qin L, He T, Chen S, et al. Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues[J]. Bone Reserch, 2021, 9(4): 456-472.
[8]
Zhao Q, Zhou H, Chi S, et al. Structure and mechanogating mechanism of the Piezo1 channel[J]. Nature, 2018, 554(7693): 487-492.
[9]
Saotome K, Murthy SE, Kefauver JM, et al. Structure of the mechanically activated ion channel Piezo1[J]. Nature, 2018, 554(7693): 481-486.
[10]
Coste B, Xiao B, Santos JS, et al. Piezo proteins are pore-forming subunits of mechanically activated channels[J]. Nature, 2012, 483(7388): 176-181.
[11]
Yang X, Lin C, Chen X, et al. Structure deformation and curvature sensing of PIEZO1 in lipid membranes[J]. Nature, 2022, 604(7905): 377-383.
[12]
Li J, Hou B, Tumova S, et al. Piezo1 integration of vascular architecture with physiological force[J]. Nature, 2014, 515(7526): 279-282.
[13]
Miyamoto T, Mochizuki T, Nakagomi H, et al. Functional role for Piezo1 in stretch-evoked Ca2+ influx and ATP release in urothelial cell cultures[J]. J Biol Chem, 2014, 289(23): 16565-16575.
[14]
Sugimoto A, Miyazaki A, Kawarabayashi K, et al. Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells[J/OL]. Sci Rep, 2017, 7(1): 17696. DOI: 10.1038/s41598-017-18089-0.
[15]
Taberner FJ, Prato V, Schaefer I, et al. Structure-guided examination of the mechanogating mechanism of PIEZO2[J]. Proc Natl Acad Sci USA, 2019, 116(28): 14260-14269.
[16]
Lee W, Leddy HA, Chen Y, et al. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage[J/OL]. Proc Natl Acad Sci USA, 2014, 111(47): E5114-E5122. DOI: 10.1073/pnas.1414298111.
[17]
Chery DR, Han B, Li Q, et al. Early changes in cartilage pericellular matrix micromechanobiology portend the onset of post-traumatic osteoarthritis[J]. Acta Biomater, 2020, 111: 267-278.
[18]
Cecil DL, Johnson K, Rediske J, et al. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products[J]. J Immunol, 2005, 175(12): 8296-8302.
[19]
Takebe K, Nishiyama T, Hayashi S, et al. Regulation of p38 MAPK phosphorylation inhibits chondrocyte apoptosis in response to heat stress or mechanical stress[J]. Int J Mol Med, 2011, 27(3): 329-335.
[20]
Park S, Arai Y, Bello A, et al. SPRY4 acts as an indicator of osteoarthritis severity and regulates chondrocyte hypertrophy and ECM protease expression[J/OL]. NPJ Regen Med, 2021, 6(1): 56. DOI: 10.1038/s41536-021-00165-9.
[21]
李晓飞,张钊,王天宝,等. Piezo1蛋白经MAPK/ERK5信号通路介导软骨细胞凋亡的机制研究[J]. 中华骨科杂志2016, 36(12): 795-803.
[22]
李晓飞,张钊,李晓东,等. 新型机械激活离子通道蛋白Piezo1通过MAPK/ERK1/2信号通路介导软骨细胞凋亡的机制[J]. 中华医学杂志2016, 96(31): 2472-2477.
[23]
Iotsova V, Caamaño J, Loy J, et al. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2[J]. Nat Med, 1997, 3(11): 1285-1289.
[24]
Roman-Blas JA, Jimenez SA. NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis[J]. Osteoarthritis Cartilage, 2006, 14(9): 839-848.
[25]
Benabdoune H, Rondon EP, Shi Q, et al. The role of resolvin D1 in the regulation of inflammatory and catabolic mediators in osteoarthritis[J]. Inflamm Res, 2016, 65(8): 635-645.
[26]
Durand JK, Baldwin AS. Targeting IKK and NF-κB for therapy[M]//Chromatin Proteins and Transcription Factors as Therapeutic Targets. Amsterdam: Elsevier, 2017: 77-115.
[27]
Atcha H, Jairaman A, Holt JR, et al. Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing[J/OL]. Nat Commun, 2021, 12(1): 3256. DOI: 10.1038/s41467-021-23482-5.
[28]
Wu J, Chen Y, Liao Z, et al. Self-amplifying loop of NF-κB and periostin initiated by PIEZO1 accelerates mechano-induced senescence of nucleus pulposus cells and intervertebral disc degeneration[J]. Mol Ther, 2022, 30(10): 3241-3256.
[29]
Aaronson DS, Horvath CM. A road map for those who don't know JAK-STAT[J]. Science, 2002, 296(5573): 1653-1655.
[30]
Lim H, Kim HP. Matrix metalloproteinase-13 expression in IL-1β-treated chondrocytes by activation of the p38 MAPK/c-Fos/AP-1 and JAK/STAT pathways[J]. Arch Pharm Res, 2011, 34(1): 109-117.
[31]
李晓飞,孙一,张钊,等. 机械激活离子通道压力蛋白与细胞骨架的相关性研究[J/CD]. 中华关节外科杂志(电子版), 2020, 14(6): 691-697.
[32]
Zhao L, Huang J, Fan Y, et al. Exploration of CRISPR/Cas9-based gene editing as therapy for osteoarthritis[J]. Ann Rheum Dis, 2019, 78(5): 676-682.
[33]
Sun Y, Leng P, Guo P, et al. G protein coupled estrogen receptor attenuates mechanical stress-mediated apoptosis of chondrocyte in osteoarthritis via suppression of Piezo1[J/OL]. Mol Med, 2021, 27(1): 96. DOI: 10.1186/s10020-021-00360-w.
[34]
Andersson A, Bernardi AI, Stubelius A, et al. Selective oestrogen receptor modulators lasofoxifene and bazedoxifene inhibit joint inflammation and osteoporosis in ovariectomised mice with collagen-induced arthritis[J]. Rheumatology, 2016, 55(3): 553-563.
[35]
厉玲玲,李晓飞,张建一,等. 应用影像导航精准注射小干扰RNA-Piezo1修饰骨髓间充质干细胞来源外泌体在骨关节炎动物模型中的修复研究[J]. 中国骨伤2021, 34(12): 1171-1178.
[36]
Syeda R, Xu J, Dubin AE, et al. Chemical activation of the mechanotransduction channel Piezo1[J/OL]. Elife, 2015, 4: e07369. DOI: 10.7554/eLife.07369.
[37]
Wang Y, Chi S, Guo H, et al. A lever-like transduction pathway for long-distance chemical- and mechano-gating of the mechanosensitive Piezo1 channel[J/OL]. Nat Commun, 2018, 9(1): 1300. DOI: 10.1038/s41467-018-03570-9.
[38]
Steinecker-Frohnwieser B, Weigl L, Kullich W, et al. The disease modifying osteoarthritis drug diacerein is able to antagonize pro inflammatory state of chondrocytes under mild mechanical stimuli[J]. Osteoarthritis Cartilage, 2014, 22(7): 1044-1052.
[39]
Ward CW, Sachs F, Bush ED, et al. GsMTx4-D provides protection to the D2.mdx mouse[J]. Neuromuscul Disord, 2018, 28(10): 868-877.
[40]
Sun W, Chi S, Li Y, et al. The mechanosensitive Piezo1 channel is required for bone formation[J/OL]. Elife, 2019, 8: e47454. DOI: 10.7554/eLife.47454.
[41]
Li X, Han L, Nookaew I, et al. Stimulation of Piezo1 by mechanical signals promotes bone anabolism[J/OL]. Elife, 2019, 8: e49631. DOI: 10.7554/eLife.49631.
[42]
赵钟涵,杜玉香,张玲莉. 机械敏感性离子通道蛋白Piezo1响应力学刺激的研究进展[J]. 生命的化学2021, 41(4): 804-811.
[43]
Wang L, You X, Lotinun S, et al. Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk[J/OL]. Nat Commun, 2020, 11(1): 282. DOI: 10.1038/s41467-019-14146-6.
[44]
Hendrickx G, Fischer V, Liedert A, et al. Piezo1 inactivation in chondrocytes impairs trabecular bone formation[J]. J Bone Miner Res, 2021, 36(2): 369-384.
[1] 许银峰, 盛璞义, 余世明, 张阳春. 偏心性髋臼旋转截骨术治疗发育性髋关节发育不良[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 568-574.
[2] 刘鹏, 罗天, 许珂媛, 邓红美, 李瑄, 唐翠萍. 八段锦对膝关节炎疗效的初步步态分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 590-595.
[3] 苏介茂, 齐岩松, 王永祥, 魏宝刚, 马秉贤, 张鹏飞, 魏兴华, 徐永胜. 关节镜手术在早中期膝骨关节炎治疗的应用进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 646-652.
[4] 谢佳乐, 李琦, 芦升升, 姜劲松. 内侧膝骨关节炎伴胫股关节冠状半脱位的手术治疗[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 653-657.
[5] 李志文, 李远志, 李华, 方志远. 糖皮质激素治疗膝骨关节炎疗效的网状Meta分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 484-496.
[6] 庄若语, 杭明辉, 李文华, 张霆, 侯炜. 膝骨关节炎半定量磁共振评分研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 545-552.
[7] 王冰, 孙海宁, 于秀淳, 周珂, 翟凯, 苗族康. 膝骨关节炎的活动衬垫型单髁置换疗效与假体生存率[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 337-345.
[8] 张江礼, 刘金辉, 潘西庆, 刘光源, 范虓. 全膝关节置换应用智能辅助手术导航系统治疗膝骨关节炎[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 346-351.
[9] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[10] 陈松, 黄玲巧, 余清卿, 魏志鑫, 付琰. 单细胞RNA测序技术在骨关节炎软骨中的研究应用[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 363-371.
[11] 王颉, 周游. 二甲双胍治疗骨关节炎的机制及其研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 372-378.
[12] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[13] 刘欢, 邢皓, 常正奇, 张记. 机械敏感性离子通道蛋白Piezo1在感染相关疾病中的研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 263-269.
[14] 高广涵, 张耀南, 石磊, 王林, 王飞, 郑子天, 王鸿禹, 郭民政, 薛庆云. 膝骨关节炎患者前交叉韧带功能影像学影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 301-307.
[15] 罗斯敏, 周苗苗, 石绮屏. 肥胖脂肪代谢及肠道微生物群异常与骨关节炎关系的研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(03): 200-205.
阅读次数
全文


摘要