切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (05) : 549 -559. doi: 10.3877/cma.j.issn.1674-134X.2025.05.005

基础论著

青蒿琥酯缓解假体磨损颗粒诱导骨溶解的作用研究
曾健康1,2, 谭飞2, 李嘉欢2, 李培杰2, 刘鹏2, 王静2, 乔永杰2, 宋晓阳2, 周胜虎2,()   
  1. 1550025 贵阳,解放军联勤保障部队第九二五医院骨科
    2730030 兰州,甘肃中医药大学第一临床医学院
  • 收稿日期:2025-01-02 出版日期:2025-10-01
  • 通信作者: 周胜虎
  • 基金资助:
    部队联勤保障部队医学培育专科

Study on effect of artesunate in alleviating prosthetic wear particle-induced osteolysis

Jiankang Zeng1,2, Fei Tan2, Jiahuan Li2, Peijie Li2, Peng Liu2, Jing Wang2, Yongjie Qiao2, Xiaoyang Song2, Shenghu Zhou2,()   

  1. 1Department of Orthopedics, The 925th Hospital of Joint Logistic Support Force of PLA, Guiyang 550025, China
    2The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730030, China
  • Received:2025-01-02 Published:2025-10-01
  • Corresponding author: Shenghu Zhou
引用本文:

曾健康, 谭飞, 李嘉欢, 李培杰, 刘鹏, 王静, 乔永杰, 宋晓阳, 周胜虎. 青蒿琥酯缓解假体磨损颗粒诱导骨溶解的作用研究[J/OL]. 中华关节外科杂志(电子版), 2025, 19(05): 549-559.

Jiankang Zeng, Fei Tan, Jiahuan Li, Peijie Li, Peng Liu, Jing Wang, Yongjie Qiao, Xiaoyang Song, Shenghu Zhou. Study on effect of artesunate in alleviating prosthetic wear particle-induced osteolysis[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2025, 19(05): 549-559.

目的

通过体外及体内实验探讨青蒿琥酯对磨损颗粒诱导炎性骨溶解的影响。

方法

体外实验:选取生长良好的小鼠胚胎成骨细胞前体细胞MC3T3-E1细胞株,分为4组进行培养:空白对照组;Ti颗粒组,加入钛颗粒并进行成骨分化培养;青蒿琥酯组,添加10 μmol/L青蒿琥酯并进行成骨分化培养;Ti+青蒿琥酯组同时加入钛颗粒和10 μmol/L青蒿琥酯进行成骨分化培养。使用细胞计数试剂盒-8(CCK-8)测定细胞的活性,同时通过流式细胞技术分析细胞的凋亡情况。体内实验:40只C57BL/6J小鼠按随机数字表法分4组,Ti颗粒组和Ti+青蒿琥酯组切开小鼠头皮植入钛,建立小鼠颅骨骨溶解模型;假手术组(Sham组)、青蒿琥酯组与上述手术步骤相同,但不植入钛。青蒿琥酯组、Ti+青蒿琥酯组建模完成后经灌胃给予青蒿琥酯50 mg/(kg·d)。2周后处死小鼠,苏木素-伊红(HE)染色观察颅骨病理变化;酶联免疫吸附实验(ELISA)检测炎性因子的表达水平,包括肿瘤坏死因子(TNF)α、白细胞介素(IL)1β、IL 6;实时荧光定量聚合酶链式反应(RT-PCR)检测成骨分化相关基因碱性磷酸酶(ALP)、骨钙素(OCN)、矮小相关转录因子-2(Runx-2)、Ⅰ型胶原(COLⅠ)的表达。给药2周后,进行颅骨显微计算机断层扫描(Micro-CT)。计量资料组间比较采用独立样本t检验或单因素方差分析,多重比较采用LSD检验,计数资料组间比较采用卡方检验。

结果

体外实验:CCK-8结果显示,当青蒿琥酯浓度≤10 umol/L时,对成骨细胞增殖无明显影响;当Ti颗粒浓度≤0.5mg/ml时,对MC3T3-E1细胞增殖无明显影响。流式细胞术结果显示,钛颗粒可促进MC3T3-E1细胞的凋亡(t=57.46,P<0.001);青蒿琥酯可抑制钛颗粒的作用(t=19.64,P<0.01)。体内实验:HE染色结果显示,Ti颗粒组颅骨周围组织中的炎症细胞数量及骨质破坏程度明显高Ti+青蒿琥酯组、青蒿琥酯组和Sham组;经青蒿琥酯干预后炎症反应减轻,骨质破坏得到显著改善。ELISA及PCR结果显示,与Sham组相比,Ti颗粒刺激3种炎性因子浓度显著增加(t=8.872、15.6、18.71,均为P<0.05),成骨相关基因mRNA表达量下降(t=18.31、20.47、23.95、27.22,均为P<0.05)。而与Ti颗粒组相比,Ti+青蒿琥酯组3种炎性因子表达量均有不同程度下调(t=4.672、4.805、3.405,均为P<0.01),成骨相关基因的表达增加(t=12.2、15.15、22.02、16.99,均为P<0.05)。micro-CT扫描显示,Ti颗粒导致骨质破坏增加,促进小鼠颅骨周围骨溶解,青蒿琥酯干预后可缓解钛颗粒引起的骨溶解。

结论

青蒿琥酯可通过抑制炎症因子、上调成骨细胞功能来改善钛颗粒诱导的骨溶解、骨破坏。

Objective

To explore the effects of artesunate on wear particle-induced inflammatory osteolysis explored by in vitro and in vivo experiments.

Methods

In vitro experiments: healthy mouse embryonic osteoblast precursor cells MC3T3-E1 cells were selected and divided into four groups for culture: blank control group; Ti particle group, where titanium particles were added for osteogenic differentiation culture; artesunate group, where 10 μmol/L artesunate ester was added for osteogenic differentiation culture; combination group, where titanium particles and 10 μmol/L artesunate ester were added simultaneously for osteogenic differentiation culture. Cell activity was determined using the cell counting kit-8 (CCK-8), while apoptosis was analyzed by flow cytometry. In vivo experiments: forty C57BL/6J mice were randomly divided into four groups using a random number table. In the Ti particle group and the Ti + artesunate group, the mice’s scalps were incised and titanium was implanted to establish a mouse skull bone resorption model. In the sham group and the artesunate group, the same surgical procedures were performed without implanting titanium. After establishing the artesunate group and the titanium plus artesunate group, artesunate was administered by gavage at a dose of 50 mg/(kg·d). The mice were executed after two weeks, and hematoxylin-eosin method (HE) staining was used to observe the pathological changes of the skull; enzyme-linked immunosorbent assay (ELISA) was performed to measure the expression levels of inflammatory factors, tumor necrosis factor (TNF) α, interleukin (IL)-1β, and IL -6. Real-time quantitative polymerase chain reaction (RT-PCR) was used to assess the expression of osteogenic differentiation-related genes including alkaline phosphatase (ALP), osteocalcin (OCN), runt-related transcription factor 2 (Runx-2), and collagen type-Ⅰ (COL I). Two weeks after dosing, Micro-CT of the skull was conducted. For comparisons between groups of measurement data, independent samples t test or one-way analysis of variance was used; for multiple comparisons, LSD test was used; and for comparisons between groups of count data, chi square test was employed.

Results

In vitro experiments: CCK8 results showed that at artesunate concentrations ≤10 μmol/L, there was no significant effect on osteoblast proliferation. Titanium particle concentrations≤0.5 mg/ml did not significantly affect the proliferation of MC3T3-E1 cells. Flow cytometry results showed that titanium particles promoted apoptosis in MC3T3-E1 cells (t=57.46, P<0.001); artesunate inhibited the effect of titanium particles (t=19.64, P<0.01). In vivo experiments: HE staining showed that the number of inflammatory cells and the degree of bone destruction in the peri-cranial tissues of the Ti granules group were significantly higher than those of the Ti+artesunate, artesunate, and Sham groups; the inflammatory response was reduced and bone destruction was significantly improved after artesunate intervention. ELISA and PCR results showed that compared to sham group, the Ti particles stimulated a significant increase in the concentration of the three inflammatory factors (t=8.872, 15.6, 18.71, all P<0.05) and a decrease in the mRNA expression of osteogenesis-related genes (t=18.31, 20.47, 23.95, 27.22, all P<0.05). In contrast, compared with the Ti particles group, the Ti + artesunate group showed different degrees of down-regulation of the expression of the three inflammatory factors (t=4.672, 4.805, 3.405, all P<0.01) and increased expression of osteogenesis-related genes (t=12.2, 15.15, 22.02, 16.99, all P<0.05). Micro-CT scans showed that titanium particles led to an increase in bone destruction and induced osteolysisaround the skull, and that the titanium particle-induced osteolysis could be mitigated by the intervention of artesunate.

Conclusion

Artesunate can improve titanium particles induced osteolysis and bone destruction by inhibiting inflammatory factors and up-regulating the function of osteoblasts.

图1 内参基因及各相关基因引物序列注:ALP-碱性磷酸酶;OCN-骨钙素;Runx-2-runt相关转录因子-2;COLⅠ-Ⅰ型胶原
Figure 1 Internal reference genes and primer sequences for related genesNote: ALP-alkaline phosphatase; OCN-osteocalcin; Runx-2-runt-related transcription factor 2; COL I-collagen type-Ⅰ
图2 ART(青蒿琥酯)及Ti颗粒在24、48 h对MC3T3-E1细胞活力的影响。图A~B为ART在24 h和48 h对MC3T3-E1细胞活力的影响;图C~D为钛颗粒在相同时间段内对该细胞活力的作用注:a-与对照组比较,P<0.05;b-与对照组比较,P<0.01;c-与对照组比较,P<0.001
Figure 2 Effects of ART(artesunate) and titanium particles on MC3T3-E1 cell viability at 24, 48 h. A and B show the effect of ART on the viability of MC3T3-E1 cells at 24 and 48 h; C and D show the effect of Ti particles on the viability of this cell during the same time periodNote: a-compared with the control group, P<0.05; b-compared with the control group, P<0.01; c-compared with the control group, P<0.001
图3 流式细胞术检测ART(青蒿琥酯)对Ti颗粒诱导的成骨细胞凋亡的影响。图A为各组MC3T3-E1流式细胞图;图B为各组MC3T3-E1细胞凋亡率对比图注:a-与对照组比较,P<0.001
Figure 3 Flow cytometry for the effect of ART(artesunate) on titanium particle-induced apoptosis in osteoblasts. A is the flow cytogram of MC3T3-E1 in each group; B is the comparison of apoptosis rate of MC3T3-E1 cells in each groupNote: a-compared with the control group, P<0.001
图4 (苏木素-伊红)染色检测各组小鼠颅骨病理结果。图A为各组小鼠病理改变HE染色(×5),示Ti颗粒组可见明显的虫蚀样改变和大量炎症细胞,ART(青蒿琥酯)干预后骨溶解程度减轻,炎症细胞减少;图B为各组小鼠细胞计数注:c-与Sham组比较,P<0.001
Figure 4 HE staining for detection of cranial pathology in various groups of mice. A shows the pathologic changes of HE staining of mice in each group (×5), in which the Ti pellet group was seen to have obvious worm-like changes and a large number of inflammatory cells, whereas the intervention with artesunate resulted in a significant reduction in the degree of osteolysis and a decrease in the number of inflammatory cells; B shows cell counts of mice in each groupNote: c-compared with sham group, P<0.001
图5 小鼠颅骨标本炎性因子检测结果。图A~C分别为小鼠TNF-α(肿瘤坏死因子α)、IL(白介素)-1β、IL-6的样本浓度注:*-与Sham组比较,P<0.05;**-与Sham组比较,P<0.01;***-与Sham组比较,P<0.001
Figure 5 Inflammatory factors in cranial specimens of mice. A to C are bar graphs of the sample concentrations of TNF-α(tumor necrosis factor-α), IL(interleukin)-1β, and interleukin-6 in miceNote: *-compared with the sham group, P<0.05; **-compared with the sham group, P<0.01; ***-compared with the sham group, P<0.001
图6 各组小鼠颅骨micro-CT扫描分析与重建结果。图A为颅骨3D重建图像;图B~D为BMD(骨密度)、孔隙率、BV/TV(骨体积分数)的定量分析结果注:*-与Sham组比较,P<0.05;**-与Sham组比较,P<0.01;***-与Sham组比较,P<0.001
Figure 6 Analysis and reconstruction of cranial micro-CT scans of mice in each group. A is the 3D reconstruction image of the skull; B~D show the results of quantitative analysis of BMD (bone mineral density), porosity, and BV/TV (bone volume fraction)Note: *-compared with the sham group, P<0.05; **-compared with the sham group, P<0.01; ***-compared with the sham group, P<0.001(n=4 in each group)
图7 ART(青蒿琥酯)对小鼠成骨相关基因表达的影响注:*-P<0.05;**-P<0.01;ALP-碱性磷酸酶;OCN-骨钙素;COLⅠ-Ⅰ型胶原
Figure 7 Effect of ART (artesunate) on the expression of osteogenesis-related genes in miceNote: *-P<0.05; **-P<0.01; ALP-alkaline phosphatase; OCN-osteocalcin; COL I-type I collagen
[1]
Hodges NA, Sussman EM, Stegemann JP. Aseptic and septic prosthetic joint loosening: Impact of biomaterial wear on immune cell function, inflammation, and infection[J/OL]. Biomaterials, 2021, 278: 121127. DOI:10.1016/j.biomaterials.2021.121127.
[2]
Roof MA, Narayanan S, Lorentz N, et al. Impact of time to revision total knee arthroplasty on outcomes following aseptic failure[J/OL]. Knee Surg Relat Res, 2023, 35(1): 15. DOI:10.1186/s43019-023-00191-5.
[3]
Panez-Toro I, Heymann D, Gouin F, et al. Roles of inflammatory cell infiltrate in periprosthetic osteolysis[J/OL]. Front Immunol, 2023, 14: 1310262 DOI:10.3389/fimmu.2023.1310262.
[4]
Yin Z, Gong G, Liu X, et al. Mechanism of regulating macrophages/osteoclasts in attenuating wear particle-induced aseptic osteolysis[J/OL]. Front Immunol, 2023, 14: 1274679. DOI:10.3389/fimmu.2023.1274679.
[5]
谭飞, 乔永杰, 张浩强, 等. 磨损颗粒影响破骨细胞经典信号通路研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(1): 106-117.
[6]
刘鹏, 邓亚鹏, 曹国定, 等. 人工关节置换术后假体无菌性松动的研究进展[J/OL]. 中华关节外科杂志(电子版), 2020, 14(3): 346-351.
[7]
Zhang L, Haddouti EM, Welle K, et al. The effects of biomaterial implant wear debris on osteoblasts[J/OL]. Front Cell Dev Biol, 2020, 8: 352. DOI:10.3389/fcell.2020.00352.
[8]
侯振扬, 孙义玲, 苏长征, 等. 茶黄素-3, 3’-双没食子酸酯缓解人工假体磨损颗粒引起的成骨抑制[J]. 中国组织工程研究, 2023, 27(25): 4069-4074.
[9]
Zeng ZW, Chen D, Chen L, et al. A comprehensive overview of Artemisinin and its derivatives as anticancer agents[J/OL]. Eur J Med Chem, 2023, 247: 115000. DOI:10.1016/j.ejmech.2022.115000.
[10]
Croft SL, Ward S. The Nobel prize in medicine 2015: two drugs that changed global health[J/OL]. Sci Transl Med, 2015, 7(316): 316ed14. DOI:10.1126/scitranslmed.aad5868.
[11]
Gu J, Xu Y, Hua D, et al. Role of artesunate in autoimmune diseases and signaling pathways[J]. Immunotherapy, 2023, 15(14): 1183-1193.
[12]
汪倩, 郭婉怡, 刘立玲, 等. 基于AhR/ARNT/NQO1信号通路探索青蒿琥酯对类风湿关节炎骨破坏的抑制作用[J]. 中国中药杂志, 2022,47(10): 2698-2704.
[13]
Zhao C, Feng Y, Zhou Y, et al. Artesunate attenuates osteoarthritis in mice by promoting MTA1 transcription through a USP7/FoxO1 axis[J/OL]. Toxicol Appl Pharmacol, 2024, 491: 117075. DOI:10.1016/j.taap.2024.117075.
[14]
Wang G, Tan J, Huang C, et al. Based on NF-κB and Notch1/Hes1 signaling pathways, the mechanism of artesunate on inflammation in osteoporosis in ovariectomized rats was investigated[J/OL]. Front Biosci, 2024, 29(7): 266. DOI:10.31083/j.fbl2907266.
[15]
沙力塔娜提·乌尔曼别克, 李亦丞, 任姜栋, 等. 青蒿琥酯改善软骨下骨破骨细胞介导的骨关节炎疼痛[J]. 中国组织工程研究, 2020, 24(17): 2636-2641.
[16]
蔡毅, 赵继荣, 朱换平, 等. 基于"肾主骨生髓"理论探讨脊髓损伤继发骨质疏松的病机及临床治疗[J]. 中国骨质疏松杂志, 2021,27(1): 131-134, 152.
[17]
曾健康, 乔永杰, 李嘉欢,等. 关节假体无菌松动发生机理的研究现状[J]. 中国矫形外科杂志, 2024, 32(5): 422-427.
[18]
Gazendam A, Ekhtiari S, Wood TJ, et al. Intermediate to long-term outcomes and causes of aseptic failure of an at-risk femoral stem[J]. J Bone Joint Surg Am, 2022, 104(10): 896-901.
[19]
游镇君, 蒋毅, 吴可沁, 等. 槲皮素对钛颗粒诱导的成骨细胞凋亡抑制作用研究[J]. 中国现代医生, 2023,61(29): 48-55, 81.
[20]
Yang C, Wang W, Zhu K, et al. Lithium chloride with immunomodulatory function for regulating titanium nanoparticle-stimulated inflammatory response and accelerating osteogenesis through suppression of MAPK signaling pathway[J]. Int J Nanomedicine, 2019, 14: 7475-7488.
[21]
Zhao C, Zhao L, Zhou Y, et al. Artesunate ameliorates osteoarthritis cartilage damage by updating MTA1 expression and promoting the transcriptional activation of LXA4 to suppress the JAK2/STAT3 signaling pathway[J]. Hum Mol Genet, 2023, 32(8): 1324-1333.
[22]
Jin Y, Wu S, Zhang L, et al. Artesunate inhibits osteoclast differentiation by inducing ferroptosis and prevents iron overload-induced bone loss[J]. Basic Clin Pharmacol Toxicol, 2023, 132(2): 144-153.
[23]
Zhong G, Liang R, Yao J, et al. Artemisinin ameliorates osteoarthritis by inhibiting the Wnt/β-catenin signaling pathway [J]. Cell Physiol Biochem, 2018, 51(6): 2575-2590.
[24]
Wang Z, Feng X, Zhang G, et al. Artesunate ameliorates ligature-induced periodontitis by attenuating NLRP3 inflammasome-mediated osteoclastogenesis and enhancing osteogenic differentiation[J/OL]. Int Immunopharmacol, 2023, 123: 110749. DOI:10.1016/j.intimp.2023.110749.
[25]
魏强, 金权鑫, 金琳博, 等. 双氢青蒿素通过抑制角质形成细胞的增殖和促炎因子的产生改善小鼠银屑病样皮肤炎症[J]. 中国免疫学杂志, 2020,36(5): 543-548.
[26]
Bai S, Zhou J, Nong X, et al. Mechanism and effects of artesunate on the liver function of rats with type 1 diabetic periodontitis[J]. Can J Physiol Pharmacol, 2022, 100(8): 741-754.
[27]
Nie XM, Huang R, Dong CX, et al. Plasmonic ELISA for the ultrasensitive detection of Treponema pallidum[J]. Biosens Bioelectron, 2014, 58: 314-319.
[28]
Güven E, Duus K, Lydolph MC, et al. Non-specific binding in solid phase immunoassays for autoantibodies correlates with inflammation markers[J]. J Immunol Methods, 2014, 403(1-2): 26-36.
[29]
Vimalraj S. Alkaline phosphatase: Structure, expression and its function in bone mineralization[J/OL]. Gene, 2020, 754: 144855. DOI:10.1016/j.gene.2020.144855.
[30]
Komori T. Functions of osteocalcin in bone, pancreas, testis, and muscle[J/OL]. Int J Mol Sci, 2020, 21(20): 7513. DOI:10.3390/ijms21207513.
[31]
Krishnan RH, Sadu L, Das UR, et al. Role of p300, a histone acetyltransferase enzyme, in osteoblast differentiation[J]. Differentiation, 2022, 124: 43-51.
[32]
Huang MZ, Chen HY, Peng GX, et al. Exosomes from artesunate-treated bone marrow-derived mesenchymal stem cells transferring SNHG7 to promote osteogenesis via TAF15-RUNX2 pathway[J]. Regen Med, 2022, 17(11): 819-833.
[33]
Zeng HB, Dong LQ, Xu C, et al. Artesunate promotes osteoblast differentiation through miR-34a/DKK1 axis[J/OL]. Acta Histochem, 2020, 122(7): 151601. DOI:10.1016/j.acthis.2020.151601.
[34]
St Pierre CA, Chan M, Iwakura Y, et al. Periprosthetic osteolysis: characterizing the innate immune response to titanium wear-particles[J]. J Orthop Res, 2010, 28(11): 1418-1424.
[35]
van Otten TJM, van Loon CJM. Early aseptic loosening of the tibial component at the cement-implant interface in total knee arthroplasty: a narrative overview of potentially associated factors[J]. Acta Orthop Belg, 2022, 88(1): 103-111.
[36]
Philbrick KA, Wong CP, Kahler-Quesada AM, et al. Polyethylene particles inserted over calvarium induce cancellous bone loss in femur in female mice[J]. Bone Rep, 2018, 9: 84-92.
[1] 苟中坤, 陈谭潇, 李伊尧, 雷豪豪, 陈镁仪, 李登, 许杰. 髋膝全关节置换术细化临床路径的应用探索[J/OL]. 中华关节外科杂志(电子版), 2025, 19(05): 535-542.
[2] 邵帅铭, 闫峰. 大粗隆柄关节置换用于高龄股骨粗隆间不稳定型骨折[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 505-509.
[3] 高焱, 郝彦明, 叶晓生, 钱荣勋, 陆轲, 高晓明, 李翀, 徐又佳. 氨甲环酸对下肢关节置换术后贫血及凝血功能的影响[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 409-417.
[4] 林志强, 李嘉欢, 张凯, 李文帅, 刘健, 邓泽群, 乔永杰, 周胜虎. 骨髓间充质干细胞在激素性股骨头坏死发病机制的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 464-471.
[5] 张雨, 艾克热木·艾尔肯, 李强强, 蒋青, 陈东阳. 机器人辅助导航前入路全髋关节置换治疗重度髋关节脱位[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 267-274.
[6] 张建桂, 杨塍尧, 贾绍茂. 两种股骨柄假体对全髋关节置换术围手术期影响[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 275-282.
[7] 徐晓燕, 石健, 白燕, 杜棣, 徐兰, 余倩娇, 张锐, 徐永清, 浦路桥. 健康行为过程取向预康复在机器人辅助膝关节置换的应用[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 302-308.
[8] 陈晓艳, 张华, 蒋庆梅. 两种麻醉方式在全膝关节置换术后的疼痛控制效果[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 309-314.
[9] 钟永洌, 张杰, 张志奇. 外翻膝术后中立位机械对线的早中期疗效[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 366-373.
[10] 姚舜禹, 樊沛, 张波, 祝杰生. 髋膝关节置换术10年趋势的卫生经济学单中心分析[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 143-150.
[11] 陈玉书, 欧阳铸基, 宋丽娟, 林嗣雄, 董伟强, 白波. 医学影像三维重建技术在全髋关节置换术中的应用[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 151-155.
[12] 王浩浩, 席刚, 杨家驹, 翁铭捷, 张民. 术前膝关节冠状面力线对牛津单髁术后力线的影响分析[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 156-161.
[13] 严钰皓, 刘选泽, 包利帅, 赫明亮, 肖国庆. 氨甲环酸不同给药途径在初次全膝关节置换的效果[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 178-184.
[14] 史彦纪, 张磊, 雷宁波, 常瑞龙, 左宁, 顾玉彪. 孟德尔随机化探讨免疫性疾病与人工关节再手术的关联[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 193-199.
[15] 马小杰, 张贵慧, 李润泽, 王秋入, 陈带领, 马清伟, 张磊, 陈长军. 对硒代甲硫氨酸逆转糖皮质激素介导的成骨细胞凋亡和成骨阻抑治疗大鼠激素性股骨头坏死的机制探索[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 412-420.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?