切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (02) : 196 -201. doi: 10.3877/cma.j.issn.1674-134X.2022.02.009

综述

间充质干细胞来源外泌体在骨关节炎治疗中的研究进展
傅子财1, 黄勇1, 陈斐1, 刘澍雨1, 朱伟民1,()   
  1. 1. 518035 深圳大学第一附属医院,深圳市第二人民医院运动医学科
  • 收稿日期:2020-10-11 出版日期:2022-04-01
  • 通信作者: 朱伟民
  • 基金资助:
    国家自然科学基金(81672234)

Research progress of exosomes derived from mesenchymal stem cells in treatment of osteoarthritis

Zicai Fu1, Yong Huang1, Fei Chen1, Shuyu Liu1, Weimin Zhu1,()   

  1. 1. Department of Sports Medicine, Shenzhen Second People’s Hospital/ the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
  • Received:2020-10-11 Published:2022-04-01
  • Corresponding author: Weimin Zhu
引用本文:

傅子财, 黄勇, 陈斐, 刘澍雨, 朱伟民. 间充质干细胞来源外泌体在骨关节炎治疗中的研究进展[J/OL]. 中华关节外科杂志(电子版), 2022, 16(02): 196-201.

Zicai Fu, Yong Huang, Fei Chen, Shuyu Liu, Weimin Zhu. Research progress of exosomes derived from mesenchymal stem cells in treatment of osteoarthritis[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2022, 16(02): 196-201.

骨关节炎(OA)是关节软骨慢性退行性疾病。许多研究表明间充质干细胞(MSCs)可以促进OA的软骨组织修复、改善关节环境等作用。一些MSCs和软骨细胞的共培养实验表明,MSCs可能是通过分泌一些细胞因子发挥作用的,而细胞因子是外泌体(EXs)的重要成分。体外实验证实,间充质干细胞来源的外泌体(MSCs-EXs)与MSCs都具有促进软骨细胞增殖、维持软骨细胞表型、抑制软骨细胞凋亡、促进软骨细胞外基质合成、促进软骨细胞迁移的作用。体内实验也表明,MSCs-EXs在OA中,具有修复软骨、促进软骨基质合成、抑制炎细胞浸润的作用。单纯MSCs-EXs治疗和MSCs治疗相比,具有安全、低成本的优点。这为OA的治疗提供了新的策略。但MSCs-EXs治疗OA的机制尚不明确,本文就MSCs-EXs在OA治疗中的研究进展作一综述。

Osteoarthritis (OA) is a chronic degenerative disease of articular cartilage. Many studies have shown that mesenchymal stem cells can promote the repair of cartilage tissue of OA and improve the joint environment. Some co-cultivation experiments of mesenchymal stem cells and chondrocytes indicate that mesenchymal stem cells may act by secreting some cytokines, and exosomes are an important component of these factors.In vitro experiments confirmed that both exosomes and mesenchymal stem cells derived from mesenchymal stem cells can promote chondrocyte proliferation, maintain chondrocyte phenotype, inhibit chondrocyte apoptosis, promote cartilage extracellular matrix synthesis, and promote chondrocyte migration. In vivo experiments have also shown that exosomes derived from mesenchymal stem cells in OA can repair cartilage, promote cartilage matrix synthesis, and inhibit inflammatory cell infiltration. Compared with mesenchymal stem cell therapy, exosomal therapy alone has the advantages of safety and low cost. This provides a new strategy for the treatment of OA. However, the mechanism of MSCs-EXs in the treatment of osteoarthritis is not clear. This article reviewed the research progress of MSCs-EXs in the treatment of OA.

图1 外泌体的生物发生过程注:细胞膜内陷形成早期内体,根据ESCRT(转运必需内体分选复合物)依赖与非ESCRT依赖两种途径选择性包裹多种蛋白质、核酸等而形成多囊体,发育成晚期内体,与细胞膜融合释放外泌体
图2 MSCs-EXs在OA中的作用注:MSC-EXs-间充质干细胞来源外泌体;proliferation-增殖;migration-迁移;differentiation-分化;Collagen II-II型胶原(Col II);aggrecan-聚集蛋白聚糖(ACAN);MMP-基质金属蛋白酶;ADAMTS-解整合素-金属蛋白酶;inflammation-炎症;apoptosis-凋亡;关节腔注射MSCs-EXs可促进软骨细胞增殖、迁移、分化,增加Col II、ACAN的表达,以及降低MMP、ADAMTS表达,抑制关节炎症、软骨细胞凋亡
表1 MSCs-EXs-miRNA在OA中的作用及机制
[1]
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis[J]. Lancet, 2019, 393(1182): 1745-1759.
[2]
Matas J, Orrego M, Amenabar D, et al. Umbilical cord-derived mesenchymal stromal cells (MSCs) for knee osteoarthritis: repeated MSC dosing is superior to a single MSC dose and to hyaluronic acid in a controlled randomized phase I/II trial[J]. Stem Cells Transl Med, 2019, 8(3): 215-224.
[3]
Barry F.MSC therapy for osteoarthritis: an unfinished story[J]. J Orthop Res, 2019, 37: 1229-1235.
[4]
Zhao X, Zhao Y, Sun X, et al. Immunomodulation of MSCs and MSC-Derived extracellular vesicles in osteoarthritis[J]. Front Bioeng Biotechnol, 2020, 8: 575057. DOI:10.3389/fbioe.2020.575057.
[5]
Zhang S, Teo K, Chuah SJ, et al. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis[J]. Biomaterials, 2019, 200: 35-47.
[6]
Liu YB, Lin LP, Zou R, et al. MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis[J]. Cell Cycle, 2018, 17(21/22): 2411-2422.
[7]
Akers JC, Gonda D, Kim R, et al. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies[J]. J Neurooncol, 2013, 113(1): 1-11.
[8]
Yue B, Yang H, Wang J, et al. Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis[J/OL]. Cell Prolif, 2020, 53(7): e12857. DOI:10.1111/cpr.12857.
[9]
Furuta T, Miyaki S, Ishitobi H, et al.Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model[J]. Stem Cells Transl Med, 2016, 5: 1620-1630.
[10]
Skotland T, Sandvig K, Llorente A. Lipids in exosomes: current knowledge and the way forward [J/OL]. Prog Lipid Res, 2017, 66: 30-41. DOI:10.1016/j.plipres.2017.03.001.
[11]
Lin C, Zhang K, Wu SY, et al. Focus on mesenchymal stem Cell-Derived exosomes: opportunities and challenges in cell-free therapy[J]. Stem Cells Int, 2017: 1-10.
[12]
Song Y, Wang B, Zhu X, et al. Human umbilical cord blood-derived MSCs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice[J]. Cell Biol Toxicol, 2021, 37(1): 51-64.
[13]
Zhang S, Chu WC, Lai RC, et al. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration[J]. Osteoarthritis Cartilage, 2016, 24(12): 2135-2140.
[14]
Vincent TL. IL-1 in osteoarthritis: time for a critical review of the literature[J/OL]. F1000 Res, 2019, 8. DOI:10.12688/f1000research.18831.1.
[15]
綦惠,刘丹平,田大川,等.骨髓间充质干细胞源性外泌体对体外培养的软骨细胞增殖和迁移的调节作用[J].中国运动医学杂志201938(1):40-45.
[16]
He L, He TW, Xing JH, et al. Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis[J]. Stem Cell Res Ther, 2020, 11(1): 276. DOI:10.1186/s13287-020-01781-w.
[17]
Qi H, Liu DP, Xiao DW, et al. Exosomes derived from mesenchymal stem cells inhibit mitochondrial dysfunction-induced apoptosis of chondrocytes via p38, ERK, and Akt pathways[J]. In Vitro Cell Dev Biol Anim, 2019, 55(3): 203-210.
[18]
Tofiño-Vian M, Guillén MI, Pérez DM, et al. Microvesicles from human adipose tissue-derived mesenchymal stem cells as a new protective strategy in osteoarthritic chondrocytes[J]. Cell Physiol Biochem, 2018, 47(1): 11-25.
[19]
Wang Y, Yu D, Liu Z, et al. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix[J/OL]. Stem Cell Res Ther, 2017, 8(1): 189. DOI:10.1186/s13287-017-0632-0.
[20]
Pers YM, Ruiz M, Noël D, et al. Mesenchymal stem cells for the management of inflammation in osteoarthritis:state of the art and perspectives[J]. Osteoarthritis Cartilage, 2015, 23(11): 2027-2035.
[21]
Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, et al. Extrinsic and intrinsic mechanisms by which mesenchymal stem cells suppress the immune system[J]. Ocular Surface, 2016, 14(2): 121-134.
[22]
Tofiño-Vian M, Guillén MI, Pérez DM, et al. Extracellular vesicles from adipose-derived mesenchymal stem cells downregulate senescence features in osteoarthritic osteoblasts[J/OL]. Oxid Med Cell Longev, 2017: 7197598. DOI:10.1155/2017/7197598.
[23]
吴林,张斌,王倩梅,等.脂肪间充质干细胞来源外泌体对M1型巨噬细胞向M2型转化的影响[J].解放军医药杂志201931(3):1-7.
[24]
Kinne RW, Liehr T, Beensen V, et al. Mosaic chromosomal aberrations in synovial fibroblasts of patients with rheumatoid arthritis, osteoarthritis, and other inflammatory joint diseases[J]. Arthritis Res, 2001, 3(5): 319-330.
[25]
Fattore AD, Luciano R, Pascucci L, et al. Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T lymphocytes[J]. Cell Transplant, 2015, 24(12): 2615-2627.
[26]
Chen WC, Huang YK, Han JC, et al. Immunomodulatory effects of mesenchymal stromal cells-derived exosome[J]. Immunol Res, 2016, 64(4): 831-840.
[27]
Chen X, Shi Y, Xue P, et al. Mesenchymal stem cell-derived exosomal microRNA-136-5p inhibits chondrocyte degeneration in traumatic osteoarthritis by targeting ELF3[J/OL]. Arthritis Res Ther, 2020, 22(1): 256. DOI:10.1186/s13075-020-02325-6.
[28]
He L, Chen Y, Ke Z, et al. Exosomes derived from miRNA-210 overexpressing bone marrow mesenchymal stem cells protect lipopolysaccharide induced chondrocytes injury via the NF-κB pathway[J/OL]. Gene, 2020, 751: 144764. DOI:10.1016/j.gene.2020.144764.
[29]
Sun H, Hu S, Zhang Z, et al. Expression of exosomal microRNAs during chondrogenic differentiation of human bone mesenchymal stem cells[J]. J Cell Biochem, 2019, 120(1): 171-181.
[30]
Dong J, Li L, Fang X, et al. Exosome-encapsulated microRNA-127-3p released from bone marrow-derived mesenchymal stem cells alleviates osteoarthritis through regulating CDH11-mediated Wnt/β-catenin pathway[J]. J Pain Res, 2021, 14: 297-310.
[31]
Jin Z, Ren J, Qi S. Exosomal miR-9-5p secreted by bone marrow-derived mesenchymal stem cells alleviates osteoarthritis by inhibiting syndecan-1[J]. Cell Tissue Res, 2020, 381(1): 99-114.
[32]
Wu J, Kuang L, Chen C, et al. miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis[J]. Biomaterials, 2019, 206: 87-100.
[33]
Tsezou A. Osteoarthritis year in review 2014: genetics and genomics[J]. Osteoarthritis Cartilage, 2014, 22(12): 2017-2024.
[34]
Miyaki S, Sato T, Inoue A, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis[J]. Genes Dev, 2010, 24(11): 1173-1185.
[35]
Tao SC, Yuan T, Zhang YL, et al. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model[J]. Theranostics, 2017, 7(1): 180-195.
[36]
Dudek KA, Lafont JE, Martinez-Sanchez A, et al. Type II collagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes[J]. J Biol Chem, 2010, 285(32): 24381-24387.
[1] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[2] 刘鹏, 罗天, 许珂媛, 邓红美, 李瑄, 唐翠萍. 八段锦对膝关节炎疗效的初步步态分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 590-595.
[3] 苏介茂, 齐岩松, 王永祥, 魏宝刚, 马秉贤, 张鹏飞, 魏兴华, 徐永胜. 关节镜手术在早中期膝骨关节炎治疗的应用进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 646-652.
[4] 谢佳乐, 李琦, 芦升升, 姜劲松. 内侧膝骨关节炎伴胫股关节冠状半脱位的手术治疗[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 653-657.
[5] 许银峰, 盛璞义, 余世明, 张阳春. 偏心性髋臼旋转截骨术治疗发育性髋关节发育不良[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 568-574.
[6] 庄若语, 杭明辉, 李文华, 张霆, 侯炜. 膝骨关节炎半定量磁共振评分研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 545-552.
[7] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[8] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[9] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[10] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[11] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[12] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[13] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[14] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[15] 高广涵, 张耀南, 石磊, 王林, 王飞, 郑子天, 王鸿禹, 郭民政, 薛庆云. 膝骨关节炎患者前交叉韧带功能影像学影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 301-307.
阅读次数
全文


摘要