切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (03) : 267 -274. doi: 10.3877/cma.j.issn.1674-134X.2025.03.002

临床论著

机器人辅助导航前入路全髋关节置换治疗重度髋关节脱位
张雨1,2,3, 艾克热木·艾尔肯2,3, 李强强1,2,3, 蒋青1,2,3, 陈东阳1,2,3,()   
  1. 1210008 南京医科大学鼓楼临床医学院骨科,运动医学与成人重建外科
    2210008 南京大学医学院附属鼓楼医院骨科,运动医学与成人重建外科
    3210008 南京,国家骨科与运动康复临床医学研究中心分中心
  • 收稿日期:2024-12-20 出版日期:2025-06-01
  • 通信作者: 陈东阳
  • 基金资助:
    南京市医学科技发展项目(YKK24103); 南京鼓楼医院临床研究专项资金资助(2022-LCYJ-MS-21,2024-LCYJ-PY-82)

Robotic-assisted navigation for anterior approach total hip arthroplasty in treatment of severe hip dislocation

Yu Zhang1,2,3, Aierken Aikeremu2,3, Qiangqiang Li1,2,3, Qing Jiang1,2,3, Dongyang Chen1,2,3,()   

  1. 1Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
    2Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
    3Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing 210008, China
  • Received:2024-12-20 Published:2025-06-01
  • Corresponding author: Dongyang Chen
引用本文:

张雨, 艾克热木·艾尔肯, 李强强, 蒋青, 陈东阳. 机器人辅助导航前入路全髋关节置换治疗重度髋关节脱位[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 267-274.

Yu Zhang, Aierken Aikeremu, Qiangqiang Li, Qing Jiang, Dongyang Chen. Robotic-assisted navigation for anterior approach total hip arthroplasty in treatment of severe hip dislocation[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2025, 19(03): 267-274.

目的

探讨机器人辅助导航技术在重度髋关节脱位前入路全髋关节置换术(THA)的应用策略,并评估其临床治疗的安全性和有效性。

方法

纳入2022年10月至2023年10月南京鼓楼医院运动医学与成人重建外科收治的重度髋关节脱位(Crowe分型Ⅳ型)患者,排除患髋感染且不能耐受手术患者,共计18例,男3例,女15例,年龄23~72岁。术前应用MAKO机器人规划髋臼位置及假体型号与安放角度,股骨假体类型及型号。仰卧位以前入路暴露患髋,机械臂辅助下准备髋臼安装臼杯,手工操作扩髓、安装股骨侧假体。收集术前、术后3、6个月和1年患髋Harris功能评分并采用重复测量方差分析;记录手术时间,双下肢不等长、臼杯前倾角与外展角、手术前后红细胞压积与血红蛋白的比较采用配对t检验;记录术后不良并发症发生情况。

结果

平均手术时间为(162.5±36.3)min,血红蛋白由术前(126.2±12.9)g/L降低至术后(109.0±10.9)g/L,红细胞压积由术前(41.2±12.0)%降至术后(33.1±3.1)%,差异均具有统计学意义(t=5.241、2.791,均为P<0.01)。双下肢不等长由术前平均(35.4±20.4)mm纠正至术后(9.6±6.2)mm。术后测量臼杯前倾角平均(19.6±4.1)°,较术前规划(14.4±1.6)°更大,外展角平均(40.3±5.1)°,较术前规划(43.8±2.6)°更小,差异均具有统计学意义(t=5.130、4.940、2.591,均为P<0.05)。术前术后偏心距差异无明显统计学意义(t=0.897,P>0.05)。股骨柄及臼杯型号术前规划与术中使用一致率100%。Harris功能评分由术前(58.2±10.8)分,术后6个月和1年分别提高至(79.9±15.9)分和(89.5±8.3)分。其中2例(11.1%)发生股骨近端骨裂,2例(11.1%)在术后发生假体后脱位,予切开复位支具固定后无复发,1例术后股神经麻痹,屈髋固定联合营养神经治疗,术后3个月症状缓解。所有患者均无切口感染、愈合不良。

结论

机器人术前规划可个性化地为重度髋关节脱位患者选择恰当的假体类型和型号,术中辅助术者精准安装假体位置及角度。前入路方便充分松解阔筋膜张肌近端止点,利于纠正双下肢不等长。髋部的结构畸形和肌肉废用性萎缩导致的术后康复慢、脱位风险高是机器人所不能克服的问题,需要更精细的围术期软组织管理。

Objective

To investigate the application strategy of robot-assisted navigation technology in anterior approach total hip arthroplasty (THA) for severe hip dislocations and to evaluate its clinical safety and effectiveness.

Methods

Eighteen patients with severe hip dislocations (Crowe type IV), including three males and 15 females, age range was 23 to 72 years, were enrolled in the department of sports medcine and adult reconstruction, Nanjing Drum Tower Hospital from October 2022 to October 2023. The patients with joint infection on the involved side and those who were intolerant to surgery were excluded. Before surgery, the MAKO robot was used to plan the acetabular position, prosthesis type and size, and implantation angle. The prosthesis type and size were also planned based on the morphology of the proximal femur. The anterior approach was used to expose the hip in the supine position, with the acetabular cup prepared and installed under robotic arm assistance, while manual reaming and femoral prosthesis installation were performed. Data were collected on preoperative and postoperative (three and six months, one year) Harris hip function scores and evaluated by repeated measurement of variance analysis. The data of operative duration, leg length discrepancy, acetabular cup anteversion and abduction angles, preoperative and postoperative hematocrit and hemoglobin levels were analyzed by paired t test; postoperative complications were recorded.

Results

The average operative duration was (162.5±36.3) min. Hemoglobin levels decreased from (126.2±12.9) g/L to (109.0±10.9) g/L after surgery, and hematocrit decreased from (41.2±12.0) % to (33.1±3.1) %, with statistically significant differences (t=5.241, 2.791, both P<0.01). Leg length discrepancy was corrected from an average of (35.4±20.4) mm preoperatively to (9.6±6.2) mm postoperatively. Postoperative measurements showed an average acetabular cup anteversion angle of (19.6±4.1)°, which was larger than the preoperative plan of (14.4±1.6)°, and an average abduction angle of (40.3±5.1)°, which was smaller than the preoperative plan of (43.8±2.6)°, with statistically significant differences (t=5.130, 4.940, 2.591, all P<0.05). There was no statistically significant difference in the eccentricity before and after surgery (t=0.897, P=0.130). The preoperative planning for femoral stem and acetabular cup sizes matched the intraoperative use with 100% consistency. The Harris hip function score increased from an average of (58.2±10.8) preoperatively to (79.9±15.9) at six months postoperatively and (89.5±8.3) at one year postoperatively, indicating significant improvement in hip function. Two patients (11.1%) experienced proximal femoral fractures, and two patients (11.1%) had postoperative prosthesis dislocations. One case of postoperative femoral nerve palsy was treated with hip flexion fixation combined with neurotrophic therapy. The symptoms were relieved three months after the operation. After open reduction and fixation with braces, no recurrences occurred. No patients experienced complications such as wound infection or poor wound healing.

Conclusions

Preoperative robotic planning aids in personalized prosthesis selection for severe hip dislocations, ensuring precise installation. The anterior approach helps release the tensor fascia lata for limb length correction. However, hip deformities and muscle atrophy may delay recovery and increase dislocation risks, necessitating detailed perioperative soft tissue management beyond robotic capabilities.

图1 机器人辅助THA(全髋关节置换术)治疗左侧重度髋关节脱位过程及影像。图A为机器人术中规划注册点;图B为机器人手臂辅助髋臼侧准备,外展45°、前倾15°;图C为机器人模拟安装臼杯在外展42°、前倾15°位置;图D为提示安装完髋臼及股骨侧假体后整体外观,双下肢不等长纠正到2 mm,联合偏心距降至5 mm;图E为术前双髋正位X线片,示左侧髋关节重度脱位,右侧髋关节轻微发育不良;图F~H分别为左侧全髋关节置换术后3、6个月和第1年随访双髋正位X线片,示左髋假体位置良好注:红色区域提示骨质打磨超出计划范围,绿色提示骨质打磨不到位,灰色为刚好
Figure 1 Procedures and images of robot-assisted navigated THA(total hip arthroplasty)for left severe hip dislocation treatment. A is intraoperative planning and registration points using robotic assistance; B shows robotic arm-assisted acetabular preparation with 45° abduction and 15° anteversion.; C shows robotic simulation of acetabular cup implantation at 42° abduction and 15° anteversion; D shows overall appearance after implantation of the acetabular and femoral prosthesis, with leg length discrepancy corrected to 2 mm, and combined eccentric distance reduced to 5 mm; E is preoperative anteroposterior X-ray image of bilateral hips, showing severe left hip dislocation and mild dysplasia of the right hip; F to H are anteroposterior X-ray images of bilateral hips at three, six months and one year after left THA, respectively, showing good prosthesis positionNote: The red area indicates bone grinding beyond the planned range, green indicates insufficient bone grinding, and gray indicates just right
表1 MAKO机器人辅助THA术前、术后各项指标对比(±s)
Table 1 Comparison of indicators for MAKO robot-assisted THA before and after operation
表2 患侧髋关节功能术前术后Harris评分的重复测量方差分析结果
Table 2 The results of repeated measures ANOVA for Harris hip score before and after surgery on the affected side
图2 机器人辅助左侧THA(全髋关节置换术)术后假体脱位治疗及影像。图A为术中注册左侧髋臼与骨盆;图B为机器人手臂辅助下左侧髋臼骨床准备完毕,外展45°、前倾10°;图C为臼杯安装在外展45°、前倾10°;图D为机器人模拟安装好股骨侧、髋臼侧假体后外观,双下肢不等长改善至14 mm,联合偏心距为16 mm;图E为术前双髋关节正位X线片,示左髋关节重度脱位,股骨近端畸形伴骨质疏松,髋臼窝发育不良,右髋关节轻微发育异常;图F为术后第2天双髋关节正位片,示左侧假体型号、角度良好,术后骨盆倾斜明显;图G为术后3个月双髋正位X线片,示左侧髋关节假体脱位,股骨头明显上移;图H为术后1年双髋关节正位X线片,示假体位置、角度良好,骨盆倾斜明显改善
Figure 2 Procedures and images of robot-assisted navigated THA(total hip arthroplasty)for left hip. A is intraoperative registration of the acetabulum and pelvis for the left hip; B shows completion of acetabular bone bed preparation with robotic arm assistance, at position of 45° abduction and 10° anteversion; C shows implantation of the acetabular cup at 45° abduction and 10° anteversion; D shows appearance after robotic simulation of implantation of femoral and acetabular prosthesis, with improvement of leg length discrepancy of 14 mm and combined eccentric distance of 16 mm; E is preoperative anteroposterior X-ray image of bilateral hips, showing severe left hip dislocation, proximal femoral deformity with osteoporosis and acetabular dysplasia, with mild developmental abnormality of the right hip; F is anteroposterior X-ray image of bilateral hips on the second day after surgery, showing good prosthesis size and angle, with significant postoperative pelvic tilt; G. is anteroposterior X-ray image of bilateral hips three months after surgery, showing left hip joint dislocation with obvious upward displacement of the femoral head; H is anteroposterior X-ray image of bilateral hips one year after surgery, showing good prosthesis position and angle, with significant improvement in pelvic tilt
[1]
Poursalehian M, Hassanzadeh A, Shafiei SH, et al. Mid- to long-term outcomes and complications of total hip arthroplasty in patients who have crowe IV developmental dysplasia of the hip: a systematic review and meta-analysis[J]. J Arthroplasty, 2025, 40(2): 530-539.
[2]
Suzuki M, Masuda T, Kanno T, et al. Minimum 10-year survivorship of uncemented acetabular reconstruction with bulk femoral head autografting in crowe type IV developmental hip dysplasia[J]. J Arthroplasty, 2024, 39(10): 2542-2546.
[3]
Shen X, Zhang R, Mei J, et al. Total hip arthroplasty combined with proximal femoral reconstruction effectively treats severe hip deformities: a novel osteotomy technique[J]. Orthop Surg, 2024, 16(8): 1939-1945.
[4]
Esmaeili S, Ghaseminejad-Raeini A, Ghane G, et al. Total hip arthroplasty in patients who have crowe type IV developmental dysplasia of the hip: a systematic review[J]. J Arthroplasty, 2024, 39(10): 2645-2660.e19.
[5]
Hayashi S, Kuroda Y, Nakano N, et al. Accuracy of portable navigation during THA in patients with severe developmental dysplasia of hip[J].Arch Orthop Trauma Surg, 2024, 144(5): 2429-2435.
[6]
Shigemura T, Yamamoto Y, Murata Y. Total hip arthroplasty with subtrochanteric osteotomy for severe developmental dysplasia of the hip: a systematic review and meta-analysis[J]. J Orthop, 2025, 62: 197-206.
[7]
Llombart-Blanco R, Mariscal G, Barrios C, et al. MAKO robot-assisted total hip arthroplasty: a comprehensive meta-analysis of efficacy and safety outcomes[J/OL]. J Orthop Surg Res, 2024, 19 (1): 698. DOI:10.1186/s13018-024-05199-5.
[8]
Geng X, Dong Z, Li Y, et al. Precise acetabular prosthesis positioning using a novel robot-assisted total hip arthroplasty system: a multicenter, randomized controlled trial[J]. Orthop Surg, 2025, 17(1): 141-150.
[9]
张帅, 刘成, 孔祥朋, 等. 机器人辅助全髋关节置换术的临床疗效[J]. 中华骨科杂志, 2023, 43(17): 1137-1145.
[10]
张雨, 傅凯, 姚尧, 等. 机器人辅助与传统直接前入路微创全髋关节置换的比较[J/OL]. 中华关节外科杂志(电子版), 2022,16(5): 535-541.
[11]
黄一健,孔祥朋,谢鸿斌,等. 发育性髋关节发育不良合并畸形的研究现状及展望[J]. 骨科, 2023, 14 (05): 484-488.
[12]
蔺海山,赵巍,哈巴西·卡肯,等. 人工全髋关节置换治疗陈旧性化脓性髋关节炎遗留关节畸形的临床疗效 [J]. 骨科, 2022, 13 (03): 264-267.
[13]
王海波, 孙卫平. 人工全髋关节置换治疗严重髋关节畸形伴骨盆严重倾斜1例报道[J]. 中国矫形外科杂志, 2017, 25(19): 1822-1824.
[14]
Davulcu CD, Ozsahin MK, Kayaalp ME, et al. Rectangular femoral stems can successfully accommodate the medullary canal in patients with severe hip dysplasia operated on with total hip arthroplasty and a shortening osteotomy: a morphometric study[J]. Acta Orthop Belg, 2024, 90(4): 581-587.
[15]
Jia CQ, Wu YJ. Factors associated with complications in 176 Crowe Ⅳ hips treated with total hip arthroplasty[J/OL]. Orthop Surg, 2025. DOI: 10.1111/os.70120.
[16]
Hayashi S, Hashimoto S, Kuroda Y, et al. Robotic-arm assisted THA can achieve precise cup positioning in developmental dysplasia of the hip: a case control study[J]. Bone Joint Res, 2021, 10(10): 629-638.
[17]
许固军, 马明阳, 张帅, 等. Mako机器人辅助人工全髋关节置换术在发育性髋关节发育不良中的应用[J]. 中国修复重建外科杂志, 2021, 35(10): 1233-1239.
[18]
赵鹏, 李玉军, 窦勇, 等. CroweⅢ-Ⅳ型DDH患者全髋关节置换术后不满意及相关因素分析 [J]. 中国骨伤, 2024, 37(4): 363-367.
[19]
Iseri K, Hida N. Risk factors for osteonecrosis of the jaw in patients with chronic kidney disease: a nested case-control study[J]. J Bone Miner Res, 2025, 40(2): 262-269.
[20]
Shi XT, Li CF, Han Y, et al. Total hip arthroplasty for crowe type IV hip dysplasia: surgical techniques and postoperative complications[J]. Orthop Surg, 2019, 11(6): 966-973.
[21]
Zhang Y, He J, Liu B, et al. Effect of the surgical approach on the incidence of nerve injury in patients with Crowe IV hip dysplasia undergoing total hip arthroplasty: a comparison between the direct anterior and the posterior approaches[J/OL]. Hip Int, 2025: 11207000251349739. DOI:10.1177/11207000251349739.
[22]
Shi XT, Li CF, Cheng CM, et al. Preoperative planning for total hip arthroplasty for neglected developmental dysplasia of the hip[J]. Orthop Surg, 2019, 11(3): 348-355.
[1] 史福军, 魏巍, 林晓华, 廖玥, 郭志容. 单孔机器人辅助乳腺癌手术一例[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(02): 125-127.
[2] 姚舜禹, 樊沛, 张波, 祝杰生. 髋膝关节置换术10年趋势的卫生经济学单中心分析[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 143-150.
[3] 高志祥, 赵超, 姚凯, 于伟, 刘利娟, 贾乐, 孔向东, 肖聪. 两种止血药在全髋关节置换术围手术期的应用[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 7-12.
[4] 皮颖, 张强, 黄志荣. 80 岁以上股骨颈骨折患者术后1 年死亡率的预测因素[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 13-20.
[5] 刘寻, 鄢庆林, 李福斌, 郭军. 超声引导髂筋膜阻滞复合全麻在老年髋置换术中的效果[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 109-115.
[6] 冯帆, 马文亮, 董翔, 潘骏, 甘卫东, 郭宏骞. 前后结合入路机器人辅助根治性前列腺切除术早期疗效分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 83-87.
[7] 刘军, 王子函, 李梦新, 等. 单孔机器人保乳手术[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 162-165.
[8] 中国研究型医院学会微创外科专业委员会, 中国研究型医院学会智能医学专业委员会. 胰管(修复)外科专家共识[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(02): 65-72.
[9] 中国研究型医院学会微创外科学专业委员会, 中国研究型医院学会智能医学专业委员会. 机器人肝门部胆管癌根治术专家共识[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(02): 73-77.
[10] 中国研究型医院学会微创外科学专业委员会, 中国研究型医院学会智能医学专业委员会. 机器人胆囊癌根治术专家共识[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(02): 78-82.
[11] 刘博源, 张柯迪, 陈嘉瑞, 胡明根. 机器人与开腹手术肝内胆管细胞癌淋巴结清扫的对比研究[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(02): 109-114.
[12] 沈寒川, 刘洋, 张航宇, 肖朝辉, 赵天赐, 李朝县, 李成刚. 机器人在肝脏血管瘤切除中的应用[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(02): 105-108.
[13] 王楠, 李立安, 马鑫, 翟青枝, 王铭洋, 孟元光. 机器人手术多学科协作治疗静脉内平滑肌瘤病[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(02): 125-128.
[14] 中国NOSES联盟, 中国医师协会结直肠肿瘤专业委员会NOSES学组, 中国医师协会结直肠肿瘤专业委员会机器人手术学组, 中国抗癌协会NOSES专业委员会. “机器人”结直肠肿瘤经自然腔道取标本手术专家共识(2025版)[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 202-220.
[15] 王开宇, 郭天宇, 李娜, 白静慧, 张雷, 金号然, 张睿, 刘也夫. 机器人辅助腹腔镜左半结肠切除联合肝右后叶转移瘤切除一例(附视频)[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 189-192.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?