[1] |
胡银华, 薛龙. 中国中老年人症状性膝骨关节炎的发病率及危险因素[J/OL]. 中华关节外科杂志(电子版), 2023, 17(04): 470-478.
|
[2] |
姚放鸣, 焦莹莹, 何敏聪, 等. 膝骨关节炎患者的肌少症发病率及发病特点分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(1): 30-38.
|
[3] |
Chakraborty J, Mukhopadhyay S, Singla V, et al. Automatic detection of pectoral muscle using average gradient and shape based feature[J]. J Digit Imag, 2012, 25(3): 387-399.
|
[4] |
Bora VB, Kothari AG, Keskar AG. Robust automatic pectoral muscle segmentation from mammograms using texture gradient and euclidean distance regression[J]. J Digit Imaging, 2016, 29(1): 115-125.
|
[5] |
Kohn MD, Sassoon AA, Fernando ND. Classifications in brief: Kellgren-Lawrence classification of osteoarthritis[J]. Clin Orthop Relat Res, 2016, 474(8): 1886-1893.
|
[6] |
ChenLK, LiuLK, Woo J, et al. Sarcopenia in Asia: consensus report of the Asian working group for sarcopenia[J]. J Am Med Dir Assoc, 2014, 15(2): 95-101.
|
[7] |
Hwang D, Ahn S, Park YB, et al. Deep learning-based muscle segmentation and quantification of full-leg plain radiograph for sarcopenia screening in patients undergoing total knee arthroplasty[J/OL]. J Clin Med, 2022, 11(13): 3612. DOI: 10.3390/jcm11133612.
|
[8] |
Gimigliano F, Moretti A, de Sire A, et al. The combination of vitamin D deficiency and overweight affects muscle mass and function in older post-menopausal women[J]. Aging Clin Exp Res, 2018, 30(6): 625-631.
|
[9] |
Sekiya I, Sasaki S, Miura Y, et al. Medial tibial osteophyte width strongly reflects medial Meniscus extrusion distance and medial joint space width moderately reflects cartilage thickness in knee radiographs[J]. J Magn Reson Imaging, 2022, 56(3): 824-834.
|
[10] |
Cruz-Jentoft AJ, Sayer AA. Sarcopenia[J]. Lancet, 2019, 393(10191): 2636-2646.
|
[11] |
Clynes MA, Gregson CL, Bruyère O, et al. Osteosarcopenia: where osteoporosis and sarcopenia collide[J]. Rheumatology, 2021, 60(2): 529-537.
|
[12] |
Pegreffi F, Balestra A, De Lucia O, et al. Prevalence of sarcopenia in knee osteoarthritis: a systematic review and meta-analysis[J/OL]. J Clin Med, 2023, 12(4): 1532 DOI: 10.3390/jcm12041532.
|
[13] |
Kim HI, Ahn SH, Kim Y, et al. Effects of sarcopenia and sarcopenic obesity on joint pain and degenerative osteoarthritis in postmenopausal women[J/OL]. Sci Rep, 2022, 12(1): 13543. DOI: 10.1038/s41598-022-17451-1.
|
[14] |
Wei W, Xie C, Cao R, et al. Ultrasound assessment of the gastrocnemius muscle as a potential tool for identifying sarcopenia in patients with type 2 diabetes[J]. Diabetes Metab Syndr Obes, 2023, 16: 3435-3444.
|
[15] |
Lyu Q, Wen Y, He B, et al. The ameliorating effects of metformin on disarrangement ongoing in gastrocnemius muscle of sarcopenic and obese sarcopenic mice[J/OL]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(11): 166508. DOI: 10.1016/j.bbadis.2022.166508.
|
[16] |
Xu X, Chen Y, Cai W, et al. A multivariable model based on ultrasound imaging features of gastrocnemius muscle to identify patients with sarcopenia[J]. J Ultrasound Med, 2023, 42(9): 2045-2055.
|
[17] |
Kuyumcu ME, Halil M, Kara Ö, et al. Ultrasonographic evaluation of the calf muscle mass and architecture in elderly patients with and without sarcopenia[J]. Arch Gerontol Geriatr, 2016, 65: 218-224.
|
[18] |
Chang KV, Wu WT, Huang KC, et al. Limb muscle quality and quantity in elderly adults with dynapenia but not sarcopenia: an ultrasound imaging study[J]. Exp Gerontol, 2018, 108: 54-61.
|
[19] |
Hatzantonis C, Satkunam L, Rabey KN, et al. Fatty infiltration of gastrocnemius-soleus muscle complex: Considerations for myosteatosis rehabilitation[J]. J Anat, 2024, 245(1): 50-57.
|
[20] |
Rocco J, Putzer D, Nogler M, et al. The effect of gastrocnemius resection on knee flexion in a total knee arthroplasty model[J]. Arch Orthop Trauma Surg, 2022, 142(10): 2503-2511.
|
[21] |
Aily JB, de Noronha M, de Almeida AC, et al. Evaluation of vastus lateralis architecture and strength of knee extensors in middle-aged and older individuals with knee osteoarthritis[J]. Clin Rheumatol, 2019, 38(9): 2603-2611.
|
[22] |
Levinger I, Levinger P, Trenerry MK, et al. Increased inflammatory cytokine expression in the vastus lateralis of patients with knee osteoarthritis[J]. Arthritis Rheum, 2011, 63(5): 1343-1348.
|
[23] |
Noehren B, Kosmac K, Walton RG, et al. Alterations in quadriceps muscle cellular and molecular properties in adults with moderate knee osteoarthritis[J]. Osteoarthritis Cartilage, 2018, 26(10): 1359-1368.
|
[24] |
Yagi M, Taniguchi M, Tateuchi H, et al. Relationship between individual forces of each quadriceps head during low-load knee extension and cartilage thickness and knee pain in women with knee osteoarthritis[J/OL]. Clin Biomech, 2022, 91: 105546. DOI: 10.1016/j.clinbiomech.2021.105546.
|
[25] |
Bellemans J, Vandenneucker H, Vanlauwe J, et al. The influence of coronal plane deformity on mediolateral ligament status: an observational study in Varusknees[J]. Knee Surg Sports Traumatol Arthrosc, 2010, 18(2): 152-156.
|
[26] |
Haberkamp S, Oláh T, Orth P, et al. Analysis of spatial osteochondral heterogeneity in advanced knee osteoarthritis exposes influence of joint alignment[J/OL]. Sci Transl Med, 2020, 12 (562): eaba9481. DOI: 10.1126/scitranslmed.aba9481.
|
[27] |
Oláh T, Reinhard J, Laschke MW, et al. Axial alignment is a critical regulator of knee osteoarthritis[J/OL]. Sci Transl Med, 2022, 14(629): eabn0179. DOI: 10.1126/scitranslmed.abn0179.
|
[28] |
Kean CO, Birmingham TB, Garland JS, et al. Moments and muscle activity after high tibial osteotomy and anterior cruciate ligament reconstruction[J]. Med Sci Sports Exerc, 2009, 41(3): 612-619.
|
[29] |
Ramsey DK, Snyder-Mackler L, Lewek M, et al. Effect of anatomic realignment on muscle function during gait in patients with medial compartment knee osteoarthritis[J]. Arthritis Rheum, 2007, 57(3): 389-397.
|
[30] |
Otsuki S, Nakajima M, Okamoto Y, et al. Correlation between Varus knee malalignment and patellofemoral osteoarthritis[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(1): 176-181.
|