| [1] |
Schwartz FH, Lange J. Factors that affect outcome following total joint arthroplasty: a review of the recent literature[J]. Curr Rev Musculoskelet Med, 2017, 10(3): 346-355.
|
| [2] |
乔松义, 孟祥奇, 罗斌, 等. 单髁置换术与全膝置换术治疗膝骨关节炎疗效的Meta分析[J/OL]. 中华关节外科杂志(电子版), 2019, 13(2): 189-199.
|
| [3] |
Shortt J, Polizzotto MN, Waters N, et al. Assessment of the urgency and deferability of transfusion to inform emergency blood planning and triage: the Bloodhound prospective audit of red blood cell use[J]. Transfusion, 2009, 49(11): 2296-2303.
|
| [4] |
Hill J, Magill P, Dorman A, et al. Assessment of the effect of addition of 24 hours of oral tranexamic acid post-operatively to a single intraoperative intravenous dose of tranexamic acid on calculated blood loss following primary hip and knee arthroplasty (TRAC-24): a study protocol for a randomised controlled trial[J/OL]. Trials, 2018, 19(1): 413. DOI: 10.1186/s13063-018-2784-3.
|
| [5] |
Stoicea N, Moran K, Mahmoud AR, et al. Tranexamic acid use during total hip arthroplasty: a single center retrospective analysis[J/OL]. Medicine (Baltimore), 2018, 97(21): e10720. DOI: 10.1097/md.0000000000010720.
|
| [6] |
Ogbemudia AE, Yee SY, MacPherson GJ, et al. Preoperative predictors for allogenic blood transfusion in hip and knee arthroplasty for rheumatoid arthritis[J]. Arch Orthop Trauma Surg, 2013, 133(9): 1315-1320.
|
| [7] |
Freedman J, Luke K, Escobar M, et al. Experience of a network of transfusion coordinators for blood conservation (Ontario Transfusion Coordinators [ONTraC])[J]. Transfusion, 2008, 48(2): 237-250.
|
| [8] |
张淼, 白波, 陈艺, 等. 全膝置换术经小切口股内侧肌入路与标准髌旁入路临床疗效比较的META分析[J/CD]. 中华关节外科杂志(电子版), 2014, 8(3): 358-366.
|
| [9] |
Aslam MA, Sabir AB, Tiwari V, et al. Approach to total knee replacement: a randomized double blind study between medial parapatellar and midvastus approach in the early postoperative period in Asian population[J]. J Knee Surg, 2017, 30(8): 793-797.
|
| [10] |
Tzatzairis T, Fiska A, Ververidis A, et al. Minimally invasive versus conventional approaches in total knee replacement/arthroplasty: a review of the literature[J]. J Orthop, 2018, 15(2): 459-466.
|
| [11] |
Lin WP, Lin J, Horng LC, et al. Quadriceps-sparing,minimal-incision total knee arthroplasty: a comparative study[J]. J Arthroplasty, 2009, 24(7): 1024-1032.
|
| [12] |
Schroer WC, Diesfeld PJ, Reedy ME, et al. Evaluation of complications associated with six hundred mini-subvastus total knee arthroplasties[J]. J Bone Joint Surg Am, 2007, 89(Suppl 3): 76-81.
|
| [13] |
Nutton RW, Wade FA, Coutts FJ, et al. Short term recovery of function following total knee arthroplasty: a randomised study of the medial parapatellar and midvastus approaches[J/OL]. Arthritis, 2014, 2014: 173857. DOI: 10.1155/2014/173857.
|
| [14] |
Kazarian GS, Siow MY, Chen AF, et al. Comparison of quadriceps-sparing and medial parapatellar approaches in total knee arthroplasty: a meta-analysis of randomized controlled trials[J]. J Arthroplasty, 2018, 33(1): 277-283.
|
| [15] |
David Heekin R, Fokin AA. Mini-midvastus versus mini-medial parapatellar approach for minimally invasive total knee arthroplasty: outcomes pendulum is at equilibrium[J]. J Arthroplasty, 2014, 29(2): 339-342.
|
| [16] |
Curtin B, Yakkanti M, Malkani A. Postoperative pain and contracture following total knee arthroplasty comparing parapatellar and subvastus approaches[J]. J Arthroplasty, 2014, 29(1): 33-36.
|
| [17] |
Liu HW, Gu WD, Xu NW, et al. Surgical approaches in total knee arthroplasty: a meta-analysis comparing the midvastus and subvastus to the medial peripatellar approach[J]. J Arthroplasty, 2014, 29 (12): 2298-2304.
|
| [18] |
Wu Y, Zeng Y, Bao X, et al. Comparison of mini-subvastus approach versus medial parapatellar approach in primary total knee arthroplasty[J]. Int J Surg, 2018, 57: 15-21.
|
| [19] |
Moretti B, Vitale E, Esposito A, et al. Comparison of pain perception between open and minimally invasive surgery in total knee arthroplasty[J]. Int J Gen Med, 2010, 3: 297-304.
|
| [20] |
Gandhi R, Smith H, Lefaivre KA, et al. Complications after minimally invasive total knee arthroplasty as compared with traditional incision techniques: a meta-analysis[J]. J Arthroplasty, 2011, 26(1): 29-35.
|
| [21] |
Palmer AJR, Gagné S, Fergusson DA, et al. Blood management for elective orthopaedic surgery[J]. J Bone Joint Surg Am, 2020, 102(17): 1552-1564.
|
| [22] |
Siddiqi A, Mont MA, Krebs VE, et al. Not all robotic-assisted total knee arthroplasty are the same[J]. J Am Acad Orthop Surg, 2021, 29(2): 45-59.
|
| [23] |
DeRogatis MJ, Malige A, Wang N, et al. Comparative analysis of acute blood loss Anemia in robotic assisted vs. manual instrumented total knee arthroplasty[J]. J Orthop, 2024, 55: 105-108.
|
| [24] |
Song EK, Seon JK, Park SJ, et al. Simultaneous bilateral total knee arthroplasty with robotic and conventional techniques: a prospective, randomized study[J]. Knee Surg Sports Traumatol Arthrosc, 2011, 19(7): 1069-1076.
|
| [25] |
Held MB, Gazgalis A, Neuwirth AL, et al. Imageless robotic-assisted total knee arthroplasty leads to similar 24-month WOMAC scores as compared to conventional total knee arthroplasty: a retrospective cohort study [J]. Knee Surg Sports Traumatol Arthrosc, 2022, 30(8): 2631-2638.
|
| [26] |
Duan X, Zhao Y, Zhang J, et al. Prediction of early functional outcomes in patients after robotic-assisted total knee arthroplasty: a nomogram prediction model [J]. Int J Surg, 2023, 109(10): 3107-3116.
|
| [27] |
Yuan M, Shi X, Su Q, et al. A prospective randomized controlled trial on the short-term effectiveness of domestic robot-assisted total knee arthroplasty[J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2021, 35(10): 1251-1258.
|
| [28] |
Alshahrani AH. Efficacy and safety of robotic-assisted knee reconstruction: a systematic review and meta-analysis[J]. Eur Rev Med Pharmacol Sci, 2024, 28(6): 2250-2262.
|
| [29] |
Khan H, Dhillon K, Mahapatra P, et al. Blood loss and transfusion risk in robotic-assisted knee arthroplasty: a retrospective analysis[J/OL]. Int J Med Robot, 2021, 17(6): e2308. DOI: 10.1002/rcs.2308.
|
| [30] |
Stimson LN, Steelman KR, Alex Hamilton D, et al. Evaluation of blood loss in conventional vs MAKOplasty total knee arthroplasty[J]. Arthroplast Today, 2022, 16: 224-228.
|
| [31] |
Zhou G, Wang X, Geng X, et al. Comparison of alignment accuracy and clinical outcomes between a CT-based, saw cutting robotic system and a CT-free, jig-guided robotic system for total knee arthroplasty[J]. Orthop Surg, 2024, 16(5): 1168-1174.
|
| [32] |
Berry DJ, Bozic KJ. Current practice patterns in primary hip and knee arthroplasty among members of the American Association of Hip and Knee Surgeons[J]. J Arthroplasty, 2010, 25 (6 Suppl): 2-4.
|
| [33] |
Liu D, Graham D, Gillies K, et al. Effects of tourniquet use on quadriceps function and pain in total knee arthroplasty[J]. Knee Surg Relat Res, 2014, 26(4): 207-213.
|
| [34] |
Li B, Wen Y, Wu H, et al. The effect of tourniquet use on hidden blood loss in total knee arthroplasty[J]. Int Orthop, 2009, 33(5): 1263-1268.
|
| [35] |
Tai TW, Chang CW, Lai KA, et al. Effects of tourniquet use on blood loss and soft-tissue damage in total knee arthroplasty: a randomized controlled trial[J]. J Bone Joint Surg Am, 2012, 94(24): 2209-2215.
|
| [36] |
Dennis DA, Kittelson AJ, Yang CC, et al. Does tourniquet use in TKA affect recovery of lower extremity strength and function? A randomized trial[J]. Clin Orthop Relat Res, 2016, 474(1): 69-77.
|
| [37] |
Kvederas G, Porvaneckas N, Andrijauskas A, et al. A randomized double-blind clinical trial of tourniquet application strategies for total knee arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2013, 21(12): 2790-2799.
|
| [38] |
Mittal R, Ko V, Adie S, et al. Tourniquet application only during cement fixation in total knee arthroplasty: a double-blind, randomized controlled trial [J]. ANZ J Surg, 2012, 82(6): 428-433.
|
| [39] |
Kim TK, Bamne AB, Sim JA, et al. Is lower tourniquet pressure during total knee arthroplasty effective? A prospective randomized controlled trial [J/OL]. BMC Musculoskelet Disord, 2019, 20(1): 275. DOI: 10.1186/s12891-019-2636-7.
|
| [40] |
Pinsornsak P, Pinitchanon P, Boontanapibul K. Effect of different tourniquet pressure on postoperative pain and complications after total knee arthroplasty: a prospective, randomized controlled trial[J]. J Arthroplasty, 2021, 36(5): 1638-1644.
|
| [41] |
Mingo-Robinet J, Castañeda-Cabrero C, Alvarez V, et al. Tourniquet-related iatrogenic femoral nerve palsy after knee surgery: case report and review of the literature[J/OL]. Case Rep Orthop, 2013, 2013: 368290. DOI: 10.1155/2013/368290.
|
| [42] |
Patel NK, Johns W, Vedi V, et al. Tourniquet and tranexamic acid use in total knee arthroplasty[J]. Arthroplasty Today, 2020, 6(2): 246-250.
|
| [43] |
Lee YG, Park W, Kim SH, et al. A case of rhabdomyolysis associated with use of a pneumatic tourniquet during arthroscopic knee surgery[J]. Korean J Intern Med, 2010, 25(1): 105-109.
|
| [44] |
Zhang W, Li N, Chen S, et al. The effects of a tourniquet used in total knee arthroplasty: a meta-analysis[J/OL]. J Orthop Surg Res, 2014, 9(1): 13. DOI: 10.1186/1749-799X-9-13.
|
| [45] |
Jiang FZ, Zhong HM, Hong YC, et al. Use of a tourniquet in total knee arthroplasty: a systematic review and meta-analysis of randomized controlled trials[J]. J Orthop Sci, 2015, 20(1): 110-123.
|
| [46] |
Rathod P, Deshmukh A, Robinson J, et al. Does tourniquet time in primary total knee arthroplasty influence clinical recovery?[J]. J Knee Surg, 2015, 28(4): 335-342.
|
| [47] |
Cao Z, Guo J, Li Q, et al. Comparison of efficacy and safety of different tourniquet applications in total knee arthroplasty: a network meta-analysis of randomized controlled trials[J]. Ann Med, 2021, 53(1): 1816-1826.
|
| [48] |
StansbyG, DonaldI. Reducingtheriskofhospital-acquireddeepveinthrombosisorpulmonaryembolismin medical inpatients[J]. ClinMed, 2019, 19(2): 100-103.
|
| [49] |
Nadeau RP, Howard JL, Naudie DDR. Antifibrinolytic therapy for perioperative blood conservation in lower-extremity primary total joint arthroplasty[J/OL]. JBJS Rev, 2015, 3(6): e1. DOI: 10.2106/JBJS.RVW.N.00068.
|
| [50] |
Fillingham YA, Ramkumar DB, Jevsevar DS, et al. The efficacy of tranexamic acid in total knee arthroplasty: a network meta-analysis[J]. J Arthroplasty, 2018, 33(10): 3090-3098.e1.
|
| [51] |
Hmidan Simsam M, Delorme L, Grimm D, et al. Efficacy of high dose tranexamic acid (TXA) for hemorrhage: a systematic review and meta-analysis[J]. Injury, 2023, 54(3): 857-870.
|
| [52] |
Sun C, Zhang X, Chen L, et al. Comparison of oral versus intravenous tranexamic acid in total knee and hip arthroplasty: a GRADE analysis and meta-analysis[J/OL]. Medicine, 2020, 99(44): e22999. DOI: 10.1097/MD.0000000000022999.
|
| [53] |
DeFrancesco CJ, Reichel JF, Gbaje E, et al. Effectiveness of oral versus intravenous tranexamic acid in primary total hip and knee arthroplasty: a randomised, non-inferiority trial [J]. Br J Anaesth, 2023, 130(2): 234-241.
|
| [54] |
Masaryk J, Melus V, Vidan J, et al. Comparison of intravenous and topical tranexamic acid in total joint arthroplasty [J]. Acta Chir Orthop Traumatol Cech, 2022, 89(4): 286-292.
|
| [55] |
Fan D, Ma J, Liu X, et al. Peri-articular administration of tranexamic acid is an alternative route in total knee arthroplasty: a systematic review and meta-analysis [J/OL]. J Orthop Surg Res, 2022, 17(1): 211. DOI: 10.1186/s13018-022-03095-4.
|
| [56] |
Ling T, Zhang L, Huang L. The efficacy and safety of combined administration of intravenous and intra-articular tranexamic acid in total knee arthroplasty: an update meta-analysis[J]. J Clin Pharm Ther, 2022, 47(9): 1312-1321.
|
| [57] |
Abdallah AA, Sallam AA, Arafa MS, et al. Topical tranexamic acid in total knee arthroplasty: does it augment the effect of the intravenous administration in patients with moderate-to-high risk of bleeding? A randomized clinical trial [J]. J Knee Surg, 2021, 34(14): 1570-1578.
|
| [58] |
Pinsornsak P, Thaveekitikul R, Pinsornsak P, et al. Comparative effectiveness of combined peri-articular and intra-articular injection versus intravenous and intra-articular injection of tranexamic acid in total knee arthroplasty: a randomized controlled trial study[J]. Arch Orthop Trauma Surg, 2024, 144(6): 2753-2759.
|
| [59] |
Sershon RA, Fillingham YA, Abdel MP, et al. The optimal dosing regimen for tranexamic acid in revision total hip arthroplasty: a multicenter randomized clinical trial[J]. J Bone Joint Surg Am, 2020, 102(21): 1883-1890.
|
| [60] |
Kang BX, Li YL, Xu H, et al. Effect of multiple doses of intravenous tranexamic acid on perioperative blood loss in total knee arthroplasty: a randomized controlled study[J]. Orthop Surg, 2021, 13(1): 126-133.
|
| [61] |
Yang YZ, Cheng QH, Zhang AR, et al. Efficacy and safety of single- and double-dose intravenous tranexamic acid in hip and knee arthroplasty: a systematic review and meta-analysis[J/OL]. J Orthop Surg Res, 2023, 18(1): 593. DOI: 10.1186/s13018-023-03929-9.
|
| [62] |
Ma RX, Qiao RQ, Xu MY, et al. Application of controlled hypotension during surgery for spinal metastasis[J/OL]. Technol Cancer Res Treat, 2022, 21: 15330338221105718. DOI: 10.1177/15330338221105718.
|
| [63] |
Li X, Liu J, Wang H, et al. Controlled hypotension technology can improve patient recovery in the early postoperative period after total knee arthroplasty: a prospective, randomized controlled clinical study[J]. Jt Dis Relat Surg, 2024, 35(1): 36-44.
|
| [64] |
Kučera B, Náhlík D, Hart R, et al. Post-operative retransfusion and intra-operative autotransfusion systems in total knee arthroplasty. A comparison of their efficacy[J]. Acta Chir Orthop Traumatol Cech, 2012, 79(4): 361-366.
|
| [65] |
Masouros P, Antoniou G, Nikolaou VS. Efficacy and safety of tranexamic acid in hip fracture surgery. How does dosage affect outcomes: a meta-analysis of randomized controlled trials[J]. Injury, 2022, 53(2): 294-300.
|