切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (03) : 292 -301. doi: 10.3877/cma.j.issn.1674-134X.2025.03.005

临床论著

下肢肌肉分布与内翻型膝骨关节炎进展及肌少症的相关性
姚放鸣1, 谷邦宁1, 杨旭辉1, 曾子俊1, 吴佳威1, 何敏聪2,3,4,(), 何晓铭2,3, 魏秋实2,3,4, 何伟2,3, 刘文刚4,5   
  1. 1510145 广州中医药大学第三临床医学院
    2510145 广州中医药大学第三附属医院关节中心
    3510145 广州,广东省中医骨伤研究院
    4510095 广州,广东省中医药研究开发重点实验室
    5510030 广州,广东省第二中医院骨伤一科(骨关节病科)(广东省中医药工程技术研究院)
  • 收稿日期:2024-10-22 出版日期:2025-06-01
  • 通信作者: 何敏聪
  • 基金资助:
    广东省中医药局中医药科研项目(科研平台专项)(20233002); 广东省中医药研究开发重点实验室开放基金资助课题(KFKT-01-003); 广东省中医药重点学科建设项目(20220101); 广东省中医骨伤研究院开放基金课题一般项目(GYH202102-03); 广东省中医骨伤研究院开放课题基金项目(GYH202201-01); 广东省中医骨伤研究院开放基金课题青年基金项目(GYH202201-03); 广州中医药大学第三附属医院科研创新基金课题(Sy2022003)

Correlations between lower limb muscle distribution and sarcopenia with varus knee osteoarthritis progression

Fangming Yao1, Bangning Gu1, Xuhui Yang1, Zijun Zeng1, Jiawei Wu1, Mincong He2,3,4,(), Xiaoming He2,3, Qiushi Wei2,3,4, Wei He2,3, Wengang Liu4,5   

  1. 1The Third Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510145, China
    2The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510145, China
    3Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou 510145, China
    4Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, China
    5Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Research Institute of Traditional Chinese Medicine Manufacturing Technology), Guangzhou 510030, China
  • Received:2024-10-22 Published:2025-06-01
  • Corresponding author: Mincong He
引用本文:

姚放鸣, 谷邦宁, 杨旭辉, 曾子俊, 吴佳威, 何敏聪, 何晓铭, 魏秋实, 何伟, 刘文刚. 下肢肌肉分布与内翻型膝骨关节炎进展及肌少症的相关性[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 292-301.

Fangming Yao, Bangning Gu, Xuhui Yang, Zijun Zeng, Jiawei Wu, Mincong He, Xiaoming He, Qiushi Wei, Wei He, Wengang Liu. Correlations between lower limb muscle distribution and sarcopenia with varus knee osteoarthritis progression[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2025, 19(03): 292-301.

目的

本研究拟基于内翻型膝骨关节炎(KOA)患者的数字化X线摄影(DR)下肢全长正位片,进行下肢肌肉分布范围的描绘和分割,定量分析下肢各部位肌肉丰度,探究其与KOA疾病进展及肌少症(SP)患病风险之间的关系。

方法

按纳入排除标准共收集2023年1月至2023年7月于广州中医药大学第三附属医院关节中心住院治疗的KOA患者共57例(80侧下肢)。纳入标准:近1个月内膝关节疼痛,年龄≥50岁,晨僵时间<30 min,X线片提示膝关节间隙变窄、软骨下骨硬化和/或囊性变、骨赘形成;排除标准:诊断为外翻型KOA或其他类型关节炎,合并有影响下肢肢体功能的其他疾病,合并有其他病因导致的下肢外观畸形,无法配合数据收集。收集一般资料,包括性别、年龄、身高、体重、身体质量指数(BMI)、是否有糖尿病、高血压;基于DR下肢全长正位片提取股骨外侧、股骨内侧、胫骨内侧、胫腓骨间和腓骨外侧5个部分的肌肉面积指数,以及髋膝踝角(HKA)、关节线夹角(JLCA)、膝关节内侧关节间隙宽度(MJSW)、外侧关节间隙宽度(LJSW)等膝关节相关数据;基于双能X线吸收仪(DXA)获取四肢骨骼肌质量指数(ASMI)。按照亚洲肌少症工作组提出的肌少症诊断标准将患者分为肌少症-膝骨关节炎(SP-KOA)组和膝骨关节炎(KOA)组,根据Kellgren-Lawrence(K-L)分级将患者分为KOA轻症组(K-L1~2级)和KOA重症组(K-L3~4级),并分别进行组间分析。采用秩和检验、独立样本t检验、卡方检验等对不同数据类型的资料进行组间分析。采用二元logistic回归分析各部位肌肉面积指数与KOA严重程度及SP患病风险的相关性,采用线性回归分析各部位肌肉占比与KOA内翻程度的相关性,并构建受试者工作特征曲线(ROC)。

结果

二元logistic回归分析提示胫骨内侧肌肉面积指数[比值比(OR)=0.068, 95%置信区间(CI)(0.011, 0.407)]对SP发病的影响有统计学意义,ROC曲线下面积(AUC)为0.732 [95% CI(0.625,0.843),P<0.001],最佳截断值为1.457,敏感度为85.3%,特异度为52.2%。年龄[OR =1.11, 95% CI(1.024, 1.203)]、股骨外侧肌肉面积指数[OR=0.321, 95% CI(0.127, 0.806)]对KOA病理进程加重有统计学意义[AUC=0.782,95% CI(0.682,0.881), P<0.001]。年龄最佳截断值为68岁,股骨外侧肌肉面积指数最佳截断值为2.760,敏感度为87.5%,特异度为55.0%,且股骨内/外侧肌肉面积指数比与膝内翻畸形程度相关[与HKA显著负相关(t=-2.64,P<0.05),与JLCA显著正相关(t=2.38,P<0.05),与MJSW显著负相关(t=-3.07,P<0.05)]。

结论

在内翻型KOA患者中,股骨外侧肌肉的萎缩及股骨内/外侧肌肉分布失衡可能与KOA病理进程加重有关,而胫骨内侧肌肉的萎缩可能与KOA患者中SP发病相关。针对KOA患者的特定肌群制定针对性康复锻炼策略有助于缓解KOA病理进程及SP的发病。

Objective

To delineate and segment the lower limb muscle distribution in patients with varus knee osteoarthritis (KOA) using full-length anteroposterior digital radiographs (DR), quantitatively assess muscle abundance in different lower limb regions, and to explore its associations with KOA progression and the risk of sarcopenia (SP).

Methods

A total of 57 patients (80 lower limbs) diagnosed with KOA and hospitalized in the Joint Center of the Third Affiliated Hospital of Guangzhou University of Chinese Medicine between January 2023 and July 2023 were enrolled based on inclusion and exclusion criteria. Inclusion criteria were: knee pain within the past month, age ≥ 50 years, morning stiffness lasting <30 min, and radiographic evidence of joint space narrowing, subchondral sclerosis and/or cysts, and osteophyte formation. Exclusion criteria: valgus KOA or other types of arthritis, comorbidities affecting lower limb function, limb deformities of non-KOA origin, or inability to cooperate with data collection. Demographic data such as gender, age, height, weight, body mass index (BMI), and presence of diabetes or hypertension were collected. Muscle area indices were extracted from five anatomical regions-lateral femur, medial femur, medial tibia, crural interosseous region, and lateral fibula-based on full-length DR images. KOA-related radiographic parameters such as hip-knee-ankle angle (HKA), joint line convergence angle (JLCA), medial joint space width (MJSW), and lateral joint space width (LJSW) were also recorded. Appendicular skeletal muscle mass index (ASMI) was assessed using dual-energy X-ray absorptiometry (DXA). Patients were classified into SP-KOA and KOA groups according to the diagnostic criteria for sarcopenia proposed by the Asian Working Group for Sarcopenia (AWGS), and further categorized into mild KOA [Kellgren & Lawrence (K-L) grade one to two] and severe KOA (grade three to four) groups for comparative analysis. Group comparisons were conducted using Mann-Whitney U test, independent samples t test, and chi square test as appropriate. Binary logistic regression was used to assess the associations between regional muscle area indices and KOA severity or SP risk. Linear regression was employed to evaluate the relationship between muscle distribution ratios and the degree of varus deformity. Receiver operating characteristic (ROC) curves were constructed to determine predictive value.

Results

Binary logistic regression analysis indicated that the tibial medial muscle area index was significantly associated with SP risk [odds ratio (OR)=0.068, 95% confidence interval (CI) (0.011, 0.407)], with area under the curve (AUC) of 0.732 [95% CI (0.625, 0.843), P<0.001], optimal cut-off value of 1.457, sensitivity of 85.3%, and specificity of 52.2%. Age [OR=1.11, 95% CI (1.024, 1.203)] and femoral lateral muscle area index [OR=0.321, 95% CI (0.127, 0.806)] were significantly associated with KOA progression [AUC=0.782, 95% CI (0.682, 0.881), P<0.001], with optimal thresholds of 68 years for age and 2.760 for femoral lateral muscle area index, respectively, yielding a sensitivity of 87.5% and specificity of 55.0%. Moreover, the medial-to-lateral femoral muscle area index ratio was significantly correlated with the degree of varus deformity: negatively correlated with HKA (t=-2.64, P<0.05), positively correlated with JLCA (t=2.38, P<0.05), and negatively correlated with MJSW (t=-3.07, P<0.05).

Conclusions

In patients with varus KOA, atrophy of the lateral femoral muscle and imbalance in medial-to-lateral femoral muscle distribution may contribute to disease progression, while medial tibial muscle atrophy may be associated with increased SP risk. Tailored rehabilitation strategies targeting specific muscle groups may help mitigate KOA progression and reduce the incidence of sarcopenia.

图1 参照Hwang等[7]的方法进行下肢肌肉分布测绘
Figure 1 The lower limb muscle distribution mapping according to the method described by Hwang et al[7]
表1 KOA组与SP-KOA组基线资料及下肢肌肉分布对比
Table 1 Comparison of baseline data and lower limb muscle distribution between KOA group and SP-KOA group
表2 KOA患者SP患病危险因素的二元logistic回归分析
Table 2 Logistic regression analysis on risk factors for SP disease in KOA patients
图2 关于SP-KOA(肌少症-膝骨关节炎)诊断的ROC(受试者工作特征)曲线
Figure 2 ROC (receiver operating characteristic curve) for the diagnosis of SP-KOA (sarcopenia-knee osteoarthritis)
表3 KOA轻症组与KOA重症组基线资料及下肢肌肉分布对比
Table 3 Comparison of baseline data and lower limb muscle distribution between the mild KOA group and the severe KOA group
表4 关于KOA患者病程进展危险因素的二元logistic回归分析
Table 4 Logistic regression analysis on risk factors for disease progression in patients with KOA
图3 关于KOA(膝骨关节炎)轻重症诊断的ROC(受试者工作特征)曲线
Figure 3 ROC (receiver operating characteristic curve) for diagnosis of mild and severe KOA (knee osteoarthritis)
表5 HKA、JLCA、MJSW的多因素线性回归分析
Table 5 Multivariate linear regression analysis of HKA, JLCA, MJSW
[1]
胡银华, 薛龙. 中国中老年人症状性膝骨关节炎的发病率及危险因素[J/OL]. 中华关节外科杂志(电子版), 2023, 17(04): 470-478.
[2]
姚放鸣, 焦莹莹, 何敏聪, 等. 膝骨关节炎患者的肌少症发病率及发病特点分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(1): 30-38.
[3]
Chakraborty J, Mukhopadhyay S, Singla V, et al. Automatic detection of pectoral muscle using average gradient and shape based feature[J]. J Digit Imag, 2012, 25(3): 387-399.
[4]
Bora VB, Kothari AG, Keskar AG. Robust automatic pectoral muscle segmentation from mammograms using texture gradient and euclidean distance regression[J]. J Digit Imaging, 2016, 29(1): 115-125.
[5]
Kohn MD, Sassoon AA, Fernando ND. Classifications in brief: Kellgren-Lawrence classification of osteoarthritis[J]. Clin Orthop Relat Res, 2016, 474(8): 1886-1893.
[6]
ChenLK, LiuLK, Woo J, et al. Sarcopenia in Asia: consensus report of the Asian working group for sarcopenia[J]. J Am Med Dir Assoc, 2014, 15(2): 95-101.
[7]
Hwang D, Ahn S, Park YB, et al. Deep learning-based muscle segmentation and quantification of full-leg plain radiograph for sarcopenia screening in patients undergoing total knee arthroplasty[J/OL]. J Clin Med, 2022, 11(13): 3612. DOI:10.3390/jcm11133612.
[8]
Gimigliano F, Moretti A, de Sire A, et al. The combination of vitamin D deficiency and overweight affects muscle mass and function in older post-menopausal women[J]. Aging Clin Exp Res, 2018, 30(6): 625-631.
[9]
Sekiya I, Sasaki S, Miura Y, et al. Medial tibial osteophyte width strongly reflects medial Meniscus extrusion distance and medial joint space width moderately reflects cartilage thickness in knee radiographs[J]. J Magn Reson Imaging, 2022, 56(3): 824-834.
[10]
Cruz-Jentoft AJ, Sayer AA. Sarcopenia[J]. Lancet, 2019, 393(10191): 2636-2646.
[11]
Clynes MA, Gregson CL, Bruyère O, et al. Osteosarcopenia: where osteoporosis and sarcopenia collide[J]. Rheumatology, 2021, 60(2): 529-537.
[12]
Pegreffi F, Balestra A, De Lucia O, et al. Prevalence of sarcopenia in knee osteoarthritis: a systematic review and meta-analysis[J/OL]. J Clin Med, 2023, 12(4): 1532 DOI:10.3390/jcm12041532.
[13]
Kim HI, Ahn SH, Kim Y, et al. Effects of sarcopenia and sarcopenic obesity on joint pain and degenerative osteoarthritis in postmenopausal women[J/OL]. Sci Rep, 2022, 12(1): 13543. DOI:10.1038/s41598-022-17451-1.
[14]
Wei W, Xie C, Cao R, et al. Ultrasound assessment of the gastrocnemius muscle as a potential tool for identifying sarcopenia in patients with type 2 diabetes[J]. Diabetes Metab Syndr Obes, 2023, 16: 3435-3444.
[15]
Lyu Q, Wen Y, He B, et al. The ameliorating effects of metformin on disarrangement ongoing in gastrocnemius muscle of sarcopenic and obese sarcopenic mice[J/OL]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(11): 166508. DOI:10.1016/j.bbadis.2022.166508.
[16]
Xu X, Chen Y, Cai W, et al. A multivariable model based on ultrasound imaging features of gastrocnemius muscle to identify patients with sarcopenia[J]. J Ultrasound Med, 2023, 42(9): 2045-2055.
[17]
Kuyumcu ME, Halil M, Kara Ö, et al. Ultrasonographic evaluation of the calf muscle mass and architecture in elderly patients with and without sarcopenia[J]. Arch Gerontol Geriatr, 2016, 65: 218-224.
[18]
Chang KV, Wu WT, Huang KC, et al. Limb muscle quality and quantity in elderly adults with dynapenia but not sarcopenia: an ultrasound imaging study[J]. Exp Gerontol, 2018, 108: 54-61.
[19]
Hatzantonis C, Satkunam L, Rabey KN, et al. Fatty infiltration of gastrocnemius-soleus muscle complex: Considerations for myosteatosis rehabilitation[J]. J Anat, 2024, 245(1): 50-57.
[20]
Rocco J, Putzer D, Nogler M, et al. The effect of gastrocnemius resection on knee flexion in a total knee arthroplasty model[J]. Arch Orthop Trauma Surg, 2022, 142(10): 2503-2511.
[21]
Aily JB, de Noronha M, de Almeida AC, et al. Evaluation of vastus lateralis architecture and strength of knee extensors in middle-aged and older individuals with knee osteoarthritis[J]. Clin Rheumatol, 2019, 38(9): 2603-2611.
[22]
Levinger I, Levinger P, Trenerry MK, et al. Increased inflammatory cytokine expression in the vastus lateralis of patients with knee osteoarthritis[J]. Arthritis Rheum, 2011, 63(5): 1343-1348.
[23]
Noehren B, Kosmac K, Walton RG, et al. Alterations in quadriceps muscle cellular and molecular properties in adults with moderate knee osteoarthritis[J]. Osteoarthritis Cartilage, 2018, 26(10): 1359-1368.
[24]
Yagi M, Taniguchi M, Tateuchi H, et al. Relationship between individual forces of each quadriceps head during low-load knee extension and cartilage thickness and knee pain in women with knee osteoarthritis[J/OL]. Clin Biomech, 2022, 91: 105546. DOI:10.1016/j.clinbiomech.2021.105546.
[25]
Bellemans J, Vandenneucker H, Vanlauwe J, et al. The influence of coronal plane deformity on mediolateral ligament status: an observational study in Varusknees[J]. Knee Surg Sports Traumatol Arthrosc, 2010, 18(2): 152-156.
[26]
Haberkamp S, Oláh T, Orth P, et al. Analysis of spatial osteochondral heterogeneity in advanced knee osteoarthritis exposes influence of joint alignment[J/OL]. Sci Transl Med, 2020, 12 (562): eaba9481. DOI:10.1126/scitranslmed.aba9481.
[27]
Oláh T, Reinhard J, Laschke MW, et al. Axial alignment is a critical regulator of knee osteoarthritis[J/OL]. Sci Transl Med, 2022, 14(629): eabn0179. DOI:10.1126/scitranslmed.abn0179.
[28]
Kean CO, Birmingham TB, Garland JS, et al. Moments and muscle activity after high tibial osteotomy and anterior cruciate ligament reconstruction[J]. Med Sci Sports Exerc, 2009, 41(3): 612-619.
[29]
Ramsey DK, Snyder-Mackler L, Lewek M, et al. Effect of anatomic realignment on muscle function during gait in patients with medial compartment knee osteoarthritis[J]. Arthritis Rheum, 2007, 57(3): 389-397.
[30]
Otsuki S, Nakajima M, Okamoto Y, et al. Correlation between Varus knee malalignment and patellofemoral osteoarthritis[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(1): 176-181.
[1] 李田香, 赵瑞娜, 康琳, 毕江涵, 陈聪, 杨萌. 基于超声的影像组学模型对老年人肌少症的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(01): 70-78.
[2] 李志文, 李远志, 李华, 方志远. 糖皮质激素治疗膝骨关节炎疗效的网状Meta分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 484-496.
[3] 庄若语, 杭明辉, 李文华, 张霆, 侯炜. 膝骨关节炎半定量磁共振评分研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 545-552.
[4] 王啸, 李一凡, 沈素红, 曹国瑞, 史小涛, 袁彦浩, 谭红略. 全膝关节置换术后早期下肢深静脉血栓形成的时空规律[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 414-420.
[5] 杨士慷, 曹光磊. 膝骨关节炎三种术式患者满意度的术前影响因素[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 390-397.
[6] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[7] 徐艳, 江秀娟, 王超, 江圆满. 股直肌剪切波弹性成像对COPD并发肌少症的诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 454-457.
[8] 马强. 衰弱和肌少症对肾功能评估的影响及干预策略[J/OL]. 中华肾病研究电子杂志, 2025, 14(01): 60-60.
[9] 曹仔怡, 周加军. CKD-MBD与肌少症:深入探究其影响的研究新进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(01): 75-79.
[10] 奚培培, 周加军. 慢性肾脏病患者肌少症机制和诊治的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 491-495.
[11] 王广宁, 李玉杰, 高坤范, 刘慧松. 短链脂肪酸在肌少症发病机制中的作用[J/OL]. 中华老年病研究电子杂志, 2024, 11(04): 31-37.
[12] 曹婧然, 董福强, 张立剑, 刘长乐, 张煜坤, 陈康寅. 老年冠心病患者的营养风险、肌少症和衰弱筛查分析[J/OL]. 中华老年病研究电子杂志, 2024, 11(02): 5-9.
[13] 曹娟, 朱亚, 吴玉泉, 胡旭钢, 董芳, 洪逸莲, 桂莹. 改良Morse跌倒评估量表对老年住院患者跌倒风险的预测价值[J/OL]. 中华老年病研究电子杂志, 2024, 11(02): 1-4.
[14] 管惠兰, 张靖梅, 解艳红. 社区老年人对肌少症知识知晓率的调查分析[J/OL]. 中华老年病研究电子杂志, 2024, 11(02): 36-43.
[15] 王超珺, 董志勇, 赵宛鄂, 胡嵩浩, 刘昭晖. 肌少症对肥胖患者袖状胃切除术后效果的影响研究[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 283-287.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?