切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (06) : 691 -697. doi: 10.3877/cma.j.issn.1674-134X.2020.06.008

所属专题: 文献

基础论著

机械激活离子通道压力蛋白与细胞骨架的相关性研究
李晓飞1, 孙一2, 张钊3, 张海宁2,()   
  1. 1. 321000 金华,浙江大学附属金华医院(金华市中心医院)骨一科
    2. 266000 青岛大学附属医院关节外科
    3. 266000 青岛大学附属医院手足外科
  • 收稿日期:2019-04-12 出版日期:2020-12-01
  • 通信作者: 张海宁
  • 基金资助:
    国家自然科学基金(81672197); 浙江省医药卫生科技项目(2020KY343); 浙江省自然科学基金(Q20H060058)

Study on connection between tensile force-activated ion channel and F-actin of cytoskeleton

Xiaofei Li1, Yi Sun2, Zhao Zhang3, Haining Zhang2,()   

  1. 1. Department of Orthopaedics, The Afflicated Jinhua Hospital of Zhejiang University, Jinhua 321000, China
    2. Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, China
    3. Hand and Foot Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, China
  • Received:2019-04-12 Published:2020-12-01
  • Corresponding author: Haining Zhang
引用本文:

李晓飞, 孙一, 张钊, 张海宁. 机械激活离子通道压力蛋白与细胞骨架的相关性研究[J]. 中华关节外科杂志(电子版), 2020, 14(06): 691-697.

Xiaofei Li, Yi Sun, Zhao Zhang, Haining Zhang. Study on connection between tensile force-activated ion channel and F-actin of cytoskeleton[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(06): 691-697.

目的

探讨周期性机械牵张应力作用下,人软骨细胞中新型机械激活离子通道压力蛋白(Piezo1)与细胞骨架的关系。

方法

体外培养骨关节炎病人软骨细胞,然后利用多通道细胞牵张应力加载系统处理细胞,根据预实验结果分成无牵张应力组(空白组),2 h牵张应力组,12 h牵张应力组,24 h牵张应力组,48 h牵张应力组和相应的抑制剂浓度为0.275 mmol/L的蜘蛛毒液肽(GsMTx4)组以及浓度为0.573 mmol/L细胞松弛素D组。免疫组化鉴定软骨细胞,荧光定量聚合酶链式反应(RT-qPCR)检测不同力学条件刺激下各组细胞的Piezo1的表达量。以及细胞松弛素D作用下Piezo1的表达量。免疫荧光定位人软骨细胞Piezo1蛋白的表达,激光共聚焦显微镜观察各组细胞的细胞骨架以及Piezo1蛋白共染相关性。RT-q PCR结果比较采用单因素方差分析,两两组间比较采用q检验。

结果

RT-q PCR检测结果显示,2 h牵张应力组比空白组Piezo1的表达量有所增加,但差异无统计学意义(P>0.05)。12 h牵张应力组比空白组相比有统计学意义(F=9.785,P<0.05)。24 h牵张应力组表达量最多,48 h牵张应力组表达量有所降低。经GsMTx4处理后的各组Piezo1的表达量均出现明显降低(F=13.907,P<0.001)。在牵张应力作用下,2 h牵张应力组至24 h牵张应力组细胞骨架呈渐进性增粗、浓集现象,但是48 h牵张应力组软骨细胞却出现了细胞骨架的松散与降解。相应的RT-qPCR结果显示Piezo1 mRNA表达量与细胞骨架的浓集与松散情况具有相同的趋势。GsMTx4处理后的各加力组表达均下降。

结论

机械敏感性离子通道Piezo1的开放和关闭是与细胞骨架微丝F-actin肌动蛋白密切相关,由细胞骨架F-actin形变激活Piezo1蛋白通道,并与力学加载呈时间依赖性。

Objective

To study the connection between the new mechanically-activated(MA) cation channel protein (Piezo1) and the cytoskeleton of the human osteoarthritis (OA) chondrocytes under mechanical tensile force by using a Flexercell unit.

Methods

The primary human chondrocytes were isolated, cultured, and then subjected to the mechanical tensile force for zero, two, 12, 24 and 48 h, respectively. The expressions of Piezo1 in each group were assessed by reverse transcription-polymerase chain reaction(RT-qPCR). The immunofluorescence was used to prove that the Piezo1 could be expressed in the human chondrocytes, and the location of the Piezo1 protein. The Piezo1 inhibitor GsMTx4 was used to block the cation channel of Piezo1, served as a positive control. The relative expression levels of the RT-qPCR were compared by one-way ANOVA, and the comparison between the two groups was performed by q test.

Results

The results of the RT-qPCR showed that the relative mRNA expression of Piezo1 in the two-hour group was higher than that in the blank group without statistical significance (P>0.05). The 12 h group was significantly higher than the blank group (F=9.785, P<0.05). The expression level of the 24 h group was the highest, and that of the 48 h group was decreased. After GsMTx4 treatment, the expression of the Piezo1 significantly decreased in all the groups (F=13.907, P<0.001). The results of laser scanning confocal microscopy showed that the cytoskeleton of chondrocytes gradually thickened and concentrated from the two-hour group to the 24 h group, but the cytoskeleton of chondrocytes in 48 h group was loose and degraded. The corresponding RT-qPCR results showed that the expression of Piezo1 mRNA had the same trend with the concentration and looseness of cytoskeleton. The expression of GsMTx4 decreased in all the groups.

Conclusion

The expression of the new mechanical cation channel Piezo1 protein shows that it is time-dependence under the tensile force in the human chondrocytes and the activation of the Piezo1 protein could be triggered by the change of the cytoskeleton of the human chondrocytes.

图1 光镜下软骨细胞及软骨鉴定(200×)。图A为原代软骨,呈多角形、不规则形分布;图B为软骨甲苯胺蓝染色;图C为软骨细胞Ⅱ型胶原蛋白表达;图D为软骨细胞多聚蛋白聚糖的表达
图2 Piezo1(压力蛋白)的mRNA相对表达量。图A为Piezo1蛋白的特异性阻滞剂GsMTx4(特异性阳离子阻滞剂蜘蛛毒液肽)阻断组与牵张力作用组的比较,示GsMTx4可阻断Piezo1表达;图B为cytochalasin D(细胞松弛素D)阻断组与牵张力作用组的比较,示cytochalasin D可阻断Piezo1表达
图3 激光共聚焦定位Piezo1(压力蛋白)(600×)
图4 激光共聚焦显微镜细胞骨架图片(600×)。红色荧光为F-actin(肌动蛋白)染色;图A为空白组;图B为2 h牵张应力组;图C为12 h牵张应力组;图D为24 h牵张应力组;图E为48 h牵张应力组;示2 h牵张应力组F-actin相比空白组更加浓密与聚集,24 h牵张应力组F-actin表达量达到最大,牵张应力的受力侧F-actin更加密集;48 h牵张应力组F-actin表达较24 h牵张应力组疏松与降解
图5 细胞骨架与Piezo1(压力蛋白)表达的荧光共染图片(600×)。红色荧光为F-actin(肌动蛋白)染色,绿色荧光为Piezo1染色;图A为空白组;图B为2 h牵张应力组;图C为12 h牵张应力组;图D为24 h牵张应力组;图E为48 h牵张应力组;示2 h牵张应力组的F-actin相比空白组更加浓密与聚集,Piezo1的表达量也明显高于空白组组;24 h牵张应力组Piezo1的表达量达到最大
[1]
李晓飞,张钊,王天宝,等. Piezo1蛋白经MAPK/ERK5信号通路介导软骨细胞凋亡的机制研究[J]. 中华骨科杂志,2016, 36(012):795-803.
[2]
刘益杰,杨松滨,褚立希,等. 周期性牵张应力对IL-1β刺激的人膝骨关节滑膜成纤维细胞MMPs mRNA表达的影响[J]. 上海中医药杂志,2015, 49(2):65-67.
[3]
Yang Q, Zhou Y, Wang J, et al. Study on the mechanism of excessive apoptosis of nucleus pulposus cells induced by shRNA-Piezo1 under abnormal mechanical stretch stress[J]. J Cell Biochem,2019,120(3):3989-3997.
[4]
Coste B, Xiao B, Santos JS, et al. Piezo proteins are pore-forming subunits of mechanically activated channels[J]. Nature, 2012, 483(7388): 176-181.
[5]
Kim SE, Coste B, Chadha A, et al. The role of drosophila Piezo in mechanical nociception[J]. Nature, 2012, 483(7388): 209-212.
[6]
Zarychanski R, Schulz VP, Houston BL, et al. Mutations in the mechanotransduction protein Piezo1 are associated with hereditary xerocytosis[J]. Blood, 2012, 120(9): 1908-1915.
[7]
John L, Ko NL, Gokin A, et al. The Piezo1 cation channel mediates uterine artery shear stress mechanotransduction and vasodilation during rat pregnancy[J]. Am J Physiol Heart Circ Physiol, 2018, 315(4):1019-1026.
[8]
Ihara T, Mitsui T, Nakamura Y, et al. The oscillation of intracellular Ca2+ influx associated with the circadian expression of Piezo1 and TRPV4 in the bladder urothelium[J]. Sci Rep, 2018, 8(1):5699-5679.
[9]
Sasaki F, Hayashi M, Mouri Y, et al. Mechanotransduction via the Piezo1-Akt pathway underlies Sost suppression in osteocytes[J]. Biochem Biophys Res Commun, 2020, 521(3):806-813.
[10]
Gnanasambandam R, Ghatak C, Yasmann A, et al. GsMTx4: mechanism of inhibiting mechanosensitive ion channels[J]. Biophys J, 2017, 112(1):31-45.
[11]
Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton[J]. Nature, 2010, 463(7280):485-492.
[12]
Kounakis K, Tavernarakis N. The cytoskeleton as a modulator of aging and neurodegeneration[J]. Adv Exp Med Biol, 2019, 1178(45):227-245.
[13]
Eira J, Silva CS, Sousa MM, et al. The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders[J]. Prog Neurobiol, 2016, 141(9):61-82.
[14]
Nogueira AT, Pedrosa AT, Carabeo RA. Manipulation of the host cell cytoskeleton by chlamydia[J]. Curr Top Microbiol Immunol, 2018, 412(11):59-80.
[15]
Colic L, McDonnell C, Li M, et al. Neuronal glutamatergic changes and peripheral markers of cytoskeleton dynamics change synchronically 24 h after sub-anaesthetic dose of ketamine in healthy subjects[J]. Behav Brain Res, 2019, 359(1):312-319.
[16]
王天宝,李晓飞,张海宁,等. Piezo1通道蛋白在人骨性关节炎软骨细胞凋亡机制中作用的实验研究[J].中华实验外科杂志,2017,34(11):1820-1823.
[17]
李晓飞,张钊,李晓东,等. 新型机械激活离子通道Piezo1蛋白通过MAPK/ERK1/2信号通路介导软骨细胞凋亡的机制研究[J]. 中华医学杂志,2016,96(31):2472-2478.
[18]
王天宝,李晓飞,张海宁,等. 新型机械敏感性离子通道Piezo1蛋白在椎间盘髓核细胞应力模型中的实验研究[J].青岛大学医学院学报,2017,53(3):257-261.
[19]
Ge J, Li WQ, Zhao QC, et al. Architecture of the mammalian mechanosensitive Piezo1 channel[J]. Nature, 2015, 527(7576): 64-69.
[20]
Andolfo I, Rosato BE, Manna F, et al. Gain-of-function mutations in Piezo1 directly impair hepatic iron metabolism via the inhibition of the BMP/SMADs pathway[J]. Am J Hematol, 2020, 95(2):188-197.
[1] 程冠, 夏娟, 马小静. 扩张型心肌病患者左心室能量损耗及室壁剪应力的血流向量成像评价[J]. 中华医学超声杂志(电子版), 2021, 18(10): 954-959.
[2] 罗璠, 饶志涛. 机械敏感蛋白Piezo1介导创伤后骨关节炎的作用及机制[J]. 中华关节外科杂志(电子版), 2023, 17(04): 528-533.
[3] 杨晓龙, 张立智, 刘晓东. 非侵入性加压负载模型在膝骨关节炎研究中的应用[J]. 中华关节外科杂志(电子版), 2023, 17(01): 86-92.
[4] 傅子财, 黄勇, 陈斐, 刘澍雨, 朱伟民. 间充质干细胞来源外泌体在骨关节炎治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(02): 196-201.
[5] 郭道瑞, 曲春霞, 战怀杰. 自体软骨细胞联合Ⅰ型胶原治疗剥脱性膝骨软骨炎[J]. 中华关节外科杂志(电子版), 2020, 14(06): 773-775.
[6] 罗序峰, 廖建湘, 罗智强, 段婧, 李永利, 徐建芳, 陈黎. Na+通道阻滞剂治疗SCN2A基因变异所致早发型癫痫性脑病并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 585-590.
[7] 傅航, 郭应坤. 心脏MRI的儿童心血管疾病评价及临床应用现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(04): 373-378.
[8] 林伟斌, 朱聪, 洪海森, 黄国锋, 高明明, 吴进, 沙漠, 林灿斌, 陈娜娜, 张晓旭, 丁真奇. 体外周期性压应力对兔胫骨骨折愈合过程成骨与破骨细胞增殖分化能力的影响[J]. 中华损伤与修复杂志(电子版), 2021, 16(04): 289-300.
[9] 邢超, 徐灵巧, 廖文婷, 孙养鹏, 叶钟泰, 张志光. 骨髓间充质干细胞来源的外泌体促进髁突软骨细胞再生的研究[J]. 中华口腔医学研究杂志(电子版), 2021, 15(04): 207-214.
[10] 赵路, 张哲儒, 贾骏麒, 宗春琳, 景莉, 郭凯, 田磊. M2型巨噬细胞抑制放射后骨髓间充质干细胞向肌成纤维细胞转化的实验研究[J]. 中华口腔医学研究杂志(电子版), 2021, 15(04): 198-206.
[11] 崔梦凡, 贺瑞, 李晓娜, 陈维毅, 宋耀文. 角膜生物力学评估参数的应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 236-240.
[12] 陈晓琴, 陈广新, 郭昊, 成志国, 钟彦, 明照凯, 周志尊. 基于磁共振血管成像分析椎基底动脉交界区开窗与脑梗死的相关性研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 84-88.
[13] 陈晓琴, 李星江, 胡涛, 赵金义, 薛培源, 刘伟, 王崇, 胡明成. 椎基底动脉迂曲扩张症的计算流体力学分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(01): 21-25.
[14] 田红梅, 李温荣, 刘俐惠, 张文静. 风险管理联合积极心理护理预防PICC置管患者机械性静脉炎风险的价值[J]. 中华临床医师杂志(电子版), 2022, 16(06): 593-596.
[15] 徐高丽, 张建兴, 周健, 沈文俊, 谷志远, 徐国超. 静压力下缺氧诱导因子-1α信号通路对髁突软骨细胞增殖与凋亡的调控作用[J]. 中华老年病研究电子杂志, 2021, 08(03): 24-29.
阅读次数
全文


摘要