[1] |
Filardo G, Previtali D, Napoli F, et al. PRP injections for the treatment of knee osteoarthritis: a meta-analysis of randomized controlled trials[J]. Cartilage, 2021, 13(1_suppl): 364S-375S.
|
[2] |
García-Coronado JM, Martínez-Olvera L, Elizondo-Omaña RE, et al. Effect of collagen supplementation on osteoarthritis symptoms: a meta-analysis of randomized placebo-controlled trials[J]. Int Orthop, 2019, 43(3): 531-538.
|
[3] |
Yuan Q, Shi X, Ma H, et al. Recent progress in marine chondroitin sulfate, dermatan sulfate, and chondroitin sulfate/dermatan sulfate hybrid chains as potential functional foods and therapeutic agents[J/OL]. Int J Biol Macromol, 2024, 262(Pt 1): 129969. DOI: 10.1016/j.ijbiomac.2024.129969.
|
[4] |
Zhou C, Mi S, Li J, et al. Purification, characterisation and antioxidant activities of chondroitin sulphate extracted from Raja porosacartilage[J/OL]. Carbohydr Polym, 2020, 241: 116306. DOI: 10.1016/j.carbpol.2020.116306.
|
[5] |
Bishnoi M, Jain A, Hurkat P, et al. Chondroitin sulphate: a focus on osteoarthritis[J]. Glycoconj J, 2016, 33(5): 693-705.
|
[6] |
Shen Q, Guo Y, Wang K, et al. A review of chondroitin sulfate’s preparation, properties, functions, and applications[J/OL]. Molecules, 2023, 28(20): 7093. DOI: 10.3390/molecules28207093.
|
[7] |
|
[8] |
Yang J, Shen M, Wen H, et al. Recent advance in delivery system and tissue engineering applications of chondroitin sulfate[J/OL]. Carbohydr Polym, 2020, 230: 115650. DOI: 10.1016/j.carbpol.2019.115650.
|
[9] |
Wang S, Zheng Y, Gao Y, et al. In situ crosslinked injectable chondroitin sulfate hydrogel for preventing postoperative adhesion[J/OL]. Biomed Pharmacother, 2024, 180: 117495. DOI: 10.1016/j.biopha.2024.117495.
|
[10] |
Janipour M, Soltaniesmaeili A, Owji SH, et al. Auricular cartilage regeneration using chondroitin sulfate-based hydrogel with mesenchymal stem cells in rabbits[J]. Artif Organs, 2024, 48(10): 1100-1111.
|
[11] |
Li S, Ma F, Pang X, et al. Synthesis of chondroitin sulfate magnesium for osteoarthritis treatment[J]. Carbohydr Polym, 2019, 212: 387-394.
|
[12] |
Lan R, Li Y, Zhao X, et al. Low-molecular-weight chondroitin sulfates alleviate simulated microgravity-induced oxidative stress and bone loss in mice[J]. Curr Issues Mol Biol, 2023, 45(5): 4214-4227.
|
[13] |
Ma FB, Liu N, Hu N, et al. Synthesis of strontium chondroitin sulfate and the evaluation of its capability to attenuate osteoarthritis[J]. Carbohydr Polym, 2017, 170: 217-225.
|
[14] |
Shen Q, Zhang C, Mo H, et al. Fabrication of chondroitin sulfate calcium complex and its chondrocyte proliferation in vitro[J/OL]. Carbohydr Polym, 2021, 254: 117282. DOI: 10.1016/j.carbpol.2020.117282.
|
[15] |
Simental-Mendía M, Sánchez-García A, Vilchez-Cavazos F, et al. Effect of glucosamine and chondroitin sulfate in symptomatic knee osteoarthritis: a systematic review and meta-analysis of randomized placebo-controlled trials[J]. Rheumatol Int, 2018, 38(8): 1413-1428.
|
[16] |
Torres-Rico M, Maza S, de Paz JL, et al. Synthesis, structure and midkine binding of chondroitin sulfate oligosaccharide analogues[J]. Org Biomol Chem, 2021, 19(24): 5312-5326.
|
[17] |
Malki M, Shapira A, Dvir T. Chondroitin sulfate-AuNRs electroactive scaffolds for on-demand release of biofactors[J/OL]. J Nanobiotechnology, 2022, 20(1): 59. DOI: 10.1186/s12951-022-01261-8.
|
[18] |
Pudełko A, Wisowski G, Olczyk K, et al. The dual role of the glycosaminoglycan chondroitin-6-sulfate in the development, progression and metastasis of cancer [J]. FEBS J, 2019, 286(10): 1815-1837.
|
[19] |
Nadanaka S, Ishida M, Ikegami M, et al. Chondroitin 4-O-sulfotransferase-1 modulates Wnt-3a signaling through control of E disaccharide expression of chondroitin sulfate[J]. J Biol Chem, 2008, 283(40): 27333-27343.
|
[20] |
Nadanaka S, Kinouchi H, Taniguchi-Morita K, et al. Down-regulation of chondroitin 4-O-sulfotransferase-1 by Wnt signaling triggers diffusion of Wnt-3a[J]. J Biol Chem, 2011, 286(6): 4199-4208.
|
[21] |
Andrews S, Cheng A, Stevens H, et al. Chondroitin sulfate glycosaminoglycan scaffolds for cell and recombinant protein-based bone regeneration[J]. Stem Cells Transl Med, 2019, 8(6): 575-585.
|
[22] |
Korotkyi O, Huet A, Dvorshchenko K, et al. Probiotic composition and chondroitin sulfate regulate TLR-2/4-mediated NF-κB inflammatory pathway and cartilage metabolism in experimental osteoarthritis[J]. Probiotics Antimicrob Proteins, 2021, 13(4): 1018-1032.
|
[23] |
Guo Q, Jin Y, Chen X, et al. NF-κB in biology and targeted therapy: new insights and translational implications[J/OL]. Signal Transduct Target Ther, 2024, 9(1): 53. DOI: 10.1038/s41392-024-01757-9.
|
[24] |
Zhao QH, Lin LP, Guo YX, et al. Matrix metalloproteinase-13, NF-κB p65 and interleukin-1β are associated with the severity of knee osteoarthritis[J]. Exp Ther Med, 2020, 19(6): 3620-3626.
|
[25] |
Stellavato A, Restaino OF, Vassallo V, et al. Chondroitin sulfate in USA dietary supplements in comparison to pharma grade products: analytical fingerprint and potential anti-inflammatory effect on human osteoartritic chondrocytes and synoviocytes[J/OL]. Pharmaceutics, 2021, 13(5): 737. DOI: 10.3390/pharmaceutics13050737.
|
[26] |
Taraballi F, Corradetti B, Minardi S, et al. Biomimetic collagenous scaffold to tune inflammation by targeting macrophages[J/OL]. J Tissue Eng, 2016, 7: 2041731415624667. DOI: 10.1177/2041731415624667.
|
[27] |
Hsu HC, Ke YL, Lai YH, et al. Chondroitin sulfate enhances proliferation and migration via inducing β-catenin and intracellular ROS as well as suppressing metalloproteinases through Akt/NF-κB pathway inhibition in human chondrocytes[J]. J Nutr Health Aging, 2022, 26(3): 307-313.
|
[28] |
Li X, Tang X, Wang Y, et al. CS-semi5 inhibits NF-κB activation to block synovial inflammation, cartilage loss and bone erosion associated with collagen-induced arthritis[J/OL]. Front Pharmacol, 2021, 12: 655101. DOI: 10.3389/fphar.2021.655101.
|
[29] |
Hatano S, Watanabe H. Regulation of macrophage and dendritic cell function by chondroitin sulfate in innate to antigen-specific adaptive immunity[J/OL]. Front Immunol, 2020, 11: 232. DOI: 10.3389/fimmu.2020.00232.
|
[30] |
Rabade A, Viswanatha GL, Nandakumar K, et al. Evaluation of efficacy and safety of glucosamine sulfate, chondroitin sulfate, and their combination regimen in the management of knee osteoarthritis: a systematic review and meta-analysis[J]. Inflammopharmacology, 2024, 32(3): 1759-1775.
|
[31] |
Zhang Y, Li G, Wang J, et al. Small joint organoids 3D bioprinting: construction strategy and application[J/OL]. Small, 2024, 20(8): e2302506. DOI: 10.1002/smll.202302506.
|
[32] |
Yuan X, Li G, Huang L, et al. Hydroxypropyl chitin-oxidized chondroitin sulfate double-network hydrogel assists microfracture technique to enhance cartilage regeneration[J/OL]. Mater Des, 2024, 238: 112656. DOI: 10.1016/j.matdes.2024.112656.
|
[33] |
Qi SS, Shao ML, Sun Z, et al. Chondroitin sulfate alleviates diabetic osteoporosis and repairs bone microstructure via anti-oxidation, anti-inflammation, and regulating bone metabolism[J/OL]. Front Endocrinol, 2021, 12: 759843. DOI: 10.3389/fendo.2021.759843.
|
[34] |
Golovach I, Rekalov D, Akimov OY, et al. Molecular mechanisms and potential applications of chondroitin sulphate in managing post-traumatic osteoarthritis[J]. Reumatologia, 2023, 61(5): 395-407.
|
[35] |
Wei J, Lin Z, Dai Z, et al. Brevilin A inhibits RANKL-induced osteoclast differentiation and bone resorption[J]. In Vitro Cell Dev Biol Anim, 2023, 59(6): 420-430.
|
[36] |
Elango J, Saravanakumar K, Rahman SU, et al. Chitosan-collagen 3D matrix mimics trabecular bone and regulates RANKL-mediated paracrine cues of differentiated osteoblast and mesenchymal stem cells for bone marrow macrophage-derived osteoclastogenesis[J/OL]. Biomolecules, 2019, 9(5): 173. DOI: 10.3390/biom9050173.
|
[37] |
Uzieliene I, Bironaite D, Pachaleva J, et al. Chondroitin sulfate-tyramine-based hydrogels for cartilage tissue repair[J/OL]. Int J Mol Sci, 2023, 24(4): 3451. DOI: 10.3390/ijms24043451.
|
[38] |
Xiao P, Han X, Huang Y, et al. Reprogramming macrophages via immune cell mobilized hydrogel microspheres for osteoarthritis treatments[J]. Bioact Mater, 2023, 32: 242-259.
|
[39] |
Schuurmans CCL, Mihajlovic M, Hiemstra C, et al. Hyaluronic acid and chondroitin sulfate (meth)acrylate-based hydrogels for tissue engineering: Synthesis, characteristics and pre-clinical evaluation[J/OL]. Biomaterials, 2021, 268: 120602. DOI: 10.1016/j.biomaterials.2020.120602.
|
[40] |
Kim HD, Lee EA, An YH, et al. Chondroitin sulfate-based biomineralizing surface hydrogels for bone tissue engineering[J]. ACS Appl Mater Interfaces, 2017, 9(26): 21639-21650.
|
[41] |
Feng P, He C, Li G, et al. A light-cured injectable composite hydrogel based on chitosan and decellularized matrix modulates stem cell aggregation behavior for accelerating cartilage defect repair[J/OL]. Int J Biol Macromol, 2025, 295: 139711. DOI: 10.1016/j.ijbiomac.2025.139711.
|
[42] |
Chen S, Chen W, Chen Y, et al. Chondroitin sulfate modified 3D porous electrospun nanofiber scaffolds promote cartilage regeneration[J/OL]. Mater Sci Eng C Mater Biol Appl, 2021, 118: 111312. DOI: 10.1016/j.msec.2020.111312.
|
[43] |
Chen Y, Xu W, Shafiq M, et al. Chondroitin sulfate cross-linked three-dimensional tailored electrospun scaffolds for cartilage regeneration[J/OL]. Biomater Adv, 2022, 134: 112643. DOI: 10.1016/j.msec.2022.112643.
|
[44] |
Tang Z, Yu M, Mondal AK, et al. Porous scaffolds based on polydopamine/chondroitin sulfate/polyvinyl alcohol composite hydrogels[J/OL]. Polymers, 2023, 15(2): 271. DOI: 10.3390/polym15020271.
|
[45] |
Amhare AF, Lei J, Deng H, et al. Biomedical application of chondroitin sulfate with nanoparticles in drug delivery systems: systematic review[J]. J Drug Target, 2021, 29(3): 259-268.
|
[46] |
He Y, Sun M, Wang J, et al. Chondroitin sulfate microspheres anchored with drug-loaded liposomes play a dual antioxidant role in the treatment of osteoarthritis[J]. Acta Biomater, 2022, 151: 512-527.
|
[47] |
Uzieliene I, Bironaite D, Bagdonas E, et al. The effects of mechanical load on chondrogenic responses of bone marrow mesenchymal stem cells and chondrocytes encapsulated in chondroitin sulfate-based hydrogel [J/OL]. Int J Mol Sci, 2023, 24(3): 2915. DOI: 10.3390/ijms24032915.
|
[48] |
Gao Y, Li B, Kong W, et al. Injectable and self-crosslinkable hydrogels based on collagen type II and activated chondroitin sulfate for cell delivery[J]. Int J Biol Macromol, 2018, 118(Pt B): 2014-2020.
|
[49] |
Chen JG, Zhang EC, Wan YY, et al. Engineered hsa-miR-455-3p-abundant extracellular vesicles derived from 3D-cultured adipose mesenchymal stem cells for tissue-engineering hyaline cartilage regeneration[J/OL]. Adv Healthc Mater, 2024, 13(18): e2304194. DOI: 10.1002/adhm.202304194.
|
[50] |
Chen Z, Deng S, Yuan DC, et al. Novel nano-microspheres containing chitosan, hyaluronic acid, and chondroitin sulfate deliver growth and differentiation factor-5 plasmid for osteoarthritis gene therapy[J]. J Zhejiang Univ Sci B, 2018, 19(12): 910-923.
|
[51] |
Wang H, You XY, Zhao GP. Artificial intelligence advances drug delivery system and its clinical transition[J]. Sci Bull, 2025, 70 (3): 305-308.
|
[52] |
Gholap AD, Uddin MJ, Faiyazuddin M, et al. Advances in artificial intelligence for drug delivery and development: a comprehensive review[J/OL]. Comput Biol Med, 2024, 178: 108702. DOI: 10.1016/j.compbiomed.2024.108702.
|
[53] |
Meng Z, Liu J, Zhou N. Efficacy and safety of the combination of glucosamine and chondroitin for knee osteoarthritis: a systematic review and meta-analysis[J]. Arch Orthop Trauma Surg, 2023, 143(1): 409-421.
|
[54] |
Clegg DO, Reda DJ, Harris CL, et al. Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis[J]. N Engl J Med, 2006, 354(8): 795-808.
|
[55] |
Tu Q, Jiang D, Hu R, et al. An injectable CS-hydrogel incorporating TPGS for cartilage repair[J/OL]. Mater Des, 2024, 241: 112894. DOI: 10.1016/j.matdes.2024.112894.
|
[56] |
Behere I, Vaidya A, Ingavle G. Chondroitin sulfate and hyaluronic acid-based PolyHIPE scaffolds for improved osteogenesis and chondrogenesis in vitro[J]. ACS Appl Bio Mater, 2024, 7(8): 5222-5236.
|