切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (04) : 445 -455. doi: 10.3877/cma.j.issn.1674-134X.2025.04.006

综述

滑膜细胞衰老在骨关节炎病理机制及靶向治疗的研究进展
陈雅杰, 康鹏德()   
  1. 610041 四川大学华西医院骨科
  • 收稿日期:2024-11-08 出版日期:2025-08-01
  • 通信作者: 康鹏德
  • 基金资助:
    国家自然科学基金面上项目(82372392); 四川省科学技术厅重点研发项目(2024YFFK0136)

Pathological mechanisms of synovial cell senescence in osteoarthritis and advances in targeted therapy

Yajie Chen, Pengde Kang()   

  1. Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
  • Received:2024-11-08 Published:2025-08-01
  • Corresponding author: Pengde Kang
引用本文:

陈雅杰, 康鹏德. 滑膜细胞衰老在骨关节炎病理机制及靶向治疗的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 445-455.

Yajie Chen, Pengde Kang. Pathological mechanisms of synovial cell senescence in osteoarthritis and advances in targeted therapy[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2025, 19(04): 445-455.

本文系统总结了滑膜细胞衰老在骨关节炎(OA)发生发展中的核心病理机制,并聚焦近年来针对衰老滑膜细胞的靶向治疗进展,以期为OA的精准干预提供理论依据。通过检索近年PubMed、Web of Science及中国知网数据库相关文献,分析了滑膜细胞衰老的分子机制及其通过衰老相关分泌表型(SASP)介导的病理效应。研究发现,衰老滑膜细胞通过释放促炎因子及基质降解酶,驱动滑膜慢性炎症、软骨退变及关节功能丧失。近年来,senolytics药物(如D+Q联合疗法)、CRISPR基因编辑技术及间充质干细胞移植等新兴手段在清除衰老滑膜细胞或逆转其病理表型方面显示出显著疗效,可有效改善OA动物模型的关节损伤。靶向滑膜细胞衰老的干预策略为OA治疗开辟了新的方向,未来亟需进一步阐明衰老微环境的时空动态变化,并推动相关成果的临床转化。

This review systematically summarized the core pathological mechanisms of synovial cell senescence in the onset and progression of osteoarthritis (OA) and focused on recent advances in targeted therapies for senescent synovial cells, aiming to provide a theoretical basis for precise OA interventions. Relevant literature from PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI) databases in recent years was reviewed to analyze the molecular mechanisms of synovial cell senescence and its pathological effects mediated by the senescence-associated secretory phenotype (SASP). The findings indicate that senescent synovial cells release pro-inflammatory cytokines and matrix-degrading enzymes (e.g., MMP-13), which drive chronic synovial inflammation, cartilage degeneration, and loss of joint function. In recent years, emerging approaches such as senolytic drugs (e.g., dasatinib plus quercetin combination therapy), CRISPR-based gene editing, and mesenchymal stem cell transplantation have shown significant efficacy in eliminating senescent synovial cells or reversing their pathological phenotype, thereby ameliorating joint damage in OA animal models. Targeting synovial cell senescence offers a novel direction for OA treatment, and future studies are urgently needed to further elucidate the spatiotemporal dynamics of the senescent microenvironment and facilitate the clinical translation of these findings.

图1 自噬受损诱导滑膜细胞衰老及滑膜炎的机制示意图注:autophagy impairment-自噬功能受损;beclin-1-beclin-1蛋白(自噬相关调控蛋白);LC3-II/I-微管相关蛋白1轻链3;damaged mitochondria-受损线粒体;ROS-活性氧;DNA damage-DNA损伤;senescent signaling-衰老信号;NF-κB-核因子κB;p53/p21- p53 / p21蛋白(细胞周期调控因子);synovial cell senescence-滑膜细胞衰老;SASP-衰老相关分泌表型;IL-白细胞介素;MMP-13基质金属蛋白酶-13;synovitis-滑膜炎
Figure 1 Mechanism of autophagy impairment–induced synovial cell senescence and synovitis
[1]
Safiri S, Kolahi AA, Smith E, et al. Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017 [J]. Ann Rheum Dis, 2020, 79(6): 819-828.
[2]
中华医学会骨科学分会关节外科学组, 中国医师协会骨科医师分会骨关节炎学组, 国家老年疾病临床医学研究中心, 等. 中国骨关节炎诊疗指南(2021年版)[J]. 中华骨科杂志, 2021, 41(18): 1291-1314.
[3]
中华医学会骨科学分会关节外科学组. 骨关节炎诊疗指南(2018年版)[J]. 中华骨科杂志, 2018, 38(12): 705-715.
[4]
中华医学会骨科学分会. 骨关节炎诊治指南(2007年版)[J]. 中国矫形外科杂志, 2014, 22(3): 287-288.
[5]
Constantino de Campos G, Mundi R, Whittington C, et al. Osteoarthritis, mobility-related comorbidities and mortality: an overview of meta-analyses[J/OL]. Ther Adv Musculoskelet Dis, 2020, 12: 1759720X20981219. DOI:10.1177/1759720X20981219.
[6]
Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis [J/OL]. Nat Rev Dis Primers, 2016, 2: 16072. DOI:10.1038/nrdp.2016.72.
[7]
薛庆云, 王坤正, 裴福兴, 等. 中国40岁以上人群原发性骨关节炎患病状况调查[J]. 中华骨科杂志, 2015, 35(12):1206-1212.
[8]
Long H, Zeng X, Liu Q, et al. Burden of osteoarthritis in China, 1990-2017: findings from the global burden of disease study 2017[J/OL]. Lancet Rheumatol, 2020, 2(3): e164-e172. DOI:10.1016/S2665-9913(19)30145-6.
[9]
Coryell PR, Diekman BO, Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis[J]. Nat Rev Rheumatol, 2021, 17(1): 47-57.
[10]
Xu M, Ji Y. Immunoregulation of synovial macrophages for the treatment of osteoarthritis[J/OL]. Open Life Sci, 2023, 18(1): 20220567. DOI:10.1515/biol-2022-0567.
[11]
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440.
[12]
Horváth E, Sólyom á, Székely J, et al. Inflammatory and metabolic signaling interfaces of the hypertrophic and senescent chondrocyte phenotypes associated with osteoarthritis[J/OL]. Int J Mol Sci, 2023, 24(22): 16468. DOI:10.3390/ijms242216468.
[13]
Pandey A, Bhutani N. Profiling joint tissues at single-cell resolution: advances and insights[J]. Nat Rev Rheumatol, 2024, 20(1): 7-20.
[14]
Orecchioni M, Ghosheh Y, Pramod AB, et al. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages[J/OL]. Front Immunol, 2019, 10: 1084. DOI:10.3389/fimmu.2019.01084.
[15]
Wang D, Chai XQ, Hu SS, et al. Joint synovial macrophages as a potential target for intra-articular treatment of osteoarthritis-related pain[J]. Osteoarthr Cartil, 2022, 30(3): 406-415.
[16]
Liang C, Wu S, Xia G, et al. Engineered M2a macrophages for the treatment of osteoarthritis[J/OL]. Front Immunol, 2022, 13: 1054938. DOI:10.3389/fimmu.2022.1054938.
[17]
Zhu X, Lee CW, Xu H, et al. Phenotypic alteration of macrophages during osteoarthritis: a systematic review[J/OL]. Arthritis Res Ther, 2021, 23(1): 110. DOI:10.1186/s13075-021-02457-3.
[18]
Wang MG, Seale P, Furman D. The infrapatellar fat pad in inflammaging, knee joint health, and osteoarthritis[J/OL]. NPJ Aging, 2024, 10(1): 34. DOI:10.1038/s41514-024-00159-z.
[19]
Zhang H, Lin C, Zeng C, et al. Synovial macrophage M1 polarisation exacerbates experimental osteoarthritis partially through R-spondin-2[J]. Ann Rheum Dis, 2018, 77(10): 1524-1534.
[20]
张恩尉, 张弘韬, 刘峰舟, 等. 雌二醇通过与雌激素受体β结合抑制骨关节炎滑膜细胞的NF-κB通路发挥抗炎作用[J]. 细胞与分子免疫学杂志, 2016, 32(12): 1605-1609, 1614.
[21]
Lagoumtzi SM, Chondrogianni N. Senolytics and senomorphics: Natural and synthetic therapeutics in the treatment of aging and chronic diseases[J]. Free Radic Biol Med, 2021, 171: 169-190.
[22]
Davalos AR, Coppe JP, Campisi J, et al. Senescent cells as a source of inflammatory factors for tumor progression[J]. Cancer Metastasis Rev, 2010, 29(2): 273-283.
[23]
Wiggins KA, Parry AJ, Cassidy LD, et al. IL-1α cleavage by inflammatory caspases of the noncanonical inflammasome controls the senescence-associated secretory phenotype[J/OL]. Aging Cell, 2019, 18(3): e12946. DOI:10.1111/acel.12946.
[24]
Jeon OH, David N, Campisi J, et al. Senescent cells and osteoarthritis: a painful connection[J]. J Clin Invest, 2018, 128(4): 1229-1237.
[25]
Childs BG, Gluscevic M, Baker DJ, et al. Senescent cells: an emerging target for diseases of ageing[J]. Nat Rev Drug Discov, 2017, 16(10): 718-735.
[26]
Casella D, Palumbo P, Sandroni S, et al. Positive ROS (reactive oxygen species) modulator engineered device support skin treatment in locally advanced breast cancer (LABC) enhancing patient quality of life[J/OL]. J Clin Med, 2021, 11(1): 126. DOI:10.3390/jcm11010126.
[27]
Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence[J]. Nat Rev Cancer, 2015, 15(7): 397-408.
[28]
Chaudhary MR, Chaudhary S, Sharma Y, et al. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies[J]. Biogerontology, 2023, 24(5): 609-662.
[29]
Martin JA, Brown T, Heiner A, et al. Post-traumatic osteoarthritis: the role of accelerated chondrocyte senescence[J]. Biorheology, 2004, 41(3-4): 479-491.
[30]
Attur M, Duan X, Cai L, et al. Periostin loss-of-function protects mice from post-traumatic and age-related osteoarthritis[J/OL]. Arthritis Res Ther, 2021, 23(1): 104. DOI:10.1186/s13075-021-02477-z.
[31]
Ebeid DE, Khalafalla FG, Broughton KM, et al. Pim1 maintains telomere length in mouse cardiomyocytes by inhibiting TGFβ signalling[J]. Cardiovasc Res, 2021, 117(1): 201-211.
[32]
Zhang L, Liu M, Liu W, et al. Th17/IL-17 induces endothelial cell senescence via activation of NF-κB/p53/Rb signaling pathway[J]. Lab Invest, 2021, 101(11): 1418-1426.
[33]
Shay J, Homma N, Zhou R, et al. Abstracts from the 3rd international genomic medicine conference (3rd IGMC 2015)[J]. BMC Genom, 2016.
[34]
Wei Y, Bai L. Recent advances in the understanding of molecular mechanisms of cartilage degeneration, synovitis and subchondral bone changes in osteoarthritis [J]. Connect Tissue Res, 2016, 57(4): 245-261.
[35]
Yu J, Li H, Wu Y, et al. Inhibition of NLRP3 inflammasome activation by A20 through modulation of NEK7 [J/OL]. Proc Natl AcadSci USA, 2024, 121(25): e2316551121. DOI:10.1073/pnas.2316551121.
[36]
Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology[J]. Nat Rev Mol Cell Biol, 2014, 15(7): 482-496.
[37]
Childs BG, Durik M, Baker DJ, et al. Cellular senescence in aging and age-related disease: from mechanisms to therapy[J]. Nat Med, 2015, 21(12): 1424-1435.
[38]
Martin N, Raguz S, Dharmalingam G, et al. Co-regulation of senescence-associated genes by oncogenic homeobox proteins and polycomb repressive complexes[J]. Cell Cycle, 2013, 12(14): 2194-2199.
[39]
Perrigue PM, Silva ME, Warden CD, et al. The histone demethylase jumonji coordinates cellular senescence including secretion of neural stem cell-attracting cytokines[J]. Mol Cancer Res, 2015, 13(4): 636-650.
[40]
Hayakawa T, Iwai M, Aoki S, et al. SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation[J/OL]. PLoS One, 2015, 10(1): e0116480. DOI:10.1371/journal.pone.0116480.
[41]
Terlecki-Zaniewicz L, Lämmermann I, Latreille J, et al. Small extracellular vesicles and their miRNA cargo are anti-apoptotic members of the senescence-associated secretory phenotype[J]. Aging, 2018, 10(5): 1103-1132.
[42]
Zhang Y, Liu L, Liu K, et al. Regulatory mechanism of circular RNA involvement in osteoarthritis[J/OL]. Front Surg, 2023, 9: 1049513. DOI:10.3389/fsurg.2022.1049513.
[43]
Chen X, Gong W, Shao X, et al. METTL3-mediated m6A modification of ATG7 regulates autophagy-GATA4 axis to promote cellular senescence and osteoarthritis progression[J]. Ann Rheum Dis, 2022, 81(1): 87-99.
[44]
Abate M, Festa A, Falco M, et al. Mitochondria as playmakers of apoptosis, autophagy and senescence[J]. Semin Cell Dev Biol, 2020, 98: 139-153.
[45]
Zheng W, Zhang H, Jin Y, et al. Butein inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes and slows the progression of osteoarthritis in mice[J]. IntImmunopharmacol, 2017, 42: 1-10.
[46]
Ismail HM, Yamamoto K, Vincent TL, et al. Interleukin-1 acts via the JNK-2 signaling pathway to induce aggrecan degradation by human chondrocytes[J]. Arthritis Rheumatol, 2015, 67(7): 1826-1836.
[47]
Hamilton JL, Nagao M, Levine BR, et al. Targeting VEGF and its receptors for the treatment of osteoarthritis and associated pain[J]. J Bone Miner Res, 2016, 31(5): 911-924.
[48]
Xie J, Wang Y, Lu L, et al. Cellular senescence in knee osteoarthritis: molecular mechanisms and therapeutic implications[J/OL]. Ageing Res Rev, 2021, 70: 101413. DOI:10.1016/j.arr.2021.101413.
[49]
Wu CJ, Liu RX, Huan SW, et al. Senescent skeletal cells cross-talk with synovial cells plays a key role in the pathogenesis of osteoarthritis[J/OL]. Arthritis Res Ther, 2022, 24(1): 59. DOI:10.1186/s13075-022-02747-4.
[50]
Zhang XX, He SH, Liang X, et al. Aging, cell senescence, the pathogenesis and targeted therapies of osteoarthritis[J/OL]. Front Pharmacol, 2021, 12: 728100. DOI:10.3389/fphar.2021.728100.
[51]
Hsu B, Visich J, Lane NE, et al. Safety, tolerability, pharmacokinetics, and clinical outcomes following treatment of painful knee osteoarthritis with senolytic molecule UBX0101[J]. Osteoarthr Cartil, 2020, 28: S479-S480.
[52]
Farr JN, Atkinson EJ, Achenbach SJ, et al. Effects of intermittent senolytic therapy on bone metabolism in postmenopausal women: a phase 2 randomized controlled trial[J]. Nat Med, 2024, 30(9): 2605-2612.
[53]
Maurer S, Kirsch V, Ruths L, et al. Senolytic therapy combining dasatinib and quercetin restores the chondrogenic phenotype of human osteoarthritic chondrocytes by the release of pro-anabolic mediators[J/OL]. Aging Cell, 2025, 24(1): e14361. DOI:10.1111/acel.14361.
[54]
Jeon OH, Kim C, Laberge RM, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment[J]. Nat Med, 2017, 23(6): 775-781.
[55]
Li Y, Dong J, Qin JJ. Small molecule inhibitors targeting heat shock protein 90: an updated review[J/OL]. Eur J Med Chem, 2024, 275: 116562. DOI:10.1016/j.ejmech.2024.116562.
[56]
Zhu H, Chen K, Chen Y, et al. RNA-binding protein ZCCHC4 promotes human cancer chemoresistance by disrupting DNA-damage-induced apoptosis[J/OL]. Signal Transduct Target Ther, 2022, 7(1): 240. DOI:10.1038/s41392-022-01033-8.
[57]
Chen S, Wang Y, Zhang H, et al. The antioxidant MitoQ protects against CSE-induced endothelial barrier injury and inflammation by inhibiting ROS and autophagy in human umbilical vein endothelial cells[J]. Int J Biol Sci, 15(7): 1440-1451.
[58]
Liu C, Lin K, Xie Z, et al. Telomerase reverse transcriptase regulates intracellular Ca2+homeostasis and mitochondrial function via the p53/PGC-1α pathway in HL-1 cells[J/OL]. Front Biosci, 2024, 29(7): 263. DOI:10.31083/j.fbl2907263.
[59]
Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts[J]. Nature, 1990, 345(6274): 458-460.
[60]
Fernandez ML, Thomas MS, Lemos BS, et al. TA-65, A telomerase activator improves cardiovascular markers in patients with metabolic syndrome[J]. Curr Pharm Des, 2018, 24(17): 1905-1911.
[61]
Ogden TEH, Yang JC, Schimpl M, et al. Dynamics of the HD regulatory subdomain of PARP-1; substrate access and allostery in PARP activation and inhibition[J]. Nucleic Acids Res, 2021, 49(4): 2266-2288.
[62]
Chen M, Mao A, Xu M, et al. CRISPR-Cas9 for cancer therapy: Opportunities and challenges[J]. Cancer Lett, 2019, 447: 48-55.
[63]
Artigas N, Gámez B, Cubillos-Rojas M, et al. p53 inhibits SP7/Osterix activity in the transcriptional program of osteoblast differentiation[J]. Cell Death Differ, 2017, 24(12): 2022-2031.
[64]
Chien Y, Scuoppo C, Wang X, et al. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity[J]. Genes Dev, 2011, 25(20): 2125-2136.
[65]
Gillmore JD, Gane E, Taubel J, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis [J]. N Engl J Med, 2021, 385(6): 493-502.
[66]
Li X, Dai B, Guo J, et al. Nanoparticle-cartilage interaction: pathology-based intra-articular drug delivery for osteoarthritis therapy[J/OL]. Nanomicro Lett, 2021, 13(1): 149. DOI:10.1007/s40820-021-00670-y.
[67]
Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149-157.
[69]
Cheng S, Xu X, Wang R, et al. Chondroprotective effects of bone marrow mesenchymal stem cell-derived exosomes in osteoarthritis[J]. J Bioenerg Biomembr, 2024, 56(1): 31-44.
[70]
Sun W, Qu S, Ji M, et al. BMP-7 modified exosomes derived from synovial mesenchymal stem cells attenuate osteoarthritis by M2 polarization of macrophages[J/OL]. Heliyon, 2023, 9(9): e19934. DOI:10.1016/j.heliyon.2023.e19934.
[1] 陈波波, 王冠乔, 王宏煜, 侯建业, 田野. 骨代谢指标与关节软骨损伤Outerbridge分级的相关性研究[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 418-426.
[2] 姚放鸣, 谷邦宁, 杨旭辉, 曾子俊, 吴佳威, 何敏聪, 何晓铭, 魏秋实, 何伟, 刘文刚. 下肢肌肉分布与内翻型膝骨关节炎进展及肌少症的相关性[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 292-301.
[3] 周莹佳, 李嘉欢, 黎浩霖, 乔永杰. 初级纤毛及刺猬蛋白信号通路在骨关节炎中的作用[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 330-335.
[4] 钟永洌, 张杰, 张志奇. 外翻膝术后中立位机械对线的早中期疗效[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 366-373.
[5] 王浩浩, 席刚, 杨家驹, 翁铭捷, 张民. 术前膝关节冠状面力线对牛津单髁术后力线的影响分析[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 156-161.
[6] 王春久, 田向东, 谭冶彤, 薛志鹏, 张伟, 刘昂. 单平面胫骨高位截骨联合关节镜治疗内翻型膝骨关节炎[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 185-192.
[7] 陈博, 李向毅. 骨关节炎中软骨细胞铜死亡的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 207-213.
[8] 林晓东, 周宜, 章家皓, 赵传喜, 刘军, 刘文刚. 如何在中度外翻膝关节置换中实现假体功能性对线[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 116-121.
[9] 王玺玉, 赵俊杰, 黄鹏飞, 张兆坤, 赵宇昊, 赵海燕. 基质金属蛋白酶响应性水凝胶在骨关节炎的应用[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 76-81.
[10] 贾艳慧, 原毅轩, 官浩, 胡大海. 清除衰老细胞在减轻脓毒症小鼠急性肺损伤中的作用机制探讨[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 55-60.
[11] 绳春佳, 陈雨浩, 彭飞, 夏纪凯, 李晓帆, 陈健文, 张楚悦, 吴玲玲, 刘娇娜, 白雪源, 陈香美. 表没食子儿茶素没食子酸酯通过抑制细胞衰老改善小鼠急性肾损伤[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 133-139.
[12] 肖文韬, 谢培森, 康清源, 张克石, 关振鹏. 对家族聚集性膝骨关节炎家系的基因测序及在普通人群中的初步验证[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 337-345.
[13] 谢培森, 张绍龙, 张克石, 关振鹏. Circ_0136474增强软骨细胞自噬抑制骨关节炎软骨缺损[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 374-381.
[14] 康清源, 张克石, 肖文韬, 谢培森, 东黎光, 袁平, 关振鹏. 在职钢铁工人群体膝关节骨关节炎流行情况及其可能的危险因素调查[J/OL]. 中华临床医师杂志(电子版), 2025, 19(04): 248-255.
[15] 王峰, 张城榕, 刘婷婷, 李涛, 庞思思. IGF2BP3表达下调在结肠癌细胞衰老中的意义及其调控机制研究[J/OL]. 中华胃食管反流病电子杂志, 2025, 12(01): 22-32.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?