切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (03) : 354 -362. doi: 10.3877/cma.j.issn.1674-134X.2023.03.009

综述

镁在骨关节炎治疗中的研究进展
符卓毅, 唐圣成, 卜俏梅, 徐高兵, 吴安平, 蔡巍, 杨明, 谭海涛()   
  1. 410003 长沙,湖南师范大学;410003 长沙,湖南师范大学第二附属医院暨解放军联勤保障部队解放军第921医院骨科
    410003 长沙,湖南师范大学第二附属医院暨解放军联勤保障部队解放军第921医院骨科
  • 收稿日期:2022-03-09 出版日期:2023-06-01
  • 通信作者: 谭海涛
  • 基金资助:
    湖南省教育厅项目(20C1147)

Research progress of magnesium in treatment of osteoarthritis

Zhuoyi Fu, Shengcheng Tang, Qiaomei Bu, Gaobing Xu, Anping Wu, Wei Cai, Ming Yang, Haitao Tan()   

  1. Hunan Normal University, Changsha 410003, China; Department of Orthopaedics, The Second Affiliated Hospital of Hunan Normal University, Changsha 410003, Chima
    Department of Orthopaedics, The Second Affiliated Hospital of Hunan Normal University, Changsha 410003, Chima
    Hunan Normal University, Changsha 410003, China
  • Received:2022-03-09 Published:2023-06-01
  • Corresponding author: Haitao Tan
引用本文:

符卓毅, 唐圣成, 卜俏梅, 徐高兵, 吴安平, 蔡巍, 杨明, 谭海涛. 镁在骨关节炎治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 354-362.

Zhuoyi Fu, Shengcheng Tang, Qiaomei Bu, Gaobing Xu, Anping Wu, Wei Cai, Ming Yang, Haitao Tan. Research progress of magnesium in treatment of osteoarthritis[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(03): 354-362.

镁离子是人体内重要的离子,参与人体许多生理过程,包括酶、骨质的合成、重要神经递质的合成以及血管生成等。而镁离子作为临床治疗的药物具有十分悠久的历史,其在镇痛、解痉挛等方面的治疗作用中具有出色的表现。一直以来镁与骨关节炎(OA)的治疗并未有太多的相关性,然而在最近的研究中发现镁与OA的发病机制以及其治疗具有越来越多的联系,但目前国内关于这方面的综述还较少,因此本文以国内外最新研究为基础,重点介绍镁在OA治疗中延OA的退行性病变,控制炎症因子和相关细胞、对OA患者疼痛的控制以及晚期关节置换的作用,以及在这其中的相关机制。确定镁在OA治疗中的作用,不仅可以促进对OA的发病机制的理解,并最终有可能为未来治疗骨关节炎提供新方向和新思路。

Magnesium is an important ion in the human body and participates in many physiological processes in the human body, including the synthesis of enzymes, the synthesis of bones, the synthesis of important neurotransmitters, and angiogenesis. Magnesium ions have a long history of use as clinical therapeutic agents, with a proven track record of analgesic and antispasmodic effects. There has not been much correlation between magnesium and the treatment of osteoarthritis. However, in recent studies, it has been found that magnesium is more and more related to the pathogenesis of osteoarthritis (OA) and its treatment. There are few reviews on this aspect, so this article is based on the latest research at home and abroad, focusing on the role of magnesium in the treatment of osteoarthritis to delay the degenerative changes of osteoarthritis, control inflammatory factors and related cells, reduce pain in patients with osteoarthritis, and the role of advanced joint replacement, as well as the relevant mechanisms in this. Determining the role of magnesium in the treatment of osteoarthritis can not only advance the understanding of the pathogenesis of osteoarthritis, but may ultimately serve as a new direction and new idea for the treatment of osteoarthritis in the future.

图1 镁在调节OA(骨关节炎)退行性病变的作用注:MAPK/Erk-丝裂原活化蛋白激酶/胞外信号调节激酶;Runx2-Runt相关转录因子2;Sox9-性别决定簇基因9;Hif-1α-低氧诱导因子-1α;MSCs-骨髓间充质干细胞
Figure 1 Role of magnesium in regulating degenerative diseases of osteoarthritis
图2 镁对OA(骨关节炎)关节的作用
Figure 2 Influence of magnum on osteoarthritis
[1]
张莹莹,李旭东,杨佳娟,等. 中国40岁及以上人群骨关节炎患病率的Meta分析[J]. 中国循证医学杂志2021, 21(4): 407-414.
[2]
Burr DB, Gallant MA. Bone remodelling in osteoarthritis[J]. Nat Rev Rheumatol, 2012, 8(11): 665-673.
[3]
Palazzo C, Nguyen C, Lefevre-Colau MM, et al. Risk factors and burden of osteoarthritis[J]. Ann Phys Rehabil Med, 2016, 59(3): 134-138.
[4]
Gruber HE, Ingram J, Norton HJ, et al. Alterations in growth plate and articular cartilage morphology are associated with reduced SOX9 localization in the magnesium-deficient rat[J]. Biotech Histochem, 2004, 79(1): 45-52.
[5]
杨爽,闫景龙. 软骨细胞分化过程中SOX9的作用[J]. 中国组织工程研究2022, 26(14): 2279-2284.
[6]
Yu Y, Jin G, Xue Y, et al. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants[J]. Acta Biomater, 2017, 49: 590-603.
[7]
Zhang FJ, Luo W, Lei GH. Role of HIF-1α and HIF-2α in osteoarthritis[J]. Joint Bone Spine, 2015, 82(3): 144-147.
[8]
Stegen S, Laperre K, Eelen G, et al. HIF-1α metabolically controls collagen synthesis and modification in chondrocytes[J]. Nature, 2019, 565(7740): 511-515.
[9]
Martinez Sanchez AH, Feyerabend F, Laipple D, et al. Chondrogenic differentiation of ATDC5-cells under the influence of Mg and Mg alloy degradation[J]. Mater Sci Eng C Mater Biol Appl, 2017, 72: 378-388.
[10]
Yue J, Jin S, Gu S, et al. High concentration magnesium inhibits extracellular matrix calcification and protects articular cartilage via Erk/autophagy pathway[J]. J Cell Physiol, 2019, 234(12): 23190-23201.
[11]
Yao H, Xu JK, Zheng NY, et al. Intra-articular injection of magnesium chloride attenuates osteoarthritis progression in rats[J]. Osteoarthritis Cartilage, 2019, 27(12): 1811-1821.
[12]
孙庆云,闫振宇. 间充质干细胞对骨关节炎修复机制的研究进展及应用[J]. 中国实验动物学报2021, 29(2): 262-267.
[13]
Hu T, Xu H, Wang C, et al. Magnesium enhances the chondrogenic differentiation of mesenchymal stem cells by inhibiting activated macrophage-induced inflammation[J/OL]. Sci Rep, 2018, 8(1): 3406. DOI: 10.1038/s41598-018-21783-2.
[14]
李政垚,刘洁颖,吴狄,等. 高镁离子浓度对人骨髓间充质干细胞增殖与成骨分化的影响[J]. 中华骨与关节外科杂志2020, 13(5): 419-426.
[15]
Li RW, Kirkland NT, Truong J, et al. The influence of biodegradable magnesium alloys on the osteogenic differentiation of human mesenchymal stem cells[J]. J Biomed Mater Res A, 2014, 102(12): 4346-4357.
[16]
Díaz-Tocados JM, Herencia C, Martínez-Moreno JM, et al. Magnesium chloride promotes osteogenesis through notch signaling activation and expansion of mesenchymal stem cells[J/OL]. Sci Rep, 2017, 7(1): 7839. DOI: 10.1038/s41598-017-08379-y.
[17]
Guler E, Baripoglu YE, Alenezi H, et al. Vitamin D3/vitamin K2/magnesium-loaded polylactic acid/tricalcium phosphate/polycaprolactone composite nanofibers demonstrated osteoinductive effect by increasing Runx2 via Wnt/β-catenin pathway[J]. Int J Biol Macromol, 2021, 190: 244-258.
[18]
Zhang ZZ, Zhou YF, Li WP, et al. Local administration of magnesium promotes meniscal healing through homing of endogenous stem cells: aproof-of-concept study[J]. Am J Sports Med, 2019, 47(4): 954-967.
[19]
Shimaya M, Muneta T, Ichinose S, et al. Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins[J]. Osteoarthritis Cartilage, 2010, 18(10): 1300-1309.
[20]
Fioravanti A, Tenti S, Giannitti C, et al. Short-and long-term effects of mud-bath treatment on hand osteoarthritis: a randomized clinical trial[J]. Int J Biometeorol, 2014, 58(1): 79-86.
[21]
Hügle T, Geurts J. What drives osteoarthritis? -Synovial versus subchondral bone pathology[J]. Rheumatology, 2017, 56(9): 1461-1471.
[22]
Naik S, Sahu S, Bandyopadhyay D, et al. Serum levels of osteoprotegerin, RANK-L & vitamin D in different stages of osteoarthritis of the knee[J]. Indian J Med Res, 2021, 154(3): 491-496.
[23]
He LY, Zhang XM, Liu B, et al. Effect of magnesium ion on human osteoblast activity[J/OL]. Rev Bras De Pesquisas Med EBiol, 2016, 49(7): e5257. DOI: 10.1590/1414-431X20165257.
[24]
Leidi M, Dellera F, Mariotti M, et al. High magnesium inhibits human osteoblast differentiation in vitro[J]. Magnes Res, 2011, 24(1): 1-6.
[25]
Maruotti N, Corrado A, Cantatore FP. Osteoblast role in osteoarthritis pathogenesis[J]. J Cell Physiol, 2017, 232(11): 2957-2963.
[26]
Castiglioni S, Cazzaniga A, Albisetti W, et al. Magnesium and osteoporosis: current state of knowledge and future research directions[J]. Nutrients, 2013, 5(8): 3022-3033.
[27]
Ciosek Ż, Kot K, Kosik-Bogacka D, et al. The effects of calcium, magnesium, phosphorus, fluoride, and lead on bone tissue[J/OL]. Biomolecules, 2021, 11(4): 506. DOI: 10.3390/biom11040506.
[28]
Geurts J, Patel A, Hirschmann MT, et al. Elevated marrow inflammatory cells and osteoclasts in subchondral osteosclerosis in human knee osteoarthritis[J]. J Orthop Res, 2016, 34(2): 262-269.
[29]
Zhao X, Ma L, Guo H, et al. Osteoclasts secrete leukemia inhibitory factor to promote abnormal bone remodeling of subchondral bone in osteoarthritis[J/OL]. BMC Musculoskelet Disord, 2022, 23(1): 87. DOI: 10.1186/s12891-021-04886-2.
[30]
Wu L, Luthringer BJ, Feyerabend F, et al. Effects of extracellular magnesium on the differentiation and function of human osteoclasts[J]. Acta Biomater, 2014, 10(6): 2843-2854.
[31]
Maradze D, Musson D, Zheng Y, et al. High magnesium corrosion rate has an effect on osteoclast and mesenchymal stem cell role during bone remodelling[J/OL]. Sci Rep, 2018, 8(1): 10003. DOI: 10.1038/s41598-018-28476-w.
[32]
Barton KI, Shekarforoush M, Heard BJ, et al. Use of pre-clinical surgically induced models to understand biomechanical and biological consequences of PTOA development[J]. J Orthop Res, 2017, 35(3): 454-465.
[33]
Qiao W, Wong KHM, Shen J, et al. TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration[J/OL]. Nat Commun, 2021, 12(1): 2885. DOI: 10.1038/s41467-021-23005-2.
[34]
Rude RK, Gruber HE, Norton HJ, et al. Reduction of dietary magnesium by only 50% in the rat disrupts bone and mineral metabolism[J]. Osteoporos Int, 2006, 17(7): 1022-1032.
[35]
Rude RK, Gruber HE, Wei LY, et al. Magnesium deficiency: effect on bone and mineral metabolism in the mouse[J]. Calcif Tissue Int, 2003, 72(1): 32-41.
[36]
Zhang W, Doherty M, Bardin T, et al. European League Against Rheumatism recommendations for calcium pyrophosphate deposition. Part I: terminology and diagnosis[J]. Ann Rheum Dis, 2011, 70(4): 563-570.
[37]
Richette P, Ayoub G, Lahalle S, et al. Hypomagnesemia associated with chondrocalcinosis: a cross-sectional study[J]. Arthritis Rheum, 2007, 57(8): 1496-1501.
[38]
King JL, Miller RJ, Blue JP Jr, et al. Inadequate dietary magnesium intake increases atherosclerotic plaque development in rabbits[J]. Nutr Res, 2009, 29(5): 343-349.
[39]
Zeng C, Wei J, Terkeltaub R, et al. Dose-response relationship between lower serum magnesium level and higher prevalence of knee chondrocalcinosis[J/OL]. Arthritis Res Ther, 2017, 19(1): 236. DOI: 10.1186/s13075-017-1450-6.
[40]
Louvet L, Büchel J, Steppan S, et al. Magnesium prevents phosphate-induced calcification in human aortic vascular smooth muscle cells[J]. Nephrol Dial Transplant, 2013, 28(4): 869-878.
[41]
Hénaut L, Massy ZA. Magnesium as a calcification inhibitor[J]. Adv Chronic Kidney Dis, 2018, 25(3): 281-290.
[42]
Ter Braake AD, Smit AE, Bos C, et al. Magnesium prevents vascular calcification in Klotho deficiency[J]. Kidney Int, 2020, 97(3): 487-501.
[43]
Kronbauer M, Metz VG, Roversi K, et al. Influence of magnesium supplementation and L-type calcium channel blocker on haloperidol-induced movement disturbances[J/OL]. Behav Brain Res, 2019, 374: 112119. DOI: 10.1016/j.bbr.2019.112119.
[44]
Shmagel A, Onizuka N, Langsetmo L, et al. Low magnesium intake is associated with increased knee pain in subjects with radiographic knee osteoarthritis: data from the Osteoarthritis Initiative[J]. Osteoarthritis Cartilage, 2018, 26(5): 651-658.
[45]
Begon S, Pickering G, Eschalier A, et al. Role of spinal NMDA receptors, protein kinase C and nitric oxide synthase in the hyperalgesia induced by magnesium deficiency in rats[J]. Br J Pharmacol, 2001, 134(6): 1227-1236.
[46]
Shin HJ, Na HS, Do SH. Magnesium and pain[J/OL]. Nutrients, 2020, 12(8): 2184. DOI: 10.3390/nu12082184.
[47]
LawandNB, Willis WD, Westlund KN. Excitatory amino acid receptor involvement in peripheral nociceptive transmission in rats[J]. Eur J Pharmacol, 1997, 324(2-3): 169-177.
[48]
李健雄,张程,辛鹏飞,等. 膝骨关节炎疼痛机制研究进展[J/CD]. 中华关节外科杂志(电子版), 2021, 15(5): 596-600.
[49]
Rude RK, Singer FR, Gruber HE. Skeletal and hormonal effects of magnesium deficiency[J]. J Am Coll Nutr, 2009, 28(2): 131-141.
[50]
Weisshaar CL, Winkelstein BA. Ablating spinal NK1-bearing neurons eliminates the development of pain and reduces spinal neuronal hyperexcitability and inflammation from mechanical joint injury in the rat[J]. J Pain, 2014, 15(4): 378-386.
[51]
Roemer FW, Kassim Javaid M, Guermazi A, et al. Anatomical distribution of synovitis in knee osteoarthritis and its association with joint effusion assessed on non-enhanced and contrast-enhanced MRI[J]. Osteoarthritis Cartilage, 2010, 18(10): 1269-1274.
[52]
Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: current understanding with therapeutic implications[J/OL]. Arthritis Res Ther, 2017, 19(1): 18. DOI: 10.1186/s13075-017-1229-9.
[53]
Belluzzi E, Olivotto E, Toso G, et al. Conditioned media from human osteoarthritic synovium induces inflammation in a synoviocyte cell line[J]. Connect Tissue Res, 2019, 60(2): 136-145.
[54]
Belluzzi E, Stocco E, Pozzuoli A, et al. Contribution of infrapatellar fat pad and synovial membrane to knee osteoarthritis pain[J/OL]. Biomed Res Int, 2019, 2019: 6390182. DOI: 10.1155/2019/6390182.
[55]
Daghestani HN, Pieper CF, Kraus VB. Soluble macrophage biomarkers indicate inflammatory phenotypes in patients with knee osteoarthritis[J]. Arthritis Rheumatol, 2015, 67(4): 956-965.
[56]
Costantino MD, Schuster A, Helmholz H, et al. Inflammatory response to magnesium-based biodegradable implant materials[J]. Acta Biomater, 2020, 101: 598-608.
[57]
Lee CH, Wen ZH, Chang YC, et al. Intra-articular magnesium sulfate (MgSO4) reduces experimental osteoarthritis and nociception: association with attenuation of N-methyl-D-aspartate (NMDA) receptor subunit 1 phosphorylation and apoptosis in rat chondrocytes[J]. Osteoarthritis Cartilage, 2009, 17(11): 1485-1493.
[58]
Kuang X, Chiou J, Lo K, et al. Magnesium in joint health and osteoarthritis[J]. Nutr Res, 2021, 90: 24-35.
[59]
Yao H, Xu J, Wang J, et al. Combination of magnesium ions and vitamin C alleviates synovitis and osteophyte formation in osteoarthritis of mice[J]. Bioact Mater, 2021, 6(5): 1341-1352.
[60]
Bilir A, Gulec S, Erkan A, et al. Epidural magnesium reduces postoperative analgesic requirement[J]. Br J Anaesth, 2007, 98(4): 519-523.
[61]
Wan WL, Lin YJ, Shih PC, et al. An in situdepot for continuous evolution of gaseous H2mediated by a magnesium passivation/activation cycle for treating osteoarthritis[J]. Angew Chem Int Ed Engl, 2018, 57(31): 9875-9879.
[62]
Wang T, He C. Pro-inflammatory cytokines: the link between obesity and osteoarthritis[J]. Cytokine Growth Factor Rev, 2018, 44: 38-50.
[63]
Baker-LePain JC, Nakamura MC, Lane NE. Effects of inflammation on bone: an update[J]. Curr Opin Rheumatol, 2011, 23(4): 389-395.
[64]
Nielsen FH. Magnesium deficiency and increased inflammation: current perspectives[J]. J Inflamm Res, 2018, 11: 25-34.
[65]
Qiao X, Yang J, Shang Y, et al. Magnesium-doped nanostructured titanium surface modulates macrophage-mediated inflammatory response for ameliorative osseointegration[J]. Int J Nanomedicine, 2020, 15: 7185-7198.
[66]
Castiglioni S, Cazzaniga A, Locatelli L, et al. Burning magnesium, a sparkle in acute inflammation: gleams from experimental models[J]. Magnes Res, 2017, 30(1): 8-15.
[67]
da Silva Lima F, Makiyama EN, Hastreiter AA, et al. Dietary magnesium restriction affects hematopoiesis and triggers neutrophilia by increasing STAT-3 expression and G-CSF production[J]. Clin Nutr, 2021, 40(6): 4481-4489.
[68]
Nishimoto SK, Chang CH, Gendler E, et al. The effect of aging on bone formation in rats: biochemical and histological evidence for decreased bone formation capacity[J]. Calcif Tissue Int, 1985, 37(6): 617-624.
[69]
Libako P, Nowacki W, Rock E, et al. Phagocyte priming by low magnesium status: input to the enhanced inflammatory and oxidative stress responses[J]. Magnes Res, 2010, 23(1): 1-4.
[70]
Ferrè S, Baldoli E, Leidi M, et al. Magnesium deficiency promotes a pro-atherogenic phenotype in cultured human endothelial cells via activation of NF-kB[J]. Biochim Biophys Acta, 2010, 1802(11): 952-958.
[71]
Pirosa A, Tankus EB, Mainardi A, et al. Modeling in vitroosteoarthritis phenotypes in a vascularized bone model based on a bone-marrow derived mesenchymal cell line and endothelial cells[J/OL]. Int J Mol Sci, 2021, 22(17): 9581. DOI: 10.3390/ijms22179581.
[72]
Maier JA, Castiglioni S, Locatelli L, et al. Magnesium and inflammation: advances and perspectives[J]. Semin Cell Dev Biol, 2021, 115: 37-44.
[73]
Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options[J]. Med Clin North Am, 2020, 104(2): 293-311.
[74]
Puleo DA, Huh WW. Acute toxicity of metal ions in cultures of osteogenic cells derived from bone marrow stromal cells[J]. J Appl Biomater, 1995, 6(2): 109-116.
[75]
Nagels J, Stokdijk M, Rozing PM. Stress shielding and bone resorption in shoulder arthroplasty[J]. J Shoulder Elbow Surg, 2003, 12(1): 35-39.
[76]
Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review[J]. Biomaterials, 2006, 27(9): 1728-1734.
[77]
Farraro KF, Kim KE, Woo SL, et al. Revolutionizing orthopaedic biomaterials: the potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering[J]. J Biomech, 2014, 47(9): 1979-1986.
[78]
Witte F. The history of biodegradable magnesium implants: a review[J]. Acta Biomater, 2010, 6(5): 1680-1692.
[79]
Ma R, Wang W, Yang P, et al. In vitro antibacterial activity and cytocompatibility of magnesium-incorporated poly(lactide-co-glycolic acid) scaffolds[J/OL]. Biomed Eng Online, 2020, 19(1): 12. DOI: 10.1186/s12938-020-0755-x.
[80]
Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005, 26(17): 3557-3563.
[81]
Peng F, Li H, Wang D, et al. Enhanced corrosion resistance and biocompatibility of magnesium alloy by Mg-Al-layered double hydroxide[J]. ACS Appl Mater Interfaces, 2016, 8(51): 35033-35044.
[82]
Adhikari U, Rijal NP, Khanal S, et al. Magnesium incorporated chitosan based scaffolds for tissue engineering applications[J]. Bioact Mater, 2016, 1(2): 132-139.
[83]
Sartori M, Pagani S, Ferrari A, et al. A new bi-layered scaffold for osteochondral tissue regeneration: in vitro and in vivo preclinical investigations[J]. Mater Sci Eng C Mater Biol Appl, 2017, 70(Pt 1): 101-111.
[84]
Zhou H, Yu K, Jiang H, et al. A three-in-one strategy: injectable biomimetic porous hydrogels for accelerating bone regeneration via shape-adaptable scaffolds, controllable magnesium ion release, and enhanced osteogenic differentiation[J]. Biomacromolecules, 2021, 22(11): 4552-4568.
[85]
Li S, Ma F, Pang X, et al. Synthesis of chondroitin sulfate magnesium for osteoarthritis treatment[J]. Carbohydr Polym, 2019, 212: 387-394.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[3] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[4] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[5] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[6] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[7] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[8] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[9] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[10] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[11] 周晓强, 孙超, 虞宵, 金宇杰, 李志强, 张向鑫, 陈广祥. 同一患者同期行全膝和单髁置换术的早期临床疗效[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 275-281.
[12] 马聪, 李雪靖, 郑晓佐, 张晓阳, 段坤峰, 刘国强, 郄素会. 关节腔内注射富血小板血浆与透明质酸钠治疗Ⅰ-Ⅲ期膝骨关节炎的对比研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 282-288.
[13] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[14] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[15] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
阅读次数
全文


摘要