[1] |
Osterhoff G, Morgan EF, Shefelbine SJ, et al. Bone mechanical properties and changes with osteoporosis[J]. Injury, 2016, 47(Suppl 2):S11-S20.
|
[2] |
Weiner S, Wagner HD. The material bone: structure-mechanical function relations[J]. Annu Rev Mater Res, 2003, 28(1): 271-298.
|
[3] |
Reznikov N, Shahar R, Weiner S. Bone hierarchical structure in three dimensions [J]. Acta Biomater, 2014, 10(9): 3815-3826.
|
[4] |
Weiner S, Arad T, Sabanay I, et al. Rotated plywood structure of primary lamellar bone in the rat:orientations of the collagen fibril arrays[J]. Bone, 1997, 20(6):509-514.
|
[5] |
Mcmurray RJ, Gadegaard N, Tsimbouri P, et al. Nanoscale surfaces for the long-term maintenance ofmesenchymal stem cell phenotype and multipotency[J]. Nat Mater, 2011, 10(8): 637-644.
|
[6] |
Yang C. Mechanical memory and dosing influence stem cell fate[J]. Nat Mater, 2014, 13(6): 645-652.
|
[7] |
Sun AX, Lin H, Fritch MR, et al. Chondrogenesis of human bone marrow mesenchymal stem cells in 3-dimensional, photocrosslinked hydrogel constructs: effect of cell seeding density and material stiffness[J/OL]. Acta Biomater, 2017, 58: 302-311.doi: 10.1016/j.actbio.2017.06.016
|
[8] |
Ozdemir MT, Kir MC. Repair of long bone defects with deminer-alized bone matrix and autogenous bone composite[J]. Indian J Orthop, 2011, 45(3): 226-230.
|
[9] |
Zhao X, Zhou L, Li Q, et al. Biomimetic mineralization of carboxymethyl chitosan nanofibers with improved osteogenic activity in vitro and in vivo[J/OL]. Carbohydr Polym, 2018, 195: 225-234. doi: 10.1016/j.carbpol.2018.04.090.
|
[10] |
石玉泽,陆志东,金群华.自体骨修复初次全膝关节置换术中胫骨骨缺损的临床研究[J/CD].中华关节外科杂志(电子版),2012,6(2):207-212.
|
[11] |
邱贵兴,裴福兴,胡侦明,等.中国骨质疏松性骨折诊疗指南(全文)(骨质疏松性骨折诊断及治疗原则)[J/CD].中华关节外科杂志(电子版),2015,9(6):795-798.
|
[12] |
Ashim Gupta, Nitin Kukkar, Kevin Sharif, et al. Bone graft substitutes for spine fusion: a brief review[J]. World J Orthop, 2015, 6(6): 449-456.
|
[13] |
Li J, Wang Q, Gu Y, et al. Production of composite scaffold containing silk fibroin, chitosan, and gelatin for 3D cell culture and bone tissue regeneration[J]. Med Sci Monit, 2017, 23:5311-5320.
|
[14] |
刘燕,付玉,刘帅,等.两种矿化胶原的显微结构对成骨样细胞MG 63形貌的影响[J].北京大学学报(医学版),2014,46(1):19-24.
|
[15] |
Goldstein S A. The mechanical properties of trabecular bone: dependence on anatomic location and function[J]. J Biomech, 1987, 20(11–12):1055-1061.
|
[16] |
Choi K, Kuhn JL, Ciarelli MJ, et al. The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus[J]. J Biomech, 1990, 23(11):1103-1113.
|
[17] |
Georgiadis M, Müller R, Schneider P. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils[J/OL]. J R Soc Interface, 2016, 13(119):20160088. doi: 10.1098/rsif.2016.0088.
|
[18] |
徐丛,徐飞,杜元良,等.绝经后女性不同Singh指数骨扫描电镜特点[J].中国老年学杂志,2016,36(4):936-938.
|
[19] |
Hua W D, Chen P P, Xu M Q, et al. Quantitative description of collagen fibre network ontrabecular bone surfaces based on AFM imaging[J]. J Microsc, 2016, 262(1):112-122.
|
[20] |
Lv LW, Liu YS, Zhang P, et al. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation[J]. Biomaterials, 2015, 39:193-205.
|