切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 694 -700. doi: 10.3877/cma.j.issn.1674-134X.2023.05.015

综述

股骨头坏死细胞治疗的前景和挑战
卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰()   
  1. 510405 广州中医药大学第一临床医学院
    510405 广州中医药大学第一附属医院骨科
    510405 广州中医药大学第一附属医院骨科;525000 广州中医药大学茂名医院
  • 收稿日期:2022-06-10 出版日期:2023-10-01
  • 通信作者: 周驰
  • 基金资助:
    广东省普通高校特色创新项目(2021KTSCX021); 广州市科技局市(校)联合资助项目(202201020314)

Outlooks and challenges in cell therapy of osteonecrosis of femoral head

Yangwenxiang Wei, Haoran Huang, Yuhao Liu, Zhenqiu Chen, Haibin Wang, Chi Zhou()   

  1. The First Clinical Medical College, Guangzhou University of ChineseMedicine, Guangzhou 510405, China
    Department of Joint Orthopaedic, the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
    Department of Joint Orthopaedic, the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou University of Chinese Medicine Maoming Hospital, Maoming 525000, China
  • Received:2022-06-10 Published:2023-10-01
  • Corresponding author: Chi Zhou
引用本文:

卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.

Yangwenxiang Wei, Haoran Huang, Yuhao Liu, Zhenqiu Chen, Haibin Wang, Chi Zhou. Outlooks and challenges in cell therapy of osteonecrosis of femoral head[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(05): 694-700.

股骨头坏死(ONFH)是一种病因复杂、发病机制不明确,且缺乏最佳治疗方法的进行性疾病。常导致髋关节疼痛以及功能障碍,主要见于中青年患者。目前对于ONFH的治疗多以促进成骨和成血管为主。然而单一的治疗只能对早期ONFH起到积极作用,并不能解决根本上的难题,即缺血环境下骨质的吸收与软骨下骨塌陷。随着现代医学技术的发展,细胞治疗ONFH已成为当下的研究热点。本文综述了现阶段干细胞在ONFH领域的相关疗效。越来越多的研究证实了干细胞治疗ONFH的有效性与可行性,但在实际应用中会遇到许多难题。因此,如何高效利用细胞治疗ONFH仍是当下的研究重点。

Osteonecrosis of the femoral head (ONFH) is a progressive disease with complex etiology, unclear pathogenesis and lack of optimal treatment.This diseases often causeship pain and functionalimpairment, and is mainlyseen in young and middle-aged patients. Current treatment for ONFH is mostly osteogenic and angiogenic. However, a single treatment can only have a positive effect on early ONFH and does not address the fundamental challenge, which is bone resorption and subchondral bone collapse in an ischemic environment. With the development of modern medicalt echnology, cell therapy for ONFH has become a hot topic of current research. This article reviewed the current therapeutic effects of stem cells in the field of ONFH. More and more studies have confirmed the efficacy and feasibility of stem cell therapy for ONFH. Therefore, the source, quantity and safety of the cells need to be further explored.

[1]
田润,李晓芳,王春生,等. 全髋关节置换术后伤口愈合不良危险因素分析[J/CD]. 中华关节外科杂志(电子版), 2020, 14(5): 521-526.
[2]
Abdel MP, Cottino U, Mabry TM. Management of periprosthetic femoral fractures following total hip arthroplasty: a review[J]. Int Orthop, 2015, 39(10): 2005-2010.
[3]
Baryeh K, Sochart DH. Post-operative peri-prosthetic fracture rates following the use of cemented polished taper-slip stems for primary total hip arthroplasty: a systematic review[J]. Arch Orthop Trauma Surg, 2022, 142(12): 4075-4085.
[4]
Dobson PF, Reed MR. Prevention of infection in primary THA and TKA[J]. EFORT Open Rev, 2020, 5(10): 604-613.
[5]
Guo L, Yang Y, An B, et al. Risk factors for dislocation after revision total hip arthroplasty: a systematic review and meta-analysis[J]. Int J Surg, 2017, 38: 123-129.
[6]
Janssen L, Wijnands KAP, Janssen D, et al. Do stem design and surgical approach influence early aseptic loosening in cementless THA?[J]. Clin Orthop Relat Res, 2018, 476(6): 1212-1220.
[7]
邢更彦,张鹏礼,姜川,等. 体外冲击波疗法联合自体骨髓干细胞移植治疗股骨头坏死[J/CD]. 中华关节外科杂志(电子版), 2011, 5(4): 413-418.
[8]
Kawano K, Motomura G, Ikemura S, et al. Long-term hip survival and factors influencing patient-reported outcomes after transtrochanteric anterior rotational osteotomy for osteonecrosis of the femoral head: a minimum 10-year follow-up case series[J]. Mod Rheumatol, 2020, 30(1): 184-190.
[9]
Wang CJ, Cheng JH, Huang CC, et al. Extracorporeal shockwave therapy for avascular necrosis of femoral head[J]. Int J Surg, 2015, 24(Pt B): 184-187.
[10]
Wang Z, Sun QM, Zhang FQ, et al. Core decompression combined with autologous bone marrow stem cells versus core decompression alone for patients with osteonecrosis of the femoral head: a meta-analysis[J]. Int J Surg, 2019, 69: 23-31.
[11]
Yue JA, Gao H, Guo X, et al. Fibula allograft propping as an effective treatment for early-stage osteonecrosis of the femoral head: a systematic review[J/OL]. J Orthop Surg Res, 2020, 15(1): 206. DOI: 10.1186/s13018-020-01730-6.
[12]
左荣台,关俊杰,康庆林. 激素性股骨头坏死治疗研究进展[J]. 国际骨科学杂志2019, 40(3): 160-164.
[13]
Zhao J, He W, Zheng H, et al. Bone regeneration and angiogenesis by co-transplantation of angiotensin II-pretreated mesenchymal stem cells and endothelial cells in early steroid-induced osteonecrosis of the femoral head[J/OL]. Cell Transplant, 2022, 31: 9636897221086965. DOI: 10.1177/09636897221086965.
[14]
Xu H, Wang C, Liu C, et al. Cotransplantation of mesenchymal stem cells and endothelial progenitor cells for treating steroid-induced osteonecrosis of the femoral head[J]. Stem Cells Transl Med, 2021, 10(5): 781-796.
[15]
苟文隆,彭江,卢强,等. 股骨头骨坏死塌陷机制研究进展[J]. 中国矫形外科杂志2014, 22(7): 621-624.
[16]
田心保,林瑞珠,朱宁. 激素性股骨头缺血性坏死的发病机制[J]. 中国矫形外科杂志2022, 30(10): 915-919.
[17]
Liu F, Wang W, Yang L, et al. An epidemiological study of etiology and clinical characteristics in patients with nontraumatic osteonecrosis of the femoral head[J/OL]. J Res Med Sci, 2017, 22: 15. DOI: 10.4103/1735-1995.200273.
[18]
Zhao D, Zhang F, Wang B, et al. Guidelines for clinical diagnosis and treatment of osteonecrosis of the femoral head in adults (2019 version)[J]. J Orthop Translat, 2020, 21: 100-110.
[19]
Boontanapibul K, Steere JT, Amanatullah DF, et al. Diagnosis of osteonecrosis of the femoral head: too little, too late, and independent of etiology[J]. J Arthroplasty, 2020, 35(9): 2342-2349.
[20]
Xu Y, Jiang Y, Xia C, et al. Stem cell therapy for osteonecrosis of femoral head: opportunities and challenges[J]. Regen Ther, 2020, 15: 295-304.
[21]
谢志鸿,彭吾训. 骨髓间充质干细胞治疗股骨头坏死的研究进展[J]. 实用医学杂志2021, 37(1): 20-24.
[22]
Zakrzewski W, Dobrzyński M, Szymonowicz M, et al. Stem cells: past, present, and future[J/OL]. Stem Cell Res Ther, 2019, 10(1): 68. DOI: 10.1186/s13287-019-1165-5.
[23]
Fu X, Liu G, Halim A, et al. Mesenchymal stem cell migration and tissue repair[J/OL]. Cells, 2019, 8(8): 784. DOI: 10.3390/cells8080784.
[24]
Mao L, Jiang P, Lei X, et al. Efficacy and safety of stem cell therapy for the early-stage osteonecrosis of femoral head: a systematic review and meta-analysis of randomized controlled trials[J/OL]. Stem Cell Res Ther, 2020, 11(1): 445. DOI: 10.1186/s13287-020-01956-5.
[25]
Kang JS, Suh YJ, Moon KH, et al. Clinical efficiency of bone marrow mesenchymal stem cell implantation for osteonecrosis of the femoral head: a matched pair control study with simple core decompression[J/OL]. Stem Cell Res Ther, 2018, 9(1): 274. DOI: 10.1186/s13287-018-1030-y.
[26]
Fujita Y, Kawamoto A. Stem cell-based peripheral vascular regeneration[J]. Adv Drug Deliv Rev, 2017, 120: 25-40.
[27]
Varela-Eirin M, Loureiro J, Fonseca E, et al. Cartilage regeneration and ageing: targeting cellular plasticity in osteoarthritis[J]. Ageing Res Rev, 2018, 42: 56-71.
[28]
Jessen KR, Mirsky R, Arthur-Farraj P. The role of cell plasticity in tissue repair: adaptive cellular reprogramming[J]. Dev Cell, 2015, 34(6): 613-620.
[29]
Mosteiro L, Pantoja C, Alcazar N, et al. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo[J/OL]. Science, 2016, 354(6315): aaf4445. DOI: 10.1126/science.aaf4445.
[30]
Xu X, Liang Y, Li X, et al. Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration[J/OL]. Biomaterials, 2021, 269: 120539. DOI: 10.1016/j.biomaterials.2020.120539.
[31]
Zhang S, Chuah SJ, Lai RC, et al. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity[J]. Biomaterials, 2018, 156: 16-27.
[32]
Shi W, Sun M, Hu X, et al. Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo[J/OL]. Adv Mater, 2017, 29(29). DOI: 10.1002/adma.201701089.
[33]
Jin J. Stem cell treatments[J/OL]. JAMA, 2017, 317(3):330.DOI: 10.1001/jama.2016.17822.
[34]
Zhou M, Xi J, Cheng Y, et al. Reprogrammed mesenchymal stem cells derived from iPSCs promote bone repair in steroid-associated osteonecrosis of the femoral head[J/OL]. Stem Cell Res Ther, 2021, 12(1): 175. DOI: 10.1186/s13287-021-02249-1.
[35]
Li R, Lin QX, Liang XZ, et al. Stem cell therapy for treating osteonecrosis of the femoral head: from clinical applications to related basic research[J/OL]. Stem Cell Res Ther, 2018, 9(1): 291. DOI: 10.1186/s13287-018-1018-7.
[36]
Wu ZY, Sun Q, Liu M, et al. Correlation between the efficacy of stem cell therapy for osteonecrosis of the femoral head and cell viability[J/OL]. BMC Musculoskelet Disord, 2020, 21(1): 55. DOI: 10.1186/s12891-020-3064-4.
[37]
Bacakova L, Zarubova J, Travnickova M, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review[J]. Biotechnol Adv, 2018, 36(4): 1111-1126.
[38]
Zhu ZH, Song WQ, Zhang CQ, et al. Dimethyloxaloylglycine increases bone repair capacity of adipose-derived stem cells in the treatment of osteonecrosis of the femoral head[J]. Exp Ther Med, 2016, 12(5): 2843-2850.
[39]
Jin H, Xia B, Yu N, et al. The effects of autologous bone marrow mesenchymal stem cell arterial perfusion on vascular repair and angiogenesis in osteonecrosis of the femoral head in dogs[J]. Int Orthop, 2012, 36(12): 2589-2596.
[40]
Chen C, Qu Z, Yin X, et al. Efficacy of umbilical cord-derived mesenchymal stem cell-based therapy for osteonecrosis of the femoral head: a three-year follow-up study[J]. Mol Med Rep, 2016, 14(5): 4209-4215.
[41]
Mao Q, Jin H, Liao F, et al. The efficacy of targeted intraarterial delivery of concentrated autologous bone marrow containing mononuclear cells in the treatment of osteonecrosis of the femoral head: a five year follow-up study[J]. Bone, 2013, 57(2): 509-516.
[42]
Pan J, Ding Q, Lv S, et al. Prognosis after autologous peripheral blood stem cell transplantation for osteonecrosis of the femoral head in the pre-collapse stage: a retrospective cohort study[J/OL]. Stem Cell Res Ther, 2020, 11(1): 83. DOI: 10.1186/s13287-020-01595-w.
[43]
Lieberman JR. Core decompression for osteonecrosis of the hip[J]. Clin Orthop RelatRes, 2004(418): 29-33.
[44]
Hua KC, Yang XG, Feng JT, et al. The efficacy and safety of core decompression for the treatment of femoral head necrosis: a systematic review and meta-analysis[J/OL]. J Orthop Surg Res, 2019, 14(1): 306. DOI: 10.1186/s13018-019-1359-7.
[45]
Migliorini F, Maffulli N, Eschweiler J, et al. Core decompression isolated or combined with bone marrow-derived cell therapies for femoral head osteonecrosis[J]. Expert Opin Biol Ther, 2021, 21(3): 423-430.
[46]
Serong S, Haversath M, Tassemeier T, et al. Results of advanced core decompression in patients with osteonecrosis of the femoral head depending on age and sex-a prospective cohort study[J/OL]. J Orthop Surg Res, 2020, 15(1): 124. DOI: 10.1186/s13018-020-01643-4.
[47]
Mercier F. Fractones: extracellular matrix niche controlling stem cell fate and growth factor activity in the brain in health and disease[J]. Cell Mol Life Sci, 2016, 73(24): 4661-4674.
[48]
Lee E, Ko JY, Kim J, et al. Osteogenesis and angiogenesis are simultaneously enhanced in BMP2-/ VEGF-transfected adipose stem cells through activation of the YAP/TAZ signaling pathway[J]. Biomater Sci, 2019, 7(11): 4588-4602.
[49]
Maruyama M, Moeinzadeh S, Guzman RA, et al. The efficacy of lapine preconditioned or genetically modified IL4 over-expressing bone marrow-derived mesenchymal stromal cells in corticosteroid-associated osteonecrosis of the femoral head in rabbits[J/OL]. Biomaterials, 2021, 275: 120972. DOI: 10.1016/j.biomaterials.2021.120972.
[50]
Yao X, Yu S, Jing X, et al. PTEN inhibitor VO-OHpic attenuates GC-associated endothelial progenitor cell dysfunction and osteonecrosis of the femoral head via activating Nrf2 signaling and inhibiting mitochondrial apoptosis pathway[J/OL]. Stem Cell Res Ther, 2020, 11(1): 140. DOI: 10.1186/s13287-020-01658-y.
[51]
Zhang F, Peng W, Zhang J, et al. P53 and Parkin co-regulate mitophagy in bone marrow mesenchymal stem cells to promote the repair of early steroid-induced osteonecrosis of the femoral head[J/OL]. Cell Death Dis, 2020, 11(1): 42. DOI: 10.1038/s41419-020-2238-1.
[52]
Wang C, Xu H, Liu C, et al. CaO2/gelatin oxygen slow-releasing microspheres facilitate tissue engineering efficiency for the osteonecrosis of femoral head by enhancing the angiogenesis and survival of grafted bone marrow mesenchymal stem cells[J]. Biomater Sci, 2021, 9(8): 3005-3018.
[53]
Kawai T, Shanjani Y, Fazeli S, et al. Customized, degradable, functionally graded scaffold for potential treatment of early stage osteonecrosis of the femoral head[J]. J Orthop Res, 2018, 36(3): 1002-1011.
[54]
Maruyama M, Nabeshima A, Pan CC, et al. The effects of a functionally-graded scaffold and bone marrow-derived mononuclear cells on steroid-induced femoral head osteonecrosis[J]. Biomaterials, 2018, 187: 39-46.
[55]
Wang Y, Zhu W, Xiao K, et al. Self-healing and injectable hybrid hydrogel for bone regeneration of femoral head necrosis and defect[J]. Biochem Biophys Res Commun, 2019, 508(1): 25-30.
[56]
Ruytinx P, Proost P, van Damme J, et al. Chemokine-induced macrophage polarization in inflammatory conditions[J/OL]. Front Immunol, 2018, 9: 1930. DOI: 10.3389/fimmu.2018.01930.
[57]
Jiang C, Zhou Z, Lin Y, et al. Astragaloside IV ameliorates steroid-induced osteonecrosis of the femoral head by repolarizing the phenotype of pro-inflammatory macrophages[J/OL]. Int Immunopharmacol, 2021, 93: 107345. DOI: 10.1016/j.intimp.2020.107345.
[58]
Jin S, Meng C, He Y, et al. Curcumin prevents osteocyte apoptosis by inhibiting M1-type macrophage polarization in mice model of glucocorticoid-associated osteonecrosis of the femoral head[J]. J Orthop Res, 2020, 38(9): 2020-2030.
[59]
Wu X, Wang Y, Sun W, et al. Potential roles of extracellular vesicles in osteonecrosis of femoral head: a systematic review[J/OL]. Gene, 2021, 772: 145379. DOI: 10.1016/j.gene.2020.145379.
[60]
Kuang MJ, Huang Y, Zhao XG, et al. Exosomes derived from Wharton’s jelly of human umbilical cord mesenchymal stem cells reduce osteocyte apoptosis in glucocorticoid-induced osteonecrosis of the femoral head in rats via the miR-21-PTEN-AKT signalling pathway[J]. Int J Biol Sci, 2019, 15(9): 1861-1871.
[61]
Li J, Ge Z, Ji W, et al. The proosteogenic and proangiogenic effects of small extracellular vesicles derived from bone marrow mesenchymal stem cells are attenuated in steroid-induced osteonecrosis of the femoral head[J/OL]. Biomed Res Int, 2020, 2020: 4176926. DOI: 10.1155/2020/4176926.
[62]
Fang S, Li Y, Chen P. Osteogenic effect of bone marrow mesenchymal stem cell-derived exosomes on steroid-induced osteonecrosis of the femoral head[J]. Drug Des Devel Ther, 2018, 13: 45-55.
[63]
Zuo R, Kong L, Wang M, et al. Exosomes derived from human CD34+ stem cells transfected with miR-26a prevent glucocorticoid-induced osteonecrosis of the femoral head by promoting angiogenesis and osteogenesis[J/OL]. Stem Cell Res Ther, 2019, 10(1): 321. DOI: 10.1186/s13287-019-1426-3.
[64]
Yuan N, Ge Z, Ji W, et al. Exosomes secreted from hypoxia-preconditioned mesenchymal stem cells prevent steroid-induced osteonecrosis of the femoral head by promoting angiogenesis in rats[J/OL]. Biomed Res Int, 2021, 2021: 6655225. DOI: 10.1155/2021/6655225.
[65]
Moll G, Hoogduijn MJ, Ankrum JA. Editorial: safety, efficacy and mechanisms of action of mesenchymal stem cell therapies[J/OL]. Front Immunol, 2020, 11: 243. DOI: 10.3389/fimmu.2020.00243.
[66]
Daniel-Moreno A, Lamsfus-Calle A, Raju J, et al. CRISPR/Cas9-modified hematopoietic stem cells-present and future perspectives for stem cell transplantation[J]. Bone Marrow Transplant, 2019, 54(12): 1940-1950.
[67]
Huang XP, Sun Z, Miyagi Y, et al. Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair[J]. Circulation, 2010, 122(23): 2419-2429.
[1] 林文, 王雨萱, 许嘉悦, 王矜群, 王睿娜, 何董源, 樊沛. 人工关节置换登记系统的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 834-841.
[2] 许正文, 李振, 侯振扬, 苏长征, 朱彪. 富血小板血浆联合植骨治疗早期非创伤性股骨头坏死[J]. 中华关节外科杂志(电子版), 2023, 17(06): 773-779.
[3] 符卓毅, 唐圣成, 卜俏梅, 徐高兵, 吴安平, 蔡巍, 杨明, 谭海涛. 镁在骨关节炎治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 354-362.
[4] 余新愿, 李旭升, 张浩强, 李梓瑶, 周胜虎, 乔永杰, 甄平, 宋晓阳, 章文华. 青年患者生物固定型人工全髋关节置换术后疗效评估[J]. 中华关节外科杂志(电子版), 2023, 17(01): 11-18.
[5] 姜博庸, 韩长旭. 间充质干细胞外泌体促进软骨再生的潜在机制研究[J]. 中华关节外科杂志(电子版), 2023, 17(01): 44-51.
[6] 唐林, 吴颖斌, 潘恩豪, 卢伟杰. 发育性髋关节发育不良全髋置换髋臼假体放置的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(01): 65-70.
[7] 占一姗, 朱友荣, 张守华, 陶强. 急性阑尾炎相关诊断预测模型的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(02): 151-154.
[8] 王小兵, 邓卓凡, 龚建平. 肝细胞癌自发性破裂出血危险因素及预测模型研究现状[J]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 29-33.
[9] 宋晓亮, 郝海虎, 刘渊, 李浩江, 雷晓晶, 邵新中, 李卿源. 股骨重建钉治疗股骨颈骨折的疗效观察[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 201-208.
[10] 梁兴森, 高彦平, 李嘉, 李玲, 郑小飞, 王华军. 针灸抗衰老在骨科相关退行性疾病的研究现状[J]. 中华针灸电子杂志, 2023, 12(02): 62-66.
[11] 史亚东, 顾建平. 无症状肺栓塞的诊断与治疗进展[J]. 中华介入放射学电子杂志, 2023, 11(02): 155-158.
[12] 陈静, 逯艳艳, 徐耀东, 马颖才. 联动成像技术在肠道病变中的研究进展[J]. 中华胃肠内镜电子杂志, 2023, 10(03): 195-199.
[13] 王擎, 王冠峰, 陈星. 胃食管阀瓣的Hill分级在胃食管反流病中的应用价值[J]. 中华胃肠内镜电子杂志, 2023, 10(02): 125-130.
[14] 桑素娟, 王盈盈, 李丽楠, 刘晓冰, 雷燕妮, 程艳爽. 胃管抽吸物pH测试法用于胃管位置定位的研究进展[J]. 中华胃肠内镜电子杂志, 2023, 10(02): 131-135.
[15] 买买提·依斯热依力, 尹强, 尹海龙, 董雨微, 王永康, 克力木·阿不都热依木, 阿吉艾克拜尔·艾萨. 传统医药治疗胃食管反流病的研究进展[J]. 中华胃食管反流病电子杂志, 2023, 10(02): 100-104.
阅读次数
全文


摘要