[1] |
张莹莹,李旭东,杨佳娟,等. 中国40岁及以上人群骨关节炎患病率的Meta分析[J]. 中国循证医学杂志,2021, 21(4): 407-414.
|
[2] |
Burr DB, Gallant MA. Bone remodelling in osteoarthritis[J]. Nat Rev Rheumatol, 2012, 8(11): 665-673.
|
[3] |
Palazzo C, Nguyen C, Lefevre-Colau MM, et al. Risk factors and burden of osteoarthritis[J]. Ann Phys Rehabil Med, 2016, 59(3): 134-138.
|
[4] |
Gruber HE, Ingram J, Norton HJ, et al. Alterations in growth plate and articular cartilage morphology are associated with reduced SOX9 localization in the magnesium-deficient rat[J]. Biotech Histochem, 2004, 79(1): 45-52.
|
[5] |
杨爽,闫景龙. 软骨细胞分化过程中SOX9的作用[J]. 中国组织工程研究,2022, 26(14): 2279-2284.
|
[6] |
Yu Y, Jin G, Xue Y, et al. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants[J]. Acta Biomater, 2017, 49: 590-603.
|
[7] |
Zhang FJ, Luo W, Lei GH. Role of HIF-1α and HIF-2α in osteoarthritis[J]. Joint Bone Spine, 2015, 82(3): 144-147.
|
[8] |
Stegen S, Laperre K, Eelen G, et al. HIF-1α metabolically controls collagen synthesis and modification in chondrocytes[J]. Nature, 2019, 565(7740): 511-515.
|
[9] |
Martinez Sanchez AH, Feyerabend F, Laipple D, et al. Chondrogenic differentiation of ATDC5-cells under the influence of Mg and Mg alloy degradation[J]. Mater Sci Eng C Mater Biol Appl, 2017, 72: 378-388.
|
[10] |
Yue J, Jin S, Gu S, et al. High concentration magnesium inhibits extracellular matrix calcification and protects articular cartilage via Erk/autophagy pathway[J]. J Cell Physiol, 2019, 234(12): 23190-23201.
|
[11] |
Yao H, Xu JK, Zheng NY, et al. Intra-articular injection of magnesium chloride attenuates osteoarthritis progression in rats[J]. Osteoarthritis Cartilage, 2019, 27(12): 1811-1821.
|
[12] |
孙庆云,闫振宇. 间充质干细胞对骨关节炎修复机制的研究进展及应用[J]. 中国实验动物学报,2021, 29(2): 262-267.
|
[13] |
Hu T, Xu H, Wang C, et al. Magnesium enhances the chondrogenic differentiation of mesenchymal stem cells by inhibiting activated macrophage-induced inflammation[J/OL]. Sci Rep, 2018, 8(1): 3406. DOI: 10.1038/s41598-018-21783-2.
|
[14] |
李政垚,刘洁颖,吴狄,等. 高镁离子浓度对人骨髓间充质干细胞增殖与成骨分化的影响[J]. 中华骨与关节外科杂志,2020, 13(5): 419-426.
|
[15] |
Li RW, Kirkland NT, Truong J, et al. The influence of biodegradable magnesium alloys on the osteogenic differentiation of human mesenchymal stem cells[J]. J Biomed Mater Res A, 2014, 102(12): 4346-4357.
|
[16] |
Díaz-Tocados JM, Herencia C, Martínez-Moreno JM, et al. Magnesium chloride promotes osteogenesis through notch signaling activation and expansion of mesenchymal stem cells[J/OL]. Sci Rep, 2017, 7(1): 7839. DOI: 10.1038/s41598-017-08379-y.
|
[17] |
Guler E, Baripoglu YE, Alenezi H, et al. Vitamin D3/vitamin K2/magnesium-loaded polylactic acid/tricalcium phosphate/polycaprolactone composite nanofibers demonstrated osteoinductive effect by increasing Runx2 via Wnt/β-catenin pathway[J]. Int J Biol Macromol, 2021, 190: 244-258.
|
[18] |
Zhang ZZ, Zhou YF, Li WP, et al. Local administration of magnesium promotes meniscal healing through homing of endogenous stem cells: aproof-of-concept study[J]. Am J Sports Med, 2019, 47(4): 954-967.
|
[19] |
Shimaya M, Muneta T, Ichinose S, et al. Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins[J]. Osteoarthritis Cartilage, 2010, 18(10): 1300-1309.
|
[20] |
Fioravanti A, Tenti S, Giannitti C, et al. Short-and long-term effects of mud-bath treatment on hand osteoarthritis: a randomized clinical trial[J]. Int J Biometeorol, 2014, 58(1): 79-86.
|
[21] |
Hügle T, Geurts J. What drives osteoarthritis? -Synovial versus subchondral bone pathology[J]. Rheumatology, 2017, 56(9): 1461-1471.
|
[22] |
Naik S, Sahu S, Bandyopadhyay D, et al. Serum levels of osteoprotegerin, RANK-L & vitamin D in different stages of osteoarthritis of the knee[J]. Indian J Med Res, 2021, 154(3): 491-496.
|
[23] |
He LY, Zhang XM, Liu B, et al. Effect of magnesium ion on human osteoblast activity[J/OL]. Rev Bras De Pesquisas Med EBiol, 2016, 49(7): e5257. DOI: 10.1590/1414-431X20165257.
|
[24] |
Leidi M, Dellera F, Mariotti M, et al. High magnesium inhibits human osteoblast differentiation in vitro[J]. Magnes Res, 2011, 24(1): 1-6.
|
[25] |
Maruotti N, Corrado A, Cantatore FP. Osteoblast role in osteoarthritis pathogenesis[J]. J Cell Physiol, 2017, 232(11): 2957-2963.
|
[26] |
Castiglioni S, Cazzaniga A, Albisetti W, et al. Magnesium and osteoporosis: current state of knowledge and future research directions[J]. Nutrients, 2013, 5(8): 3022-3033.
|
[27] |
Ciosek Ż, Kot K, Kosik-Bogacka D, et al. The effects of calcium, magnesium, phosphorus, fluoride, and lead on bone tissue[J/OL]. Biomolecules, 2021, 11(4): 506. DOI: 10.3390/biom11040506.
|
[28] |
Geurts J, Patel A, Hirschmann MT, et al. Elevated marrow inflammatory cells and osteoclasts in subchondral osteosclerosis in human knee osteoarthritis[J]. J Orthop Res, 2016, 34(2): 262-269.
|
[29] |
Zhao X, Ma L, Guo H, et al. Osteoclasts secrete leukemia inhibitory factor to promote abnormal bone remodeling of subchondral bone in osteoarthritis[J/OL]. BMC Musculoskelet Disord, 2022, 23(1): 87. DOI: 10.1186/s12891-021-04886-2.
|
[30] |
Wu L, Luthringer BJ, Feyerabend F, et al. Effects of extracellular magnesium on the differentiation and function of human osteoclasts[J]. Acta Biomater, 2014, 10(6): 2843-2854.
|
[31] |
Maradze D, Musson D, Zheng Y, et al. High magnesium corrosion rate has an effect on osteoclast and mesenchymal stem cell role during bone remodelling[J/OL]. Sci Rep, 2018, 8(1): 10003. DOI: 10.1038/s41598-018-28476-w.
|
[32] |
Barton KI, Shekarforoush M, Heard BJ, et al. Use of pre-clinical surgically induced models to understand biomechanical and biological consequences of PTOA development[J]. J Orthop Res, 2017, 35(3): 454-465.
|
[33] |
Qiao W, Wong KHM, Shen J, et al. TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration[J/OL]. Nat Commun, 2021, 12(1): 2885. DOI: 10.1038/s41467-021-23005-2.
|
[34] |
Rude RK, Gruber HE, Norton HJ, et al. Reduction of dietary magnesium by only 50% in the rat disrupts bone and mineral metabolism[J]. Osteoporos Int, 2006, 17(7): 1022-1032.
|
[35] |
Rude RK, Gruber HE, Wei LY, et al. Magnesium deficiency: effect on bone and mineral metabolism in the mouse[J]. Calcif Tissue Int, 2003, 72(1): 32-41.
|
[36] |
Zhang W, Doherty M, Bardin T, et al. European League Against Rheumatism recommendations for calcium pyrophosphate deposition. Part I: terminology and diagnosis[J]. Ann Rheum Dis, 2011, 70(4): 563-570.
|
[37] |
Richette P, Ayoub G, Lahalle S, et al. Hypomagnesemia associated with chondrocalcinosis: a cross-sectional study[J]. Arthritis Rheum, 2007, 57(8): 1496-1501.
|
[38] |
King JL, Miller RJ, Blue JP Jr, et al. Inadequate dietary magnesium intake increases atherosclerotic plaque development in rabbits[J]. Nutr Res, 2009, 29(5): 343-349.
|
[39] |
Zeng C, Wei J, Terkeltaub R, et al. Dose-response relationship between lower serum magnesium level and higher prevalence of knee chondrocalcinosis[J/OL]. Arthritis Res Ther, 2017, 19(1): 236. DOI: 10.1186/s13075-017-1450-6.
|
[40] |
Louvet L, Büchel J, Steppan S, et al. Magnesium prevents phosphate-induced calcification in human aortic vascular smooth muscle cells[J]. Nephrol Dial Transplant, 2013, 28(4): 869-878.
|
[41] |
Hénaut L, Massy ZA. Magnesium as a calcification inhibitor[J]. Adv Chronic Kidney Dis, 2018, 25(3): 281-290.
|
[42] |
Ter Braake AD, Smit AE, Bos C, et al. Magnesium prevents vascular calcification in Klotho deficiency[J]. Kidney Int, 2020, 97(3): 487-501.
|
[43] |
Kronbauer M, Metz VG, Roversi K, et al. Influence of magnesium supplementation and L-type calcium channel blocker on haloperidol-induced movement disturbances[J/OL]. Behav Brain Res, 2019, 374: 112119. DOI: 10.1016/j.bbr.2019.112119.
|
[44] |
Shmagel A, Onizuka N, Langsetmo L, et al. Low magnesium intake is associated with increased knee pain in subjects with radiographic knee osteoarthritis: data from the Osteoarthritis Initiative[J]. Osteoarthritis Cartilage, 2018, 26(5): 651-658.
|
[45] |
Begon S, Pickering G, Eschalier A, et al. Role of spinal NMDA receptors, protein kinase C and nitric oxide synthase in the hyperalgesia induced by magnesium deficiency in rats[J]. Br J Pharmacol, 2001, 134(6): 1227-1236.
|
[46] |
Shin HJ, Na HS, Do SH. Magnesium and pain[J/OL]. Nutrients, 2020, 12(8): 2184. DOI: 10.3390/nu12082184.
|
[47] |
LawandNB, Willis WD, Westlund KN. Excitatory amino acid receptor involvement in peripheral nociceptive transmission in rats[J]. Eur J Pharmacol, 1997, 324(2-3): 169-177.
|
[48] |
李健雄,张程,辛鹏飞,等. 膝骨关节炎疼痛机制研究进展[J/CD]. 中华关节外科杂志(电子版), 2021, 15(5): 596-600.
|
[49] |
Rude RK, Singer FR, Gruber HE. Skeletal and hormonal effects of magnesium deficiency[J]. J Am Coll Nutr, 2009, 28(2): 131-141.
|
[50] |
Weisshaar CL, Winkelstein BA. Ablating spinal NK1-bearing neurons eliminates the development of pain and reduces spinal neuronal hyperexcitability and inflammation from mechanical joint injury in the rat[J]. J Pain, 2014, 15(4): 378-386.
|
[51] |
Roemer FW, Kassim Javaid M, Guermazi A, et al. Anatomical distribution of synovitis in knee osteoarthritis and its association with joint effusion assessed on non-enhanced and contrast-enhanced MRI[J]. Osteoarthritis Cartilage, 2010, 18(10): 1269-1274.
|
[52] |
Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: current understanding with therapeutic implications[J/OL]. Arthritis Res Ther, 2017, 19(1): 18. DOI: 10.1186/s13075-017-1229-9.
|
[53] |
Belluzzi E, Olivotto E, Toso G, et al. Conditioned media from human osteoarthritic synovium induces inflammation in a synoviocyte cell line[J]. Connect Tissue Res, 2019, 60(2): 136-145.
|
[54] |
Belluzzi E, Stocco E, Pozzuoli A, et al. Contribution of infrapatellar fat pad and synovial membrane to knee osteoarthritis pain[J/OL]. Biomed Res Int, 2019, 2019: 6390182. DOI: 10.1155/2019/6390182.
|
[55] |
Daghestani HN, Pieper CF, Kraus VB. Soluble macrophage biomarkers indicate inflammatory phenotypes in patients with knee osteoarthritis[J]. Arthritis Rheumatol, 2015, 67(4): 956-965.
|
[56] |
Costantino MD, Schuster A, Helmholz H, et al. Inflammatory response to magnesium-based biodegradable implant materials[J]. Acta Biomater, 2020, 101: 598-608.
|
[57] |
Lee CH, Wen ZH, Chang YC, et al. Intra-articular magnesium sulfate (MgSO4) reduces experimental osteoarthritis and nociception: association with attenuation of N-methyl-D-aspartate (NMDA) receptor subunit 1 phosphorylation and apoptosis in rat chondrocytes[J]. Osteoarthritis Cartilage, 2009, 17(11): 1485-1493.
|
[58] |
Kuang X, Chiou J, Lo K, et al. Magnesium in joint health and osteoarthritis[J]. Nutr Res, 2021, 90: 24-35.
|
[59] |
Yao H, Xu J, Wang J, et al. Combination of magnesium ions and vitamin C alleviates synovitis and osteophyte formation in osteoarthritis of mice[J]. Bioact Mater, 2021, 6(5): 1341-1352.
|
[60] |
Bilir A, Gulec S, Erkan A, et al. Epidural magnesium reduces postoperative analgesic requirement[J]. Br J Anaesth, 2007, 98(4): 519-523.
|
[61] |
Wan WL, Lin YJ, Shih PC, et al. An in situdepot for continuous evolution of gaseous H2mediated by a magnesium passivation/activation cycle for treating osteoarthritis[J]. Angew Chem Int Ed Engl, 2018, 57(31): 9875-9879.
|
[62] |
Wang T, He C. Pro-inflammatory cytokines: the link between obesity and osteoarthritis[J]. Cytokine Growth Factor Rev, 2018, 44: 38-50.
|
[63] |
Baker-LePain JC, Nakamura MC, Lane NE. Effects of inflammation on bone: an update[J]. Curr Opin Rheumatol, 2011, 23(4): 389-395.
|
[64] |
Nielsen FH. Magnesium deficiency and increased inflammation: current perspectives[J]. J Inflamm Res, 2018, 11: 25-34.
|
[65] |
Qiao X, Yang J, Shang Y, et al. Magnesium-doped nanostructured titanium surface modulates macrophage-mediated inflammatory response for ameliorative osseointegration[J]. Int J Nanomedicine, 2020, 15: 7185-7198.
|
[66] |
Castiglioni S, Cazzaniga A, Locatelli L, et al. Burning magnesium, a sparkle in acute inflammation: gleams from experimental models[J]. Magnes Res, 2017, 30(1): 8-15.
|
[67] |
da Silva Lima F, Makiyama EN, Hastreiter AA, et al. Dietary magnesium restriction affects hematopoiesis and triggers neutrophilia by increasing STAT-3 expression and G-CSF production[J]. Clin Nutr, 2021, 40(6): 4481-4489.
|
[68] |
Nishimoto SK, Chang CH, Gendler E, et al. The effect of aging on bone formation in rats: biochemical and histological evidence for decreased bone formation capacity[J]. Calcif Tissue Int, 1985, 37(6): 617-624.
|
[69] |
Libako P, Nowacki W, Rock E, et al. Phagocyte priming by low magnesium status: input to the enhanced inflammatory and oxidative stress responses[J]. Magnes Res, 2010, 23(1): 1-4.
|
[70] |
Ferrè S, Baldoli E, Leidi M, et al. Magnesium deficiency promotes a pro-atherogenic phenotype in cultured human endothelial cells via activation of NF-kB[J]. Biochim Biophys Acta, 2010, 1802(11): 952-958.
|
[71] |
Pirosa A, Tankus EB, Mainardi A, et al. Modeling in vitroosteoarthritis phenotypes in a vascularized bone model based on a bone-marrow derived mesenchymal cell line and endothelial cells[J/OL]. Int J Mol Sci, 2021, 22(17): 9581. DOI: 10.3390/ijms22179581.
|
[72] |
Maier JA, Castiglioni S, Locatelli L, et al. Magnesium and inflammation: advances and perspectives[J]. Semin Cell Dev Biol, 2021, 115: 37-44.
|
[73] |
Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options[J]. Med Clin North Am, 2020, 104(2): 293-311.
|
[74] |
Puleo DA, Huh WW. Acute toxicity of metal ions in cultures of osteogenic cells derived from bone marrow stromal cells[J]. J Appl Biomater, 1995, 6(2): 109-116.
|
[75] |
Nagels J, Stokdijk M, Rozing PM. Stress shielding and bone resorption in shoulder arthroplasty[J]. J Shoulder Elbow Surg, 2003, 12(1): 35-39.
|
[76] |
Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review[J]. Biomaterials, 2006, 27(9): 1728-1734.
|
[77] |
Farraro KF, Kim KE, Woo SL, et al. Revolutionizing orthopaedic biomaterials: the potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering[J]. J Biomech, 2014, 47(9): 1979-1986.
|
[78] |
Witte F. The history of biodegradable magnesium implants: a review[J]. Acta Biomater, 2010, 6(5): 1680-1692.
|
[79] |
Ma R, Wang W, Yang P, et al. In vitro antibacterial activity and cytocompatibility of magnesium-incorporated poly(lactide-co-glycolic acid) scaffolds[J/OL]. Biomed Eng Online, 2020, 19(1): 12. DOI: 10.1186/s12938-020-0755-x.
|
[80] |
Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005, 26(17): 3557-3563.
|
[81] |
Peng F, Li H, Wang D, et al. Enhanced corrosion resistance and biocompatibility of magnesium alloy by Mg-Al-layered double hydroxide[J]. ACS Appl Mater Interfaces, 2016, 8(51): 35033-35044.
|
[82] |
Adhikari U, Rijal NP, Khanal S, et al. Magnesium incorporated chitosan based scaffolds for tissue engineering applications[J]. Bioact Mater, 2016, 1(2): 132-139.
|
[83] |
Sartori M, Pagani S, Ferrari A, et al. A new bi-layered scaffold for osteochondral tissue regeneration: in vitro and in vivo preclinical investigations[J]. Mater Sci Eng C Mater Biol Appl, 2017, 70(Pt 1): 101-111.
|
[84] |
Zhou H, Yu K, Jiang H, et al. A three-in-one strategy: injectable biomimetic porous hydrogels for accelerating bone regeneration via shape-adaptable scaffolds, controllable magnesium ion release, and enhanced osteogenic differentiation[J]. Biomacromolecules, 2021, 22(11): 4552-4568.
|
[85] |
Li S, Ma F, Pang X, et al. Synthesis of chondroitin sulfate magnesium for osteoarthritis treatment[J]. Carbohydr Polym, 2019, 212: 387-394.
|