切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (02) : 225 -230. doi: 10.3877/cma.j.issn.1674-134X.2024.02.010

综述

成纤维样滑膜细胞在类风湿关节炎发病机制中的作用
王帆1, 余辉1, 谢佳乐1, 许焕焕2, 马瑞1, 依日夏提·艾海提3, 许珂3, 许鹏3,()   
  1. 1. 716000 延安大学医学院;710054 西安交通大学附属红会医院关节外科
    2. 716000 延安大学医学院
    3. 710054 西安交通大学附属红会医院关节外科
  • 收稿日期:2023-11-25 出版日期:2024-04-01
  • 通信作者: 许鹏

Role of fibroblast-like synoviocytes in pathogenesis of rheumatoid arthritis

Fan Wang1, Hui Yu1, Jiale Xie1, Huanhuan Xu2, Rui Ma1, Aihaiti Yirixiati·3, Ke Xu3, Peng Xu3,()   

  1. 1. Medical School of Yan’an University, Yan’an 716000, China; Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
    2. Medical School of Yan’an University, Yan’an 716000, China
    3. Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
  • Received:2023-11-25 Published:2024-04-01
  • Corresponding author: Peng Xu
引用本文:

王帆, 余辉, 谢佳乐, 许焕焕, 马瑞, 依日夏提·艾海提, 许珂, 许鹏. 成纤维样滑膜细胞在类风湿关节炎发病机制中的作用[J]. 中华关节外科杂志(电子版), 2024, 18(02): 225-230.

Fan Wang, Hui Yu, Jiale Xie, Huanhuan Xu, Rui Ma, Aihaiti Yirixiati·, Ke Xu, Peng Xu. Role of fibroblast-like synoviocytes in pathogenesis of rheumatoid arthritis[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2024, 18(02): 225-230.

类风湿性关节炎(RA)是一种以慢性、对称性、多发性滑膜关节炎为主要临床表现的系统性自身免疫性疾病,其发病机制目前尚不完全清楚。近年来,随着对RA细胞和分子生物学机制的不断探索,许多研究都聚焦于成纤维样滑膜细胞(FLS),其通过分泌多种炎症因子在RA发生发展过程中起到了至关重要的作用。因此对于RA的治疗方法也从传统的非甾体抗炎药(NSAIDs)、糖皮质激素和改变病情抗风湿药(DMARDs)转变为针对细胞因子的生物靶向药物,但这些药物不可避免地会产生相应的副作用,因此,迫切需要新的、安全有效的治疗方法缓解RA患者的病痛。本文从炎症,自噬和凋亡三个方面综述了RA-FLSs对RA的影响,旨在为后续基础研究及临床工作提供帮助。

Rheumatoid arthritis (RA) is a systemic autoimmune disease with chronic, symmetrical, polyarthritis of the synovium as the main clinical manifestation, and its pathogenesis is not fully understood. In recent years, with the continuous exploration of RA cells and molecular biological mechanisms, many studies have focused on fibroblast-like synoviocytes (FLSs), which play a crucial role in the development of RA through the secretion of various inflammatory factors. As a result, there has been a shift in the treatment of RA from traditional non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids and disease-modifying anti-rheumatic drugs (DMARDs) to biologically targeted drugs that target cytokines, but these drugs inevitably produce corresponding side effects, so there is an urgent need for new, safe and effective treatments to alleviate the suffering of RA patients. This review overviewed the effects of RA-FLSs on RA in terms of inflammation, autophagy and apoptosis, aiming to provide help for the subsequent basic research and clinical work.

图1 成纤维样滑膜细胞在类风湿性关节炎中的作用示意图
Figure 1 Diagram of function of fibroblast-like synovial cells in rheumatoid arthritis
[1]
Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis[J]. Immunity, 2017, 46(2): 183-196.
[2]
Gravallese EM, Firestein GS. Rheumatoid arthritis-common origins, divergent mechanisms[J]. N Engl J Med, 2023, 388(6): 529-542.
[3]
韩宇飞,高明利,刘东武. 类风湿性关节炎的发病机制研究进展综述[J]. 中国卫生标准管理2021, 12(1): 162-165.
[4]
宝泉,乌斯嘎啦,穆日格机呼,等. 蒙医外治疗法治疗类风湿性关节炎研究进展[J]. 中国民族医药杂志2022, 28(8): 70-72.
[5]
Yoshitomi H. Regulation of immune responses and chronic inflammation by fibroblast-like synoviocytes[J/OL]. Front Immunol, 2019, 10: 1395. DOI: 10.3389/fimmu.2019.01395.
[6]
Aghakhani S, Zerrouk N, Niarakis A. Metabolic reprogramming of fibroblasts as therapeutic target in rheumatoid arthritis and cancer: deciphering key mechanisms using computational systems biology approaches[J/OL]. Cancers, 2020, 13(1): 35. DOI: 10.3390/cancers13010035.
[7]
Smolen JS, Landewé RBM, Bergstra SA, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update[J]. Ann Rheum Dis, 2023, 82(1): 3-18.
[8]
Mahajan TD, Mikuls TR. Recent advances in the treatment of rheumatoid arthritis[J]. Curr Opin Rheumatol, 2018, 30(3): 231-237.
[9]
Strehl C, van der Goes MC, Bijlsma JW, et al. Glucocorticoid-targeted therapies for the treatment of rheumatoid arthritis[J]. Expert Opin Investig Drugs, 2017, 26(2): 187-195.
[10]
Alivernini S, Firestein GS, McInnes IB. The pathogenesis of rheumatoid arthritis[J]. Immunity, 2022, 55(12): 2255-2270.
[11]
Nygaard G, Firestein GS. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes[J]. Nat Rev Rheumatol, 2020, 16(6): 316-333.
[12]
Ding Q, Hu W, Wang R, et al. Signaling pathways in rheumatoid arthritis: implications for targeted therapy[J/OL]. Signal Transduct Target Ther, 2023, 8(1): 68. DOI: 10.1038/s41392-023-01331-9.
[13]
Liu FY, Wang MQ, Liu MM, et al. Therapeutic effects of shikonin on adjuvant-induced arthritis in rats and cellular inflammation, migration and invasion of rheumatoid fibroblast-like synoviocytes via blocking the activation of Wnt/β-catenin pathway[J/OL]. Phytomedicine, 2023, 116: 154857. DOI: 10.1016/j.phymed.2023.154857.
[14]
Ma JD, Wei XN, Zheng DH, et al. Erratum to: continuously elevated serum matrix metalloproteinase-3 for 3~6 months predict one-year radiographic progression in rheumatoid arthritis: a prospective cohort study[J/OL]. Arthritis Res Ther, 2015, 17: 311. DOI: 10.1186/s13075-015-0837-5.
[15]
Ma JD, Zhou JJ, Zheng DH, et al. Serum matrix metalloproteinase-3 as a noninvasive biomarker of histological synovitis for diagnosis of rheumatoid arthritis[J/OL]. Mediators Inflamm, 2014, 2014: 179284. DOI: 10.1155/2014/179284.
[16]
Zhao S, Grieshaber-Bouyer R, Rao DA, et al. Effect of JAK inhibition on the induction of proinflammatory HLA-DR+CD90rheumatoid arthritis synovial fibroblasts by interferon-Γ[J]. Arthritis Rheumatol, 2022, 74(3): 441-452.
[17]
Alivernini S, MacDonald L, Elmesmari A, et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis[J]. Nat Med, 2020, 26(8): 1295-1306.
[18]
Garcia-Carbonell R, Divakaruni AS, Lodi A, et al. Critical role of glucose metabolism in rheumatoid arthritis fibroblast-like synoviocytes[J]. Arthritis Rheumatol, 2016, 68(7): 1614-1626.
[19]
Hua S, Dias TH. Hypoxia-inducible factor (HIF) as a target for novel therapies in rheumatoid arthritis[J/OL]. Front Pharmacol, 2016, 7: 184. DOI: 10.3389/fphar.2016.00184.
[20]
Guo Q, Wang Y, Xu D, et al. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies[J/OL]. Bone Res, 2018, 6: 15. DOI: 10.1038/s41413-018-0016-9.
[21]
Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis[J]. Lancet, 2016, 388(10055): 2023-2038.
[22]
Achudhan D, Liu SC, Lin YY, et al. Antcin K inhibits TNF-α,IL-1β and IL-8 expression in synovial fibroblasts and ameliorates cartilage degradation: implications for the treatment of rheumatoid arthritis[J/OL]. Front Immunol, 2021, 12: 790925. DOI: 10.3389/fimmu.2021.790925.
[23]
Negi S, Tandel N, Sharma P, et al. Aceclofenac and methotrexate combination therapy could influence Th1/Th17 axis to modulate rheumatoid-arthritis-induced inflammation[J/OL]. Drug Discov Today, 2023, 28(8): 103671. DOI: 10.1016/j.drudis.2023.103671.
[24]
Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: a review[J]. JAMA, 2018, 320(13): 1360-1372.
[25]
Suto T, Tosevska A, Dalwigk K, et al. TNFR2 is critical for TNF-induced rheumatoid arthritis fibroblast-like synoviocyte inflammation[J]. Rheumatology, 2022, 61(11): 4535-4546.
[26]
Tsaltskan V, Firestein GS. Targeting fibroblast-like synoviocytes in rheumatoid arthritis[J/OL]. Curr Opin Pharmacol, 2022, 67: 102304. DOI: 10.1016/j.coph.2022.102304.
[27]
Wang Y, Wang J, Zheng W, et al. Identification of an IL-1 receptor mutation driving autoinflammation directs IL-1-targeted drug design[J]. Immunity, 2023, 56(7): 1485-1501.e7.
[28]
Jutley GS, Sahota K, Sahbudin I, et al. Relationship between inflammation and metabolism in patients with newly presenting rheumatoid arthritis[J/OL]. Front Immunol, 2021, 12: 676105. DOI: 10.3389/fimmu.2021.676105.
[29]
Moudgil KD, Venkatesha SH. The anti-inflammatory and immunomodulatory activities of natural products to control autoimmune inflammation[J/OL]. Int J Mol Sci, 2022, 24(1): 95. DOI: 10.3390/ijms24010095.
[30]
Pandolfi F, Franza L, Carusi V, et al. Interleukin-6 in rheumatoid arthritis[J/OL]. Int J Mol Sci, 2020, 21(15): 5238. DOI: 10.3390/ijms21155238.
[31]
Wang T, He C. Pro-inflammatory cytokines: the link between obesity and osteoarthritis[J]. Cytokine Growth Factor Rev, 2018, 44: 38-50.
[32]
Sung HJ, Choi S, Lee JW, et al. Inhibition of human neutrophil activity by an RNA aptamer bound to interleukin-8[J]. Biomaterials, 2014, 35(1): 578-589.
[33]
Kosek E, Altawil R, Kadetoff D, et al. Evidence of different mediators of central inflammation in dysfunctional and inflammatory pain—interleukin-8 in fibromyalgia and interleukin-1 β in rheumatoid arthritis[J]. J Neuroimmunol, 2015, 280: 49-55.
[34]
Lee AR, Woo JS, Lee SY, et al. SARS-CoV-2 spike protein promotes inflammatory cytokine activation and aggravates rheumatoid arthritis[J/OL]. Cell Commun Signal, 2023, 21(1): 44. DOI: 10.1186/s12964-023-01044-0.
[35]
Yin Z, Pascual C, Klionsky DJ. Autophagy: machinery and regulation[J]. Microb Cell, 2016, 3(12): 588-596.
[36]
Chen B, Wang F, Zhang Y, et al. PTEN-mediated FOXO signaling affects autophagy, migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes[J/OL]. Tissue Cell, 2024, 86: 102278. DOI: 10.1016/j.tice.2023.102278.
[37]
Ren M, Ma K, Pang X, et al. Anti-rheumatoid arthritis effects of total saponins from Rhizoma Panacis Majoris on adjuvant-induced arthritis in rats and rheumatoid arthritis fibroblast-like synoviocytes[J/OL]. Phytomedicine, 2023, 119: 155021. DOI: 10.1016/j.phymed.2023.155021.
[38]
Karami J, Masoumi M, Khorramdelazad H, et al. Role of autophagy in the pathogenesis of rheumatoid arthritis: latest evidence and therapeutic approaches[J/OL]. Life Sci, 2020, 254: 117734. DOI: 10.1016/j.lfs.2020.117734.
[39]
Xu DL, Pan J. Transcription factor EB promotes rheumatoid arthritis of Sprague-Dawley rats via regulating autophagy[J/OL]. 3 Biotech, 2021, 11(4): 162. DOI: 10.1007/s13205-021-02710-1.
[40]
Zhu L, Wang H, Wu Y, et al. The autophagy level is increased in the synovial tissues of patients with active rheumatoid arthritis and is correlated with disease severity[J/OL]. Mediators Inflamm, 2017, 2017: 7623145. DOI: 10.1155/2017/7623145.
[41]
Mao K, Breen P, Ruvkun G. The Caenorhabditis elegans ARIP-4 DNA helicase couples mitochondrial surveillance to immune, detoxification, and antiviral pathways[J/OL]. Proc Natl Acad Sci USA, 2022, 119(49): e2215966119. DOI: 10.1073/pnas.2215966119.
[42]
Sorice M, Iannuccelli C, Manganelli V, et al. Autophagy generates citrullinated peptides in human synoviocytes: a possible trigger for anti-citrullinated peptide antibodies[J]. Rheumatology, 2016, 55(8): 1374-1385.
[43]
Wang X, Chen Z, Fan X, et al. Inhibition of DNM1L and mitochondrial fission attenuates inflammatory response in fibroblast-like synoviocytes of rheumatoid arthritis[J]. J Cell Mol Med, 2020, 24(2): 1516-1528.
[44]
He SD, Tan N, Sun CX, et al. Treatment with melittin induces apoptosis and autophagy of fibroblastlike synoviocytes in patients with rheumatoid arthritis[J]. Curr Pharm Biotechnol, 2020, 21(8): 734-740.
[45]
Chang L, Feng X, Gao W. Proliferation of rheumatoid arthritis fibroblast-like synoviocytes is enhanced by IL-17-mediated autophagy through STAT3 activation[J]. Connect Tissue Res, 2019, 60(4): 358-366.
[46]
Jiang P, Mizushima N. LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells[J]. Methods, 2015, 75: 13-18.
[47]
Li RF, Chen G, Ren JG, et al. The adaptor protein p62 is involved in RANKL-induced autophagy and osteoclastogenesis[J]. J Histochem Cytochem, 2014, 62(12): 879-888.
[48]
Cai J, Zhang LC, Zhao RJ, et al. Chelerythrine ameliorates rheumatoid arthritis by modulating the AMPK/mTOR/ULK-1 signaling pathway[J/OL]. Phytomedicine, 2022, 104: 154140. DOI: 10.1016/j.phymed.2022.154140.
[49]
Zhao J, Jiang P, Guo S, et al. Apoptosis, autophagy, NETosis, necroptosis, and pyroptosis mediated programmed cell death as targets for innovative therapy in rheumatoid arthritis[J/OL]. Front Immunol, 2021, 12: 809806. DOI: 10.3389/fimmu.2021.809806.
[50]
Hu Y, Liu J, Jiang H, et al. Regulation of autophagy by circular RNAs in rheumatoid arthritis: potential targets of action[J]. Int J Rheum Dis, 2023, 26(5): 831-840.
[51]
Zhao J, Hu Y, Peng J. Targeting programmed cell death in metabolic dysfunction-associated fatty liver disease (MAFLD): a promising new therapy[J/OL]. Cell Mol Biol Lett, 2021, 26(1): 17. DOI: 10.1186/s11658-021-00254-z.
[52]
Zhang S, Zhao J, Ma W. Circ-Sirt1 inhibits proliferation, induces apoptosis, and ameliorates inflammation in human rheumatoid arthritis fibroblast-like synoviocytes[J]. Autoimmunity, 2021, 54(8): 514-525.
[53]
Chen J, Lin X, Liu K, et al. CT2-3 induces cell cycle arrest and apoptosis in rheumatoid arthritis fibroblast-like synoviocytes through regulating PI3K/AKT pathway[J/OL]. Eur J Pharmacol, 2023, 956: 175871. DOI: 10.1016/j.ejphar.2023.175871.
[54]
From the American Association of Neurological Surgeons (AANS) ASON(, SacksD, Baxter B, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke[J]. Int J Stroke, 2018, 13(6): 612-632.
[55]
Zhai Y, Wu B, Li J, et al. CD147 promotes IKK/IκB/NF-κB pathway to resist TNF-induced apoptosis in rheumatoid arthritis synovial fibroblasts[J]. J Mol Med, 2016, 94(1): 71-82.
[56]
Frazzi R. BIRC3 and BIRC5: multi-faceted inhibitors in cancer[J/OL]. Cell Biosci, 2021, 11(1): 8. DOI: 10.1186/s13578-020-00521-0.
[57]
Ge L, Wang T, Shi D, et al. ATF6α contributes to rheumatoid arthritis by inducing inflammatory cytokine production and apoptosis resistance[J/OL]. Front Immunol, 2022, 13: 965708. DOI: 10.3389/fimmu.2022.965708.
[58]
Kabala PA, Angiolilli C, Yeremenko N, et al. Endoplasmic reticulum stress cooperates with Toll-like receptor ligation in driving activation of rheumatoid arthritis fibroblast-like synoviocytes[J/OL]. Arthritis Res Ther, 2017, 19(1): 207. DOI: 10.1186/s13075-017-1386-x.
[59]
Matsumura T, Saito Y, Suzuki T, et al. Phosphorylated platelet-derived growth factor receptor-positive cells with anti-apoptotic properties accumulate in the synovium of patients with rheumatoid arthritis[J/OL]. Front Immunol, 2019, 10: 241. DOI: 10.3389/fimmu.2019.00241.
[60]
Budakoti M, Panwar AS, Molpa D, et al. Micro-RNA: the darkhorse of cancer[J/OL]. Cell Signal, 2021, 83: 109995. DOI: 10.1016/j.cellsig.2021.109995.
[61]
Li Z, Yang B, Weng X, et al. Emerging roles of microRNAs in osteonecrosis of the femoral head[J/OL]. Cell Prolif, 2018, 51(1): e12405. DOI: 10.1111/cpr.12405.
[62]
Cheng P, Lu P, Guan J, et al. LncRNA KCNQ1OT1 controls cell proliferation, differentiation and apoptosis by sponging miR-326 to regulate c-Myc expression in acute myeloid leukemia[J]. Neoplasma, 2020, 67(2): 238-248.
[63]
Wang R, Xu J, Xu J, et al. MiR-326/Sp1/KLF3: a novel regulatory axis in lung cancer progression[J/OL]. Cell Prolif, 2019, 52(2): e12551. DOI: 10.1111/cpr.12551.
[64]
Wang Y, Wang Z, Zhu S, et al. MiR-326 regulates cell proliferation and apoptosis in fibroblast-like synoviocytes in rheumatoid arthritis[J]. Hum Cell, 2023, 36(3): 987-996.
[1] 冯芳, 陈宇, 杨静, 满珂, 蔡红燕, 李群. ω-3鱼油脂肪乳注射液在脓毒症患者中的应用:前瞻性、随机对照、先导试验[J]. 中华危重症医学杂志(电子版), 2024, 17(02): 136-139.
[2] 廖泽楷, 梁爱琳, 龚启梅. 根尖周病中程序性细胞死亡的研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 150-155.
[3] 罗远杰, 杨靖梅, 孟姝, 敖逸博, 申道南. 槲皮素防治口腔疾病的研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 117-122.
[4] 刘炯, 彭乐, 马伟, 江斌. 鞘外解剖肝蒂技术治疗肝内胆管细胞癌的疗效评估[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 373-376.
[5] 王东阳, 林琳, 娄熙彬. SII对局部进展期胃癌nCRT+腹腔镜胃癌根治术后并发症及预后的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 315-318.
[6] 刘盾, 潘晟. 不同入路腹腔镜袖状胃切除术用于肥胖症合并2型糖尿病的效果[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 150-154.
[7] 周慧宇, 吕定阳, 双卫兵. 联合系统性免疫炎症指数和预后营养指数预测腹腔镜肾切除术后肾癌患者的预后[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 225-231.
[8] 潘兴赫, 董翔, 杨海洋, 张雪斌, 甘卫东. 超选择性前列腺动脉栓塞治疗伴急性尿潴留的高危高龄前列腺增生[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 237-242.
[9] 陈向军, 王在强, 王博荣, 王莉, 方芳, 金发光, 王光辉. PM2.5通过激活颗粒酶B/IL-18信号通路促进炎症因子表达[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 207-211.
[10] 王颖, 吴德平, 刘煜, 刘国栋. miR-9-5p下调CXCR4减轻创伤性脑损伤大鼠的神经炎症和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 65-72.
[11] 张云飞, 吐尔洪江·吐逊. NLRP3炎症小体及其在肝脏缺血-再灌注损伤中的作用机制[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 398-403.
[12] 张婵, 吕瑶, 张小燕, 张鸣青. 不同时机局部神经阻滞在开腹肝切除中的镇痛效果比较[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 189-194.
[13] 李景德, 张保艳, 卢培刚, 李博. 法舒地尔对大鼠急性脊髓损伤后神经细胞凋亡和BCL-2蛋白表达水平的影响[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 65-70.
[14] 戴伟川, 郭协力, 方仲宁, 蔡文华, 洪天生, 田夏阳. 显微镜下周围神经松解术治疗腰椎间盘突出症术后残余神经症状的疗效分析[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 84-90.
[15] 于伟伟, 张国高, 吴军, 胡俊, 黄一宁, 徐晶. 线粒体相关内质网膜相关线粒体功能障碍在阿尔茨海默病中的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(02): 223-230.
阅读次数
全文


摘要