切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (04) : 456 -463. doi: 10.3877/cma.j.issn.1674-134X.2025.04.007

综述

硫酸软骨素及其衍生生物材料在骨关节炎治疗的研究进展
黄鹏飞1,2, 赵俊杰1,2, 张兆坤1,2, 王玺玉1,2, 赵宇昊1,2, 赵海燕2,1,()   
  1. 1730000 兰州大学第一临床医学院
    2730000 兰州大学第一医院骨科
  • 收稿日期:2024-11-01 出版日期:2025-08-01
  • 通信作者: 赵海燕
  • 基金资助:
    国家自然科学基金项目(82060394); 兰州市人才创新创业项目(2020-RC-45); 兰州大学第一医院院内基金(ldyyyn2022-73); 甘肃省研究生创新之星项目(No.2025CXZX-209)

Research progress of chondroitin sulfate and its derived biomaterials in treatment of osteoarthritis

Pengfei Huang1,2, Junjie Zhao1,2, Zhaokun Zhang1,2, Xiyu Wang1,2, Yuhao Zhao1,2, Haiyan Zhao2,1,()   

  1. 1The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
    2Department of Orthopaedics, the First Hospital of Lanzhou University, Lanzhou 730000, China
  • Received:2024-11-01 Published:2025-08-01
  • Corresponding author: Haiyan Zhao
引用本文:

黄鹏飞, 赵俊杰, 张兆坤, 王玺玉, 赵宇昊, 赵海燕. 硫酸软骨素及其衍生生物材料在骨关节炎治疗的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 456-463.

Pengfei Huang, Junjie Zhao, Zhaokun Zhang, Xiyu Wang, Yuhao Zhao, Haiyan Zhao. Research progress of chondroitin sulfate and its derived biomaterials in treatment of osteoarthritis[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2025, 19(04): 456-463.

骨关节炎(OA)是一种以关节软骨损害为主,并累及整个关节组织的最常见的慢性退行性疾病,近年来该病发病率在中老年人中逐步上升,具体病因及发病机制尚不明确,其发生与患者年龄、激素水平、体重、炎症、创伤及遗传等多种因素有关。硫酸软骨素(CS)是一类硫酸化的糖胺聚糖,广泛存在于动物组织的细胞外基质和软骨中,具有炎症调节、活性氧调节、免疫调节、组织黏附调节等多种机体内环境稳态维持的作用。近年来,对于CS如何抑制OA的研究愈加深入,并且由CS衍生的生物材料也成为近年来研究的热点,如硫酸软骨素基水凝胶、生物支架以及药物递送系统正在广泛的应用,所以本文从CS如何调节软骨、滑膜、软骨下骨的免疫微环境、软骨基质代谢进而抑制OA的发生发展,以及其衍生生物材料在OA中的应用出发,系统回顾了硫酸软骨素及其衍生生物材料在骨关节炎治疗中的最新进展。

Osteoarthritis (OA) is one of the most common chronic degenerative diseases, which mainly damages articular cartilage and involves the entire joint tissue. In recent years, the incidence rate of the disease has gradually increased among middle-aged and elderly people. The specific etiology and pathogenesis are still unclear, and its occurrence is related to the patient’s age, hormone level, weight, inflammation, trauma, heredity and other factors. Chondroitin sulfate (CS) is a type of sulfated glycosaminoglycan that is widely presented in the extracellular matrix and cartilage of animal tissues. It plays a role in maintaining homeostasis in various intracellular environments, such as inflammation regulation, reactive oxygen species regulation, immune regulation, and tissue adhesion regulation. In recent years, the research on how CS inhibits OA has become more and more in-depth, and biomaterials derived from CS have also become the focus of research in recent years, such as chondroitin sulfate based hydrogels, biological scaffolds and drug delivery systems are being widely used. Therefore, this article systematically reviewed the latest progress of chondroitin sulfate and its derived biomaterials in the treatment of osteoarthritis, focusing on OA development inhibition induced by regulation of CS in the immune microenvironment of cartilage, synovium, and subchondral bone, cartilage matrix metabolism, as well as the application of its derived biomaterials in OA.

表1 CS基水凝胶类型及性能差异
Table 1 Types and performance differences of chitosan-based hydrogels
[1]
Filardo G, Previtali D, Napoli F, et al. PRP injections for the treatment of knee osteoarthritis: a meta-analysis of randomized controlled trials[J]. Cartilage, 2021, 13(1_suppl): 364S-375S.
[2]
García-Coronado JM, Martínez-Olvera L, Elizondo-Omaña RE, et al. Effect of collagen supplementation on osteoarthritis symptoms: a meta-analysis of randomized placebo-controlled trials[J]. Int Orthop, 2019, 43(3): 531-538.
[3]
Yuan Q, Shi X, Ma H, et al. Recent progress in marine chondroitin sulfate, dermatan sulfate, and chondroitin sulfate/dermatan sulfate hybrid chains as potential functional foods and therapeutic agents[J/OL]. Int J Biol Macromol, 2024, 262(Pt 1): 129969. DOI:10.1016/j.ijbiomac.2024.129969.
[4]
Zhou C, Mi S, Li J, et al. Purification, characterisation and antioxidant activities of chondroitin sulphate extracted from Raja porosacartilage[J/OL]. Carbohydr Polym, 2020, 241: 116306. DOI:10.1016/j.carbpol.2020.116306.
[5]
Bishnoi M, Jain A, Hurkat P, et al. Chondroitin sulphate: a focus on osteoarthritis[J]. Glycoconj J, 2016, 33(5): 693-705.
[6]
Shen Q, Guo Y, Wang K, et al. A review of chondroitin sulfate’s preparation, properties, functions, and applications[J/OL]. Molecules, 2023, 28(20): 7093. DOI:10.3390/molecules28207093.
[7]
Volpi N. Chondroitin sulfate safety and quality[J/OL]. Molecules, 2019, 24(8): 1447. DOI:10.3390/molecules24081447.
[8]
Yang J, Shen M, Wen H, et al. Recent advance in delivery system and tissue engineering applications of chondroitin sulfate[J/OL]. Carbohydr Polym, 2020, 230: 115650. DOI:10.1016/j.carbpol.2019.115650.
[9]
Wang S, Zheng Y, Gao Y, et al. In situ crosslinked injectable chondroitin sulfate hydrogel for preventing postoperative adhesion[J/OL]. Biomed Pharmacother, 2024, 180: 117495. DOI:10.1016/j.biopha.2024.117495.
[10]
Janipour M, Soltaniesmaeili A, Owji SH, et al. Auricular cartilage regeneration using chondroitin sulfate-based hydrogel with mesenchymal stem cells in rabbits[J]. Artif Organs, 2024, 48(10): 1100-1111.
[11]
Li S, Ma F, Pang X, et al. Synthesis of chondroitin sulfate magnesium for osteoarthritis treatment[J]. Carbohydr Polym, 2019, 212: 387-394.
[12]
Lan R, Li Y, Zhao X, et al. Low-molecular-weight chondroitin sulfates alleviate simulated microgravity-induced oxidative stress and bone loss in mice[J]. Curr Issues Mol Biol, 2023, 45(5): 4214-4227.
[13]
Ma FB, Liu N, Hu N, et al. Synthesis of strontium chondroitin sulfate and the evaluation of its capability to attenuate osteoarthritis[J]. Carbohydr Polym, 2017, 170: 217-225.
[14]
Shen Q, Zhang C, Mo H, et al. Fabrication of chondroitin sulfate calcium complex and its chondrocyte proliferation in vitro[J/OL]. Carbohydr Polym, 2021, 254: 117282. DOI:10.1016/j.carbpol.2020.117282.
[15]
Simental-Mendía M, Sánchez-García A, Vilchez-Cavazos F, et al. Effect of glucosamine and chondroitin sulfate in symptomatic knee osteoarthritis: a systematic review and meta-analysis of randomized placebo-controlled trials[J]. Rheumatol Int, 2018, 38(8): 1413-1428.
[16]
Torres-Rico M, Maza S, de Paz JL, et al. Synthesis, structure and midkine binding of chondroitin sulfate oligosaccharide analogues[J]. Org Biomol Chem, 2021, 19(24): 5312-5326.
[17]
Malki M, Shapira A, Dvir T. Chondroitin sulfate-AuNRs electroactive scaffolds for on-demand release of biofactors[J/OL]. J Nanobiotechnology, 2022, 20(1): 59. DOI:10.1186/s12951-022-01261-8.
[18]
Pudełko A, Wisowski G, Olczyk K, et al. The dual role of the glycosaminoglycan chondroitin-6-sulfate in the development, progression and metastasis of cancer [J]. FEBS J, 2019, 286(10): 1815-1837.
[19]
Nadanaka S, Ishida M, Ikegami M, et al. Chondroitin 4-O-sulfotransferase-1 modulates Wnt-3a signaling through control of E disaccharide expression of chondroitin sulfate[J]. J Biol Chem, 2008, 283(40): 27333-27343.
[20]
Nadanaka S, Kinouchi H, Taniguchi-Morita K, et al. Down-regulation of chondroitin 4-O-sulfotransferase-1 by Wnt signaling triggers diffusion of Wnt-3a[J]. J Biol Chem, 2011, 286(6): 4199-4208.
[21]
Andrews S, Cheng A, Stevens H, et al. Chondroitin sulfate glycosaminoglycan scaffolds for cell and recombinant protein-based bone regeneration[J]. Stem Cells Transl Med, 2019, 8(6): 575-585.
[22]
Korotkyi O, Huet A, Dvorshchenko K, et al. Probiotic composition and chondroitin sulfate regulate TLR-2/4-mediated NF-κB inflammatory pathway and cartilage metabolism in experimental osteoarthritis[J]. Probiotics Antimicrob Proteins, 2021, 13(4): 1018-1032.
[23]
Guo Q, Jin Y, Chen X, et al. NF-κB in biology and targeted therapy: new insights and translational implications[J/OL]. Signal Transduct Target Ther, 2024, 9(1): 53. DOI:10.1038/s41392-024-01757-9.
[24]
Zhao QH, Lin LP, Guo YX, et al. Matrix metalloproteinase-13, NF-κB p65 and interleukin-1β are associated with the severity of knee osteoarthritis[J]. Exp Ther Med, 2020, 19(6): 3620-3626.
[25]
Stellavato A, Restaino OF, Vassallo V, et al. Chondroitin sulfate in USA dietary supplements in comparison to pharma grade products: analytical fingerprint and potential anti-inflammatory effect on human osteoartritic chondrocytes and synoviocytes[J/OL]. Pharmaceutics, 2021, 13(5): 737. DOI:10.3390/pharmaceutics13050737.
[26]
Taraballi F, Corradetti B, Minardi S, et al. Biomimetic collagenous scaffold to tune inflammation by targeting macrophages[J/OL]. J Tissue Eng, 2016, 7: 2041731415624667. DOI:10.1177/2041731415624667.
[27]
Hsu HC, Ke YL, Lai YH, et al. Chondroitin sulfate enhances proliferation and migration via inducing β-catenin and intracellular ROS as well as suppressing metalloproteinases through Akt/NF-κB pathway inhibition in human chondrocytes[J]. J Nutr Health Aging, 2022, 26(3): 307-313.
[28]
Li X, Tang X, Wang Y, et al. CS-semi5 inhibits NF-κB activation to block synovial inflammation, cartilage loss and bone erosion associated with collagen-induced arthritis[J/OL]. Front Pharmacol, 2021, 12: 655101. DOI:10.3389/fphar.2021.655101.
[29]
Hatano S, Watanabe H. Regulation of macrophage and dendritic cell function by chondroitin sulfate in innate to antigen-specific adaptive immunity[J/OL]. Front Immunol, 2020, 11: 232. DOI:10.3389/fimmu.2020.00232.
[30]
Rabade A, Viswanatha GL, Nandakumar K, et al. Evaluation of efficacy and safety of glucosamine sulfate, chondroitin sulfate, and their combination regimen in the management of knee osteoarthritis: a systematic review and meta-analysis[J]. Inflammopharmacology, 2024, 32(3): 1759-1775.
[31]
Zhang Y, Li G, Wang J, et al. Small joint organoids 3D bioprinting: construction strategy and application[J/OL]. Small, 2024, 20(8): e2302506. DOI:10.1002/smll.202302506.
[32]
Yuan X, Li G, Huang L, et al. Hydroxypropyl chitin-oxidized chondroitin sulfate double-network hydrogel assists microfracture technique to enhance cartilage regeneration[J/OL]. Mater Des, 2024, 238: 112656. DOI:10.1016/j.matdes.2024.112656.
[33]
Qi SS, Shao ML, Sun Z, et al. Chondroitin sulfate alleviates diabetic osteoporosis and repairs bone microstructure via anti-oxidation, anti-inflammation, and regulating bone metabolism[J/OL]. Front Endocrinol, 2021, 12: 759843. DOI:10.3389/fendo.2021.759843.
[34]
Golovach I, Rekalov D, Akimov OY, et al. Molecular mechanisms and potential applications of chondroitin sulphate in managing post-traumatic osteoarthritis[J]. Reumatologia, 2023, 61(5): 395-407.
[35]
Wei J, Lin Z, Dai Z, et al. Brevilin A inhibits RANKL-induced osteoclast differentiation and bone resorption[J]. In Vitro Cell Dev Biol Anim, 2023, 59(6): 420-430.
[36]
Elango J, Saravanakumar K, Rahman SU, et al. Chitosan-collagen 3D matrix mimics trabecular bone and regulates RANKL-mediated paracrine cues of differentiated osteoblast and mesenchymal stem cells for bone marrow macrophage-derived osteoclastogenesis[J/OL]. Biomolecules, 2019, 9(5): 173. DOI:10.3390/biom9050173.
[37]
Uzieliene I, Bironaite D, Pachaleva J, et al. Chondroitin sulfate-tyramine-based hydrogels for cartilage tissue repair[J/OL]. Int J Mol Sci, 2023, 24(4): 3451. DOI:10.3390/ijms24043451.
[38]
Xiao P, Han X, Huang Y, et al. Reprogramming macrophages via immune cell mobilized hydrogel microspheres for osteoarthritis treatments[J]. Bioact Mater, 2023, 32: 242-259.
[39]
Schuurmans CCL, Mihajlovic M, Hiemstra C, et al. Hyaluronic acid and chondroitin sulfate (meth)acrylate-based hydrogels for tissue engineering: Synthesis, characteristics and pre-clinical evaluation[J/OL]. Biomaterials, 2021, 268: 120602. DOI:10.1016/j.biomaterials.2020.120602.
[40]
Kim HD, Lee EA, An YH, et al. Chondroitin sulfate-based biomineralizing surface hydrogels for bone tissue engineering[J]. ACS Appl Mater Interfaces, 2017, 9(26): 21639-21650.
[41]
Feng P, He C, Li G, et al. A light-cured injectable composite hydrogel based on chitosan and decellularized matrix modulates stem cell aggregation behavior for accelerating cartilage defect repair[J/OL]. Int J Biol Macromol, 2025, 295: 139711. DOI:10.1016/j.ijbiomac.2025.139711.
[42]
Chen S, Chen W, Chen Y, et al. Chondroitin sulfate modified 3D porous electrospun nanofiber scaffolds promote cartilage regeneration[J/OL]. Mater Sci Eng C Mater Biol Appl, 2021, 118: 111312. DOI:10.1016/j.msec.2020.111312.
[43]
Chen Y, Xu W, Shafiq M, et al. Chondroitin sulfate cross-linked three-dimensional tailored electrospun scaffolds for cartilage regeneration[J/OL]. Biomater Adv, 2022, 134: 112643. DOI:10.1016/j.msec.2022.112643.
[44]
Tang Z, Yu M, Mondal AK, et al. Porous scaffolds based on polydopamine/chondroitin sulfate/polyvinyl alcohol composite hydrogels[J/OL]. Polymers, 2023, 15(2): 271. DOI:10.3390/polym15020271.
[45]
Amhare AF, Lei J, Deng H, et al. Biomedical application of chondroitin sulfate with nanoparticles in drug delivery systems: systematic review[J]. J Drug Target, 2021, 29(3): 259-268.
[46]
He Y, Sun M, Wang J, et al. Chondroitin sulfate microspheres anchored with drug-loaded liposomes play a dual antioxidant role in the treatment of osteoarthritis[J]. Acta Biomater, 2022, 151: 512-527.
[47]
Uzieliene I, Bironaite D, Bagdonas E, et al. The effects of mechanical load on chondrogenic responses of bone marrow mesenchymal stem cells and chondrocytes encapsulated in chondroitin sulfate-based hydrogel [J/OL]. Int J Mol Sci, 2023, 24(3): 2915. DOI:10.3390/ijms24032915.
[48]
Gao Y, Li B, Kong W, et al. Injectable and self-crosslinkable hydrogels based on collagen type II and activated chondroitin sulfate for cell delivery[J]. Int J Biol Macromol, 2018, 118(Pt B): 2014-2020.
[49]
Chen JG, Zhang EC, Wan YY, et al. Engineered hsa-miR-455-3p-abundant extracellular vesicles derived from 3D-cultured adipose mesenchymal stem cells for tissue-engineering hyaline cartilage regeneration[J/OL]. Adv Healthc Mater, 2024, 13(18): e2304194. DOI:10.1002/adhm.202304194.
[50]
Chen Z, Deng S, Yuan DC, et al. Novel nano-microspheres containing chitosan, hyaluronic acid, and chondroitin sulfate deliver growth and differentiation factor-5 plasmid for osteoarthritis gene therapy[J]. J Zhejiang Univ Sci B, 2018, 19(12): 910-923.
[51]
Wang H, You XY, Zhao GP. Artificial intelligence advances drug delivery system and its clinical transition[J]. Sci Bull, 2025, 70 (3): 305-308.
[52]
Gholap AD, Uddin MJ, Faiyazuddin M, et al. Advances in artificial intelligence for drug delivery and development: a comprehensive review[J/OL]. Comput Biol Med, 2024, 178: 108702. DOI:10.1016/j.compbiomed.2024.108702.
[53]
Meng Z, Liu J, Zhou N. Efficacy and safety of the combination of glucosamine and chondroitin for knee osteoarthritis: a systematic review and meta-analysis[J]. Arch Orthop Trauma Surg, 2023, 143(1): 409-421.
[54]
Clegg DO, Reda DJ, Harris CL, et al. Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis[J]. N Engl J Med, 2006, 354(8): 795-808.
[55]
Tu Q, Jiang D, Hu R, et al. An injectable CS-hydrogel incorporating TPGS for cartilage repair[J/OL]. Mater Des, 2024, 241: 112894. DOI:10.1016/j.matdes.2024.112894.
[56]
Behere I, Vaidya A, Ingavle G. Chondroitin sulfate and hyaluronic acid-based PolyHIPE scaffolds for improved osteogenesis and chondrogenesis in vitro[J]. ACS Appl Bio Mater, 2024, 7(8): 5222-5236.
[1] 陈波波, 王冠乔, 王宏煜, 侯建业, 田野. 骨代谢指标与关节软骨损伤Outerbridge分级的相关性研究[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 418-426.
[2] 陈雅杰, 康鹏德. 滑膜细胞衰老在骨关节炎病理机制及靶向治疗的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 445-455.
[3] 姚放鸣, 谷邦宁, 杨旭辉, 曾子俊, 吴佳威, 何敏聪, 何晓铭, 魏秋实, 何伟, 刘文刚. 下肢肌肉分布与内翻型膝骨关节炎进展及肌少症的相关性[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 292-301.
[4] 周莹佳, 李嘉欢, 黎浩霖, 乔永杰. 初级纤毛及刺猬蛋白信号通路在骨关节炎中的作用[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 330-335.
[5] 钟永洌, 张杰, 张志奇. 外翻膝术后中立位机械对线的早中期疗效[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 366-373.
[6] 王浩浩, 席刚, 杨家驹, 翁铭捷, 张民. 术前膝关节冠状面力线对牛津单髁术后力线的影响分析[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 156-161.
[7] 王春久, 田向东, 谭冶彤, 薛志鹏, 张伟, 刘昂. 单平面胫骨高位截骨联合关节镜治疗内翻型膝骨关节炎[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 185-192.
[8] 陈博, 李向毅. 骨关节炎中软骨细胞铜死亡的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 207-213.
[9] 林晓东, 周宜, 章家皓, 赵传喜, 刘军, 刘文刚. 如何在中度外翻膝关节置换中实现假体功能性对线[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 116-121.
[10] 王章正, 莫亮, 何伟, 周驰, 陈镇秋, 方斌, 刘予豪. 股骨头坏死疼痛时间与软骨退变程度的病理学研究[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 65-75.
[11] 王玺玉, 赵俊杰, 黄鹏飞, 张兆坤, 赵宇昊, 赵海燕. 基质金属蛋白酶响应性水凝胶在骨关节炎的应用[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 76-81.
[12] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[13] 肖文韬, 谢培森, 康清源, 张克石, 关振鹏. 对家族聚集性膝骨关节炎家系的基因测序及在普通人群中的初步验证[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 337-345.
[14] 谢培森, 张绍龙, 张克石, 关振鹏. Circ_0136474增强软骨细胞自噬抑制骨关节炎软骨缺损[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 374-381.
[15] 康清源, 张克石, 肖文韬, 谢培森, 东黎光, 袁平, 关振鹏. 在职钢铁工人群体膝关节骨关节炎流行情况及其可能的危险因素调查[J/OL]. 中华临床医师杂志(电子版), 2025, 19(04): 248-255.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?