[1] |
Safiri S, Kolahi AA, Smith E, et al. Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017 [J]. Ann Rheum Dis, 2020, 79(6): 819-828.
|
[2] |
中华医学会骨科学分会关节外科学组, 中国医师协会骨科医师分会骨关节炎学组, 国家老年疾病临床医学研究中心, 等. 中国骨关节炎诊疗指南(2021年版)[J]. 中华骨科杂志, 2021, 41(18): 1291-1314.
|
[3] |
中华医学会骨科学分会关节外科学组. 骨关节炎诊疗指南(2018年版)[J]. 中华骨科杂志, 2018, 38(12): 705-715.
|
[4] |
中华医学会骨科学分会. 骨关节炎诊治指南(2007年版)[J]. 中国矫形外科杂志, 2014, 22(3): 287-288.
|
[5] |
Constantino de Campos G, Mundi R, Whittington C, et al. Osteoarthritis, mobility-related comorbidities and mortality: an overview of meta-analyses[J/OL]. Ther Adv Musculoskelet Dis, 2020, 12: 1759720X20981219. DOI: 10.1177/1759720X20981219.
|
[6] |
Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis [J/OL]. Nat Rev Dis Primers, 2016, 2: 16072. DOI: 10.1038/nrdp.2016.72.
|
[7] |
薛庆云, 王坤正, 裴福兴, 等. 中国40岁以上人群原发性骨关节炎患病状况调查[J]. 中华骨科杂志, 2015, 35(12):1206-1212.
|
[8] |
Long H, Zeng X, Liu Q, et al. Burden of osteoarthritis in China, 1990-2017: findings from the global burden of disease study 2017[J/OL]. Lancet Rheumatol, 2020, 2(3): e164-e172. DOI: 10.1016/S2665-9913(19)30145-6.
|
[9] |
Coryell PR, Diekman BO, Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis[J]. Nat Rev Rheumatol, 2021, 17(1): 47-57.
|
[10] |
Xu M, Ji Y. Immunoregulation of synovial macrophages for the treatment of osteoarthritis[J/OL]. Open Life Sci, 2023, 18(1): 20220567. DOI: 10.1515/biol-2022-0567.
|
[11] |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440.
|
[12] |
Horváth E, Sólyom á, Székely J, et al. Inflammatory and metabolic signaling interfaces of the hypertrophic and senescent chondrocyte phenotypes associated with osteoarthritis[J/OL]. Int J Mol Sci, 2023, 24(22): 16468. DOI: 10.3390/ijms242216468.
|
[13] |
Pandey A, Bhutani N. Profiling joint tissues at single-cell resolution: advances and insights[J]. Nat Rev Rheumatol, 2024, 20(1): 7-20.
|
[14] |
Orecchioni M, Ghosheh Y, Pramod AB, et al. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages[J/OL]. Front Immunol, 2019, 10: 1084. DOI: 10.3389/fimmu.2019.01084.
|
[15] |
Wang D, Chai XQ, Hu SS, et al. Joint synovial macrophages as a potential target for intra-articular treatment of osteoarthritis-related pain[J]. Osteoarthr Cartil, 2022, 30(3): 406-415.
|
[16] |
Liang C, Wu S, Xia G, et al. Engineered M2a macrophages for the treatment of osteoarthritis[J/OL]. Front Immunol, 2022, 13: 1054938. DOI: 10.3389/fimmu.2022.1054938.
|
[17] |
Zhu X, Lee CW, Xu H, et al. Phenotypic alteration of macrophages during osteoarthritis: a systematic review[J/OL]. Arthritis Res Ther, 2021, 23(1): 110. DOI: 10.1186/s13075-021-02457-3.
|
[18] |
Wang MG, Seale P, Furman D. The infrapatellar fat pad in inflammaging, knee joint health, and osteoarthritis[J/OL]. NPJ Aging, 2024, 10(1): 34. DOI: 10.1038/s41514-024-00159-z.
|
[19] |
Zhang H, Lin C, Zeng C, et al. Synovial macrophage M1 polarisation exacerbates experimental osteoarthritis partially through R-spondin-2[J]. Ann Rheum Dis, 2018, 77(10): 1524-1534.
|
[20] |
张恩尉, 张弘韬, 刘峰舟, 等. 雌二醇通过与雌激素受体β结合抑制骨关节炎滑膜细胞的NF-κB通路发挥抗炎作用[J]. 细胞与分子免疫学杂志, 2016, 32(12): 1605-1609, 1614.
|
[21] |
Lagoumtzi SM, Chondrogianni N. Senolytics and senomorphics: Natural and synthetic therapeutics in the treatment of aging and chronic diseases[J]. Free Radic Biol Med, 2021, 171: 169-190.
|
[22] |
Davalos AR, Coppe JP, Campisi J, et al. Senescent cells as a source of inflammatory factors for tumor progression[J]. Cancer Metastasis Rev, 2010, 29(2): 273-283.
|
[23] |
Wiggins KA, Parry AJ, Cassidy LD, et al. IL-1α cleavage by inflammatory caspases of the noncanonical inflammasome controls the senescence-associated secretory phenotype[J/OL]. Aging Cell, 2019, 18(3): e12946. DOI: 10.1111/acel.12946.
|
[24] |
Jeon OH, David N, Campisi J, et al. Senescent cells and osteoarthritis: a painful connection[J]. J Clin Invest, 2018, 128(4): 1229-1237.
|
[25] |
Childs BG, Gluscevic M, Baker DJ, et al. Senescent cells: an emerging target for diseases of ageing[J]. Nat Rev Drug Discov, 2017, 16(10): 718-735.
|
[26] |
Casella D, Palumbo P, Sandroni S, et al. Positive ROS (reactive oxygen species) modulator engineered device support skin treatment in locally advanced breast cancer (LABC) enhancing patient quality of life[J/OL]. J Clin Med, 2021, 11(1): 126. DOI: 10.3390/jcm11010126.
|
[27] |
Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence[J]. Nat Rev Cancer, 2015, 15(7): 397-408.
|
[28] |
Chaudhary MR, Chaudhary S, Sharma Y, et al. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies[J]. Biogerontology, 2023, 24(5): 609-662.
|
[29] |
Martin JA, Brown T, Heiner A, et al. Post-traumatic osteoarthritis: the role of accelerated chondrocyte senescence[J]. Biorheology, 2004, 41(3-4): 479-491.
|
[30] |
Attur M, Duan X, Cai L, et al. Periostin loss-of-function protects mice from post-traumatic and age-related osteoarthritis[J/OL]. Arthritis Res Ther, 2021, 23(1): 104. DOI: 10.1186/s13075-021-02477-z.
|
[31] |
Ebeid DE, Khalafalla FG, Broughton KM, et al. Pim1 maintains telomere length in mouse cardiomyocytes by inhibiting TGFβ signalling[J]. Cardiovasc Res, 2021, 117(1): 201-211.
|
[32] |
Zhang L, Liu M, Liu W, et al. Th17/IL-17 induces endothelial cell senescence via activation of NF-κB/p53/Rb signaling pathway[J]. Lab Invest, 2021, 101(11): 1418-1426.
|
[33] |
Shay J, Homma N, Zhou R, et al. Abstracts from the 3rd international genomic medicine conference (3rd IGMC 2015)[J]. BMC Genom, 2016.
|
[34] |
Wei Y, Bai L. Recent advances in the understanding of molecular mechanisms of cartilage degeneration, synovitis and subchondral bone changes in osteoarthritis [J]. Connect Tissue Res, 2016, 57(4): 245-261.
|
[35] |
Yu J, Li H, Wu Y, et al. Inhibition of NLRP3 inflammasome activation by A20 through modulation of NEK7 [J/OL]. Proc Natl AcadSci USA, 2024, 121(25): e2316551121. DOI: 10.1073/pnas.2316551121.
|
[36] |
Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology[J]. Nat Rev Mol Cell Biol, 2014, 15(7): 482-496.
|
[37] |
Childs BG, Durik M, Baker DJ, et al. Cellular senescence in aging and age-related disease: from mechanisms to therapy[J]. Nat Med, 2015, 21(12): 1424-1435.
|
[38] |
Martin N, Raguz S, Dharmalingam G, et al. Co-regulation of senescence-associated genes by oncogenic homeobox proteins and polycomb repressive complexes[J]. Cell Cycle, 2013, 12(14): 2194-2199.
|
[39] |
Perrigue PM, Silva ME, Warden CD, et al. The histone demethylase jumonji coordinates cellular senescence including secretion of neural stem cell-attracting cytokines[J]. Mol Cancer Res, 2015, 13(4): 636-650.
|
[40] |
Hayakawa T, Iwai M, Aoki S, et al. SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation[J/OL]. PLoS One, 2015, 10(1): e0116480. DOI: 10.1371/journal.pone.0116480.
|
[41] |
Terlecki-Zaniewicz L, Lämmermann I, Latreille J, et al. Small extracellular vesicles and their miRNA cargo are anti-apoptotic members of the senescence-associated secretory phenotype[J]. Aging, 2018, 10(5): 1103-1132.
|
[42] |
Zhang Y, Liu L, Liu K, et al. Regulatory mechanism of circular RNA involvement in osteoarthritis[J/OL]. Front Surg, 2023, 9: 1049513. DOI: 10.3389/fsurg.2022.1049513.
|
[43] |
Chen X, Gong W, Shao X, et al. METTL3-mediated m6A modification of ATG7 regulates autophagy-GATA4 axis to promote cellular senescence and osteoarthritis progression[J]. Ann Rheum Dis, 2022, 81(1): 87-99.
|
[44] |
Abate M, Festa A, Falco M, et al. Mitochondria as playmakers of apoptosis, autophagy and senescence[J]. Semin Cell Dev Biol, 2020, 98: 139-153.
|
[45] |
Zheng W, Zhang H, Jin Y, et al. Butein inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes and slows the progression of osteoarthritis in mice[J]. IntImmunopharmacol, 2017, 42: 1-10.
|
[46] |
Ismail HM, Yamamoto K, Vincent TL, et al. Interleukin-1 acts via the JNK-2 signaling pathway to induce aggrecan degradation by human chondrocytes[J]. Arthritis Rheumatol, 2015, 67(7): 1826-1836.
|
[47] |
Hamilton JL, Nagao M, Levine BR, et al. Targeting VEGF and its receptors for the treatment of osteoarthritis and associated pain[J]. J Bone Miner Res, 2016, 31(5): 911-924.
|
[48] |
Xie J, Wang Y, Lu L, et al. Cellular senescence in knee osteoarthritis: molecular mechanisms and therapeutic implications[J/OL]. Ageing Res Rev, 2021, 70: 101413. DOI: 10.1016/j.arr.2021.101413.
|
[49] |
Wu CJ, Liu RX, Huan SW, et al. Senescent skeletal cells cross-talk with synovial cells plays a key role in the pathogenesis of osteoarthritis[J/OL]. Arthritis Res Ther, 2022, 24(1): 59. DOI: 10.1186/s13075-022-02747-4.
|
[50] |
Zhang XX, He SH, Liang X, et al. Aging, cell senescence, the pathogenesis and targeted therapies of osteoarthritis[J/OL]. Front Pharmacol, 2021, 12: 728100. DOI: 10.3389/fphar.2021.728100.
|
[51] |
Hsu B, Visich J, Lane NE, et al. Safety, tolerability, pharmacokinetics, and clinical outcomes following treatment of painful knee osteoarthritis with senolytic molecule UBX0101[J]. Osteoarthr Cartil, 2020, 28: S479-S480.
|
[52] |
Farr JN, Atkinson EJ, Achenbach SJ, et al. Effects of intermittent senolytic therapy on bone metabolism in postmenopausal women: a phase 2 randomized controlled trial[J]. Nat Med, 2024, 30(9): 2605-2612.
|
[53] |
Maurer S, Kirsch V, Ruths L, et al. Senolytic therapy combining dasatinib and quercetin restores the chondrogenic phenotype of human osteoarthritic chondrocytes by the release of pro-anabolic mediators[J/OL]. Aging Cell, 2025, 24(1): e14361. DOI: 10.1111/acel.14361.
|
[54] |
Jeon OH, Kim C, Laberge RM, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment[J]. Nat Med, 2017, 23(6): 775-781.
|
[55] |
Li Y, Dong J, Qin JJ. Small molecule inhibitors targeting heat shock protein 90: an updated review[J/OL]. Eur J Med Chem, 2024, 275: 116562. DOI: 10.1016/j.ejmech.2024.116562.
|
[56] |
Zhu H, Chen K, Chen Y, et al. RNA-binding protein ZCCHC4 promotes human cancer chemoresistance by disrupting DNA-damage-induced apoptosis[J/OL]. Signal Transduct Target Ther, 2022, 7(1): 240. DOI: 10.1038/s41392-022-01033-8.
|
[57] |
Chen S, Wang Y, Zhang H, et al. The antioxidant MitoQ protects against CSE-induced endothelial barrier injury and inflammation by inhibiting ROS and autophagy in human umbilical vein endothelial cells[J]. Int J Biol Sci, 15(7): 1440-1451.
|
[58] |
Liu C, Lin K, Xie Z, et al. Telomerase reverse transcriptase regulates intracellular Ca2+homeostasis and mitochondrial function via the p53/PGC-1α pathway in HL-1 cells[J/OL]. Front Biosci, 2024, 29(7): 263. DOI: 10.31083/j.fbl2907263.
|
[59] |
Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts[J]. Nature, 1990, 345(6274): 458-460.
|
[60] |
Fernandez ML, Thomas MS, Lemos BS, et al. TA-65, A telomerase activator improves cardiovascular markers in patients with metabolic syndrome[J]. Curr Pharm Des, 2018, 24(17): 1905-1911.
|
[61] |
Ogden TEH, Yang JC, Schimpl M, et al. Dynamics of the HD regulatory subdomain of PARP-1; substrate access and allostery in PARP activation and inhibition[J]. Nucleic Acids Res, 2021, 49(4): 2266-2288.
|
[62] |
Chen M, Mao A, Xu M, et al. CRISPR-Cas9 for cancer therapy: Opportunities and challenges[J]. Cancer Lett, 2019, 447: 48-55.
|
[63] |
Artigas N, Gámez B, Cubillos-Rojas M, et al. p53 inhibits SP7/Osterix activity in the transcriptional program of osteoblast differentiation[J]. Cell Death Differ, 2017, 24(12): 2022-2031.
|
[64] |
Chien Y, Scuoppo C, Wang X, et al. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity[J]. Genes Dev, 2011, 25(20): 2125-2136.
|
[65] |
Gillmore JD, Gane E, Taubel J, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis [J]. N Engl J Med, 2021, 385(6): 493-502.
|
[66] |
Li X, Dai B, Guo J, et al. Nanoparticle-cartilage interaction: pathology-based intra-articular drug delivery for osteoarthritis therapy[J/OL]. Nanomicro Lett, 2021, 13(1): 149. DOI: 10.1007/s40820-021-00670-y.
|
[67] |
Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149-157.
|
[69] |
Cheng S, Xu X, Wang R, et al. Chondroprotective effects of bone marrow mesenchymal stem cell-derived exosomes in osteoarthritis[J]. J Bioenerg Biomembr, 2024, 56(1): 31-44.
|
[70] |
Sun W, Qu S, Ji M, et al. BMP-7 modified exosomes derived from synovial mesenchymal stem cells attenuate osteoarthritis by M2 polarization of macrophages[J/OL]. Heliyon, 2023, 9(9): e19934. DOI: 10.1016/j.heliyon.2023.e19934.
|