[1] |
Merceron C, Portron S, Masson M, et al. Cartilage tissue engineering:from hydrogel to mesenchymal stem cells[J]. Biomed Mater Eng, 2010, 20(3): 159-166.
|
[2] |
王宇泽,段王平,曾令员,等.聚氯乙烯造模阻断关节液对关节软骨影响的研究[J/CD].中华关节外科杂志(电子版),2015,9(4):488-494.
|
[3] |
Ruta DJ, Villarreal AD, Richardson DR. Orthopedic surgical options for joint cartilage repair and restoration[J/OL]. Phys Med Rehabil Clin N Am, 2016, 27(4): 1019-1042.doi: 10.1016/j.pmr.
|
[4] |
Shi D, Xu X, Ye Y, et al. Photo-cross-linked scaffold with kartogenin-encapsulated nanoparticles for cartilage regeneration[J]. ACS Nano 2016, 10(1): 1292-1299.
|
[5] |
Mithoefer K, Acuna M. Clinical outcomes assessment for articular cartilage restoration[J]. J Knee Surg, 2013, 26(1): 31-40.
|
[6] |
Wakitani S, Kawaguchi A, Tokuhara Y, et al. Present status of and future direction for articular cartilage repair[J]. J Bone Miner Metab, 2008, 26(2): 115-122.
|
[7] |
Hunziker EB, Lippuner K, Keel MJ, et al. An educational review of cartilage repair: precepts & practice-myths & misconceptions-progress & prospect[J]. Osteoarthritis Cartilage, 2015, 23(3): 334-350.
|
[8] |
Kock L1, van Donkelaar CC, Ito K.Tissue engineering of functional articular cartilage: the current status[J]. Cell Tissue Res, 2012, 347 (3):613-627.
|
[9] |
Zhang L, Chen S, Bao NR, et al. Sox4 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cell via activation of long noncoding RNA DANCR[J]. J Mol Histol, 2015, 46(6): 467-473.
|
[10] |
Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage[J]. Nat Rev Rheumatol, 2015, 11(1): 21-34.
|
[11] |
Chang CH, Chen CC, Liao CH, et al. Human acellular cartilage matrix powders as a biological scaffold for cartilage tissue engineering with synovium-derived mesenchymal stem cells[J]. J Biomed Mater Res A, 2014, 102(7): 2248-2257
|
[12] |
Pan JF, Li S, Guo C, et al. Evaluation of synovium-derived mesenchymal stem cells and 3D printed nanocomposite scaffolds for tissue engineering[J/OL]. Sci Technol Adv Mater, 2015, 16(4): 045001. doi: 10.1088/1468-6996/16/4/045001
|
[13] |
Ruta DJ, Villarreal AD, Richardson DR. Orthopedic surgical options for joint cartilage repair and restoration [J]. Phys Med Rehabil Clin N Am, 2016, 27(4): 1019-1042.
|
[14] |
Zhang L, Chen S, Bao N, et al. Sox4 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cell via activation of long noncoding RNA DANCR[J]. J Mol Histol, 2015, 46(6): 467-473.
|
[15] |
Asahara H. Current status and strategy of microRNA research for cartilage developme-nt and osteoarthritis pathogenesis[J]. J Bone Metab, 2016, 23(3): 121-127.
|
[16] |
Huang J, Zhang SY, Gao YM, et al. MicroRNAs as oncogenes or tumour suppressors in oesophageal cancer: potential biomarkers and therapeutic targets[J]. Cell Prolif, 2014, 47(4): 277-286.
|
[17] |
Rokah OH, Granot G, Ovcharenko A, et al. Downregulation of miR-31, miR-155, and miR-564 in chronicmyeloid leukemia cells[J/OL]. PLoS One, 2012, 7(4): e35501. doi: 10.1371/journal.pone.0035501.
|
[18] |
冀全博,徐亚梦,王岩.miRNA与骨关节炎软骨基质降解的研究进展[J].中国修复重建外科杂志,2016,30(11):1431-1436.
|
[19] |
Li YP, Wei XC, Li PC, et al. The role of miRNAs in cartilage homeostasis[J]. Curr Genomics, 2015, 16(6): 393-404.
|
[20] |
Yu X, Li Z. MicroRNAs regulate vascular smooth muscle cell functions in atherosclerosis (review)[J]. Int J Mol Med, 2014, 34(4): 923-933.
|
[21] |
Jiang CM, Fang S, Du JM, et al. MicroRNA-564 is downregulated in glibla-stoma and inhibited proliferation and invasion of glioblastoma cells by targeting TGF-β1[J]. Oncotarget, 2016, 7(35): 56200-56208.
|
[22] |
刘锋,姚剑平.β-TCP-透明质酸复合支架结合自体MSCs和rhBMP_2修复兔关节软骨缺损的实验研究[J/CD].中华关节外科杂志(电子版),2008,2(5):547-553.
|