切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (02) : 225 -230. doi: 10.3877/cma.j.issn.1674-134X.2024.02.010

综述

成纤维样滑膜细胞在类风湿关节炎发病机制中的作用
王帆1, 余辉1, 谢佳乐1, 许焕焕2, 马瑞1, 依日夏提·艾海提3, 许珂3, 许鹏3,()   
  1. 1. 716000 延安大学医学院;710054 西安交通大学附属红会医院关节外科
    2. 716000 延安大学医学院
    3. 710054 西安交通大学附属红会医院关节外科
  • 收稿日期:2023-11-25 出版日期:2024-04-01
  • 通信作者: 许鹏

Role of fibroblast-like synoviocytes in pathogenesis of rheumatoid arthritis

Fan Wang1, Hui Yu1, Jiale Xie1, Huanhuan Xu2, Rui Ma1, Aihaiti Yirixiati·3, Ke Xu3, Peng Xu3,()   

  1. 1. Medical School of Yan’an University, Yan’an 716000, China; Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
    2. Medical School of Yan’an University, Yan’an 716000, China
    3. Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
  • Received:2023-11-25 Published:2024-04-01
  • Corresponding author: Peng Xu
引用本文:

王帆, 余辉, 谢佳乐, 许焕焕, 马瑞, 依日夏提·艾海提, 许珂, 许鹏. 成纤维样滑膜细胞在类风湿关节炎发病机制中的作用[J/OL]. 中华关节外科杂志(电子版), 2024, 18(02): 225-230.

Fan Wang, Hui Yu, Jiale Xie, Huanhuan Xu, Rui Ma, Aihaiti Yirixiati·, Ke Xu, Peng Xu. Role of fibroblast-like synoviocytes in pathogenesis of rheumatoid arthritis[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2024, 18(02): 225-230.

类风湿性关节炎(RA)是一种以慢性、对称性、多发性滑膜关节炎为主要临床表现的系统性自身免疫性疾病,其发病机制目前尚不完全清楚。近年来,随着对RA细胞和分子生物学机制的不断探索,许多研究都聚焦于成纤维样滑膜细胞(FLS),其通过分泌多种炎症因子在RA发生发展过程中起到了至关重要的作用。因此对于RA的治疗方法也从传统的非甾体抗炎药(NSAIDs)、糖皮质激素和改变病情抗风湿药(DMARDs)转变为针对细胞因子的生物靶向药物,但这些药物不可避免地会产生相应的副作用,因此,迫切需要新的、安全有效的治疗方法缓解RA患者的病痛。本文从炎症,自噬和凋亡三个方面综述了RA-FLSs对RA的影响,旨在为后续基础研究及临床工作提供帮助。

Rheumatoid arthritis (RA) is a systemic autoimmune disease with chronic, symmetrical, polyarthritis of the synovium as the main clinical manifestation, and its pathogenesis is not fully understood. In recent years, with the continuous exploration of RA cells and molecular biological mechanisms, many studies have focused on fibroblast-like synoviocytes (FLSs), which play a crucial role in the development of RA through the secretion of various inflammatory factors. As a result, there has been a shift in the treatment of RA from traditional non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids and disease-modifying anti-rheumatic drugs (DMARDs) to biologically targeted drugs that target cytokines, but these drugs inevitably produce corresponding side effects, so there is an urgent need for new, safe and effective treatments to alleviate the suffering of RA patients. This review overviewed the effects of RA-FLSs on RA in terms of inflammation, autophagy and apoptosis, aiming to provide help for the subsequent basic research and clinical work.

图1 成纤维样滑膜细胞在类风湿性关节炎中的作用示意图
Figure 1 Diagram of function of fibroblast-like synovial cells in rheumatoid arthritis
[1]
Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis[J]. Immunity, 2017, 46(2): 183-196.
[2]
Gravallese EM, Firestein GS. Rheumatoid arthritis-common origins, divergent mechanisms[J]. N Engl J Med, 2023, 388(6): 529-542.
[3]
韩宇飞,高明利,刘东武. 类风湿性关节炎的发病机制研究进展综述[J]. 中国卫生标准管理2021, 12(1): 162-165.
[4]
宝泉,乌斯嘎啦,穆日格机呼,等. 蒙医外治疗法治疗类风湿性关节炎研究进展[J]. 中国民族医药杂志2022, 28(8): 70-72.
[5]
Yoshitomi H. Regulation of immune responses and chronic inflammation by fibroblast-like synoviocytes[J/OL]. Front Immunol, 2019, 10: 1395. DOI: 10.3389/fimmu.2019.01395.
[6]
Aghakhani S, Zerrouk N, Niarakis A. Metabolic reprogramming of fibroblasts as therapeutic target in rheumatoid arthritis and cancer: deciphering key mechanisms using computational systems biology approaches[J/OL]. Cancers, 2020, 13(1): 35. DOI: 10.3390/cancers13010035.
[7]
Smolen JS, Landewé RBM, Bergstra SA, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update[J]. Ann Rheum Dis, 2023, 82(1): 3-18.
[8]
Mahajan TD, Mikuls TR. Recent advances in the treatment of rheumatoid arthritis[J]. Curr Opin Rheumatol, 2018, 30(3): 231-237.
[9]
Strehl C, van der Goes MC, Bijlsma JW, et al. Glucocorticoid-targeted therapies for the treatment of rheumatoid arthritis[J]. Expert Opin Investig Drugs, 2017, 26(2): 187-195.
[10]
Alivernini S, Firestein GS, McInnes IB. The pathogenesis of rheumatoid arthritis[J]. Immunity, 2022, 55(12): 2255-2270.
[11]
Nygaard G, Firestein GS. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes[J]. Nat Rev Rheumatol, 2020, 16(6): 316-333.
[12]
Ding Q, Hu W, Wang R, et al. Signaling pathways in rheumatoid arthritis: implications for targeted therapy[J/OL]. Signal Transduct Target Ther, 2023, 8(1): 68. DOI: 10.1038/s41392-023-01331-9.
[13]
Liu FY, Wang MQ, Liu MM, et al. Therapeutic effects of shikonin on adjuvant-induced arthritis in rats and cellular inflammation, migration and invasion of rheumatoid fibroblast-like synoviocytes via blocking the activation of Wnt/β-catenin pathway[J/OL]. Phytomedicine, 2023, 116: 154857. DOI: 10.1016/j.phymed.2023.154857.
[14]
Ma JD, Wei XN, Zheng DH, et al. Erratum to: continuously elevated serum matrix metalloproteinase-3 for 3~6 months predict one-year radiographic progression in rheumatoid arthritis: a prospective cohort study[J/OL]. Arthritis Res Ther, 2015, 17: 311. DOI: 10.1186/s13075-015-0837-5.
[15]
Ma JD, Zhou JJ, Zheng DH, et al. Serum matrix metalloproteinase-3 as a noninvasive biomarker of histological synovitis for diagnosis of rheumatoid arthritis[J/OL]. Mediators Inflamm, 2014, 2014: 179284. DOI: 10.1155/2014/179284.
[16]
Zhao S, Grieshaber-Bouyer R, Rao DA, et al. Effect of JAK inhibition on the induction of proinflammatory HLA-DR+CD90rheumatoid arthritis synovial fibroblasts by interferon-Γ[J]. Arthritis Rheumatol, 2022, 74(3): 441-452.
[17]
Alivernini S, MacDonald L, Elmesmari A, et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis[J]. Nat Med, 2020, 26(8): 1295-1306.
[18]
Garcia-Carbonell R, Divakaruni AS, Lodi A, et al. Critical role of glucose metabolism in rheumatoid arthritis fibroblast-like synoviocytes[J]. Arthritis Rheumatol, 2016, 68(7): 1614-1626.
[19]
Hua S, Dias TH. Hypoxia-inducible factor (HIF) as a target for novel therapies in rheumatoid arthritis[J/OL]. Front Pharmacol, 2016, 7: 184. DOI: 10.3389/fphar.2016.00184.
[20]
Guo Q, Wang Y, Xu D, et al. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies[J/OL]. Bone Res, 2018, 6: 15. DOI: 10.1038/s41413-018-0016-9.
[21]
Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis[J]. Lancet, 2016, 388(10055): 2023-2038.
[22]
Achudhan D, Liu SC, Lin YY, et al. Antcin K inhibits TNF-α,IL-1β and IL-8 expression in synovial fibroblasts and ameliorates cartilage degradation: implications for the treatment of rheumatoid arthritis[J/OL]. Front Immunol, 2021, 12: 790925. DOI: 10.3389/fimmu.2021.790925.
[23]
Negi S, Tandel N, Sharma P, et al. Aceclofenac and methotrexate combination therapy could influence Th1/Th17 axis to modulate rheumatoid-arthritis-induced inflammation[J/OL]. Drug Discov Today, 2023, 28(8): 103671. DOI: 10.1016/j.drudis.2023.103671.
[24]
Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: a review[J]. JAMA, 2018, 320(13): 1360-1372.
[25]
Suto T, Tosevska A, Dalwigk K, et al. TNFR2 is critical for TNF-induced rheumatoid arthritis fibroblast-like synoviocyte inflammation[J]. Rheumatology, 2022, 61(11): 4535-4546.
[26]
Tsaltskan V, Firestein GS. Targeting fibroblast-like synoviocytes in rheumatoid arthritis[J/OL]. Curr Opin Pharmacol, 2022, 67: 102304. DOI: 10.1016/j.coph.2022.102304.
[27]
Wang Y, Wang J, Zheng W, et al. Identification of an IL-1 receptor mutation driving autoinflammation directs IL-1-targeted drug design[J]. Immunity, 2023, 56(7): 1485-1501.e7.
[28]
Jutley GS, Sahota K, Sahbudin I, et al. Relationship between inflammation and metabolism in patients with newly presenting rheumatoid arthritis[J/OL]. Front Immunol, 2021, 12: 676105. DOI: 10.3389/fimmu.2021.676105.
[29]
Moudgil KD, Venkatesha SH. The anti-inflammatory and immunomodulatory activities of natural products to control autoimmune inflammation[J/OL]. Int J Mol Sci, 2022, 24(1): 95. DOI: 10.3390/ijms24010095.
[30]
Pandolfi F, Franza L, Carusi V, et al. Interleukin-6 in rheumatoid arthritis[J/OL]. Int J Mol Sci, 2020, 21(15): 5238. DOI: 10.3390/ijms21155238.
[31]
Wang T, He C. Pro-inflammatory cytokines: the link between obesity and osteoarthritis[J]. Cytokine Growth Factor Rev, 2018, 44: 38-50.
[32]
Sung HJ, Choi S, Lee JW, et al. Inhibition of human neutrophil activity by an RNA aptamer bound to interleukin-8[J]. Biomaterials, 2014, 35(1): 578-589.
[33]
Kosek E, Altawil R, Kadetoff D, et al. Evidence of different mediators of central inflammation in dysfunctional and inflammatory pain—interleukin-8 in fibromyalgia and interleukin-1 β in rheumatoid arthritis[J]. J Neuroimmunol, 2015, 280: 49-55.
[34]
Lee AR, Woo JS, Lee SY, et al. SARS-CoV-2 spike protein promotes inflammatory cytokine activation and aggravates rheumatoid arthritis[J/OL]. Cell Commun Signal, 2023, 21(1): 44. DOI: 10.1186/s12964-023-01044-0.
[35]
Yin Z, Pascual C, Klionsky DJ. Autophagy: machinery and regulation[J]. Microb Cell, 2016, 3(12): 588-596.
[36]
Chen B, Wang F, Zhang Y, et al. PTEN-mediated FOXO signaling affects autophagy, migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes[J/OL]. Tissue Cell, 2024, 86: 102278. DOI: 10.1016/j.tice.2023.102278.
[37]
Ren M, Ma K, Pang X, et al. Anti-rheumatoid arthritis effects of total saponins from Rhizoma Panacis Majoris on adjuvant-induced arthritis in rats and rheumatoid arthritis fibroblast-like synoviocytes[J/OL]. Phytomedicine, 2023, 119: 155021. DOI: 10.1016/j.phymed.2023.155021.
[38]
Karami J, Masoumi M, Khorramdelazad H, et al. Role of autophagy in the pathogenesis of rheumatoid arthritis: latest evidence and therapeutic approaches[J/OL]. Life Sci, 2020, 254: 117734. DOI: 10.1016/j.lfs.2020.117734.
[39]
Xu DL, Pan J. Transcription factor EB promotes rheumatoid arthritis of Sprague-Dawley rats via regulating autophagy[J/OL]. 3 Biotech, 2021, 11(4): 162. DOI: 10.1007/s13205-021-02710-1.
[40]
Zhu L, Wang H, Wu Y, et al. The autophagy level is increased in the synovial tissues of patients with active rheumatoid arthritis and is correlated with disease severity[J/OL]. Mediators Inflamm, 2017, 2017: 7623145. DOI: 10.1155/2017/7623145.
[41]
Mao K, Breen P, Ruvkun G. The Caenorhabditis elegans ARIP-4 DNA helicase couples mitochondrial surveillance to immune, detoxification, and antiviral pathways[J/OL]. Proc Natl Acad Sci USA, 2022, 119(49): e2215966119. DOI: 10.1073/pnas.2215966119.
[42]
Sorice M, Iannuccelli C, Manganelli V, et al. Autophagy generates citrullinated peptides in human synoviocytes: a possible trigger for anti-citrullinated peptide antibodies[J]. Rheumatology, 2016, 55(8): 1374-1385.
[43]
Wang X, Chen Z, Fan X, et al. Inhibition of DNM1L and mitochondrial fission attenuates inflammatory response in fibroblast-like synoviocytes of rheumatoid arthritis[J]. J Cell Mol Med, 2020, 24(2): 1516-1528.
[44]
He SD, Tan N, Sun CX, et al. Treatment with melittin induces apoptosis and autophagy of fibroblastlike synoviocytes in patients with rheumatoid arthritis[J]. Curr Pharm Biotechnol, 2020, 21(8): 734-740.
[45]
Chang L, Feng X, Gao W. Proliferation of rheumatoid arthritis fibroblast-like synoviocytes is enhanced by IL-17-mediated autophagy through STAT3 activation[J]. Connect Tissue Res, 2019, 60(4): 358-366.
[46]
Jiang P, Mizushima N. LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells[J]. Methods, 2015, 75: 13-18.
[47]
Li RF, Chen G, Ren JG, et al. The adaptor protein p62 is involved in RANKL-induced autophagy and osteoclastogenesis[J]. J Histochem Cytochem, 2014, 62(12): 879-888.
[48]
Cai J, Zhang LC, Zhao RJ, et al. Chelerythrine ameliorates rheumatoid arthritis by modulating the AMPK/mTOR/ULK-1 signaling pathway[J/OL]. Phytomedicine, 2022, 104: 154140. DOI: 10.1016/j.phymed.2022.154140.
[49]
Zhao J, Jiang P, Guo S, et al. Apoptosis, autophagy, NETosis, necroptosis, and pyroptosis mediated programmed cell death as targets for innovative therapy in rheumatoid arthritis[J/OL]. Front Immunol, 2021, 12: 809806. DOI: 10.3389/fimmu.2021.809806.
[50]
Hu Y, Liu J, Jiang H, et al. Regulation of autophagy by circular RNAs in rheumatoid arthritis: potential targets of action[J]. Int J Rheum Dis, 2023, 26(5): 831-840.
[51]
Zhao J, Hu Y, Peng J. Targeting programmed cell death in metabolic dysfunction-associated fatty liver disease (MAFLD): a promising new therapy[J/OL]. Cell Mol Biol Lett, 2021, 26(1): 17. DOI: 10.1186/s11658-021-00254-z.
[52]
Zhang S, Zhao J, Ma W. Circ-Sirt1 inhibits proliferation, induces apoptosis, and ameliorates inflammation in human rheumatoid arthritis fibroblast-like synoviocytes[J]. Autoimmunity, 2021, 54(8): 514-525.
[53]
Chen J, Lin X, Liu K, et al. CT2-3 induces cell cycle arrest and apoptosis in rheumatoid arthritis fibroblast-like synoviocytes through regulating PI3K/AKT pathway[J/OL]. Eur J Pharmacol, 2023, 956: 175871. DOI: 10.1016/j.ejphar.2023.175871.
[54]
From the American Association of Neurological Surgeons (AANS) ASON(, SacksD, Baxter B, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke[J]. Int J Stroke, 2018, 13(6): 612-632.
[55]
Zhai Y, Wu B, Li J, et al. CD147 promotes IKK/IκB/NF-κB pathway to resist TNF-induced apoptosis in rheumatoid arthritis synovial fibroblasts[J]. J Mol Med, 2016, 94(1): 71-82.
[56]
Frazzi R. BIRC3 and BIRC5: multi-faceted inhibitors in cancer[J/OL]. Cell Biosci, 2021, 11(1): 8. DOI: 10.1186/s13578-020-00521-0.
[57]
Ge L, Wang T, Shi D, et al. ATF6α contributes to rheumatoid arthritis by inducing inflammatory cytokine production and apoptosis resistance[J/OL]. Front Immunol, 2022, 13: 965708. DOI: 10.3389/fimmu.2022.965708.
[58]
Kabala PA, Angiolilli C, Yeremenko N, et al. Endoplasmic reticulum stress cooperates with Toll-like receptor ligation in driving activation of rheumatoid arthritis fibroblast-like synoviocytes[J/OL]. Arthritis Res Ther, 2017, 19(1): 207. DOI: 10.1186/s13075-017-1386-x.
[59]
Matsumura T, Saito Y, Suzuki T, et al. Phosphorylated platelet-derived growth factor receptor-positive cells with anti-apoptotic properties accumulate in the synovium of patients with rheumatoid arthritis[J/OL]. Front Immunol, 2019, 10: 241. DOI: 10.3389/fimmu.2019.00241.
[60]
Budakoti M, Panwar AS, Molpa D, et al. Micro-RNA: the darkhorse of cancer[J/OL]. Cell Signal, 2021, 83: 109995. DOI: 10.1016/j.cellsig.2021.109995.
[61]
Li Z, Yang B, Weng X, et al. Emerging roles of microRNAs in osteonecrosis of the femoral head[J/OL]. Cell Prolif, 2018, 51(1): e12405. DOI: 10.1111/cpr.12405.
[62]
Cheng P, Lu P, Guan J, et al. LncRNA KCNQ1OT1 controls cell proliferation, differentiation and apoptosis by sponging miR-326 to regulate c-Myc expression in acute myeloid leukemia[J]. Neoplasma, 2020, 67(2): 238-248.
[63]
Wang R, Xu J, Xu J, et al. MiR-326/Sp1/KLF3: a novel regulatory axis in lung cancer progression[J/OL]. Cell Prolif, 2019, 52(2): e12551. DOI: 10.1111/cpr.12551.
[64]
Wang Y, Wang Z, Zhu S, et al. MiR-326 regulates cell proliferation and apoptosis in fibroblast-like synoviocytes in rheumatoid arthritis[J]. Hum Cell, 2023, 36(3): 987-996.
[1] 蚁淳, 袁冬生, 熊学军. 系统免疫炎症指数与骨密度降低和骨质疏松的关联[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 609-617.
[2] 钟雅雯, 王煜, 王海臻, 黄莉萍. 肌苷通过抑制线粒体通透性转换孔开放缓解缺氧/复氧诱导的人绒毛膜滋养层细胞凋亡[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 525-533.
[3] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[4] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[5] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[6] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[7] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[8] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[9] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[10] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[11] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[12] 杭丽, 张耀辉, 孙文恺. 参菝抗瘤液对结直肠腺瘤性息肉术后肠道功能、炎症指标及复发情况的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 413-416.
[13] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
[14] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
[15] 欧春影, 李晓宾, 郭靖, 朱亮, 许可, 王梦, 安晓雷. 丁苯酞对血管性认知障碍大鼠炎症因子的影响及对认知障碍的改善作用[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 483-487.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?