切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (04) : 464 -471. doi: 10.3877/cma.j.issn.1674-134X.2025.04.008

综述

骨髓间充质干细胞在激素性股骨头坏死发病机制的研究进展
林志强1,2, 李嘉欢1, 张凯1, 李文帅1, 刘健1, 邓泽群3, 乔永杰2, 周胜虎2,()   
  1. 1730030 兰州,甘肃中医药大学
    2730050 兰州,解放军联勤保障部队第九四〇医院关节外科
    3750004 银川,宁夏医科大学
  • 收稿日期:2024-06-05 出版日期:2025-08-01
  • 通信作者: 周胜虎
  • 基金资助:
    甘肃省重点研发计划(25YFFA064); 甘肃省卫生健康行业科研(GS-62000000025-2024-068); 兰州市科技计划(2023-2-11); 甘肃中医药大学导师专项(2023YXKY015)

Progress of bone marrow mesenchymal stem cells in pathogenesis of hormonal femoral head necrosis

Zhiqiang Lin1,2, Jiahuan Li1, Kai Zhang1, Wenshuai Li1, Jian Liu1, Zequn Deng3, Yongjie Qiao2, Shenghu Zhou2,()   

  1. 1Gansu University of Chinese Medicine, Lanzhou 730030, China
    2The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou 730050, China
    3Ningxia Medical University, Yinchuan 750004, China
  • Received:2024-06-05 Published:2025-08-01
  • Corresponding author: Shenghu Zhou
引用本文:

林志强, 李嘉欢, 张凯, 李文帅, 刘健, 邓泽群, 乔永杰, 周胜虎. 骨髓间充质干细胞在激素性股骨头坏死发病机制的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 464-471.

Zhiqiang Lin, Jiahuan Li, Kai Zhang, Wenshuai Li, Jian Liu, Zequn Deng, Yongjie Qiao, Shenghu Zhou. Progress of bone marrow mesenchymal stem cells in pathogenesis of hormonal femoral head necrosis[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2025, 19(04): 464-471.

激素性股骨头坏死(SANFH)是一种代谢性疾病,由于持续服用高剂量的糖皮质激素(GCs),股骨头局部血液循环受阻,发生组织缺血、坏死等病变。SANFH具有高致残率,严重影响患者生存质量,但其具体发病机制尚未完全阐明。但研究表明,骨髓间充质干细胞(BMSCs)成骨和成脂分化的失衡是SANFH发生发展的主要机制之一。本文对BMSCs在SANFH发病机制中的研究进展进行综述,为进一步防治SANFH提供参考依据。

Steroids induced avascular necrosis of femoral head (SANFH) is a metabolic disease in which ischaemia and necrosis of the femoral head occur as a result of obstruction of local blood circulation due to continuous administration of high doses of glucocorticoids (GCs). SANFH has a high disability rate, which seriously affects the quality of patients’ survival, but its specific pathogenesis has not been fully elucidated, among which the imbalance of osteogenic and lipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is considered to be one of the main mechanisms for the development of SANFH. The research progresses of BMSCs in the pathogenesis of SANFH were reviewed to provide a reference basis for further prevention and treatment of SANFH.

图1 BMSCs(骨髓间充质干细胞)成骨、成脂分化的机制示意图
Figure 1 Schematic diagram of BMSCs (bone marrow mesenchymal stem cells) for osteogenic and lipogenic differentiation
[1]
Liang XZ, Luo D, Chen YR, et al. Identification of potential autophagy-related genes in steroid-induced osteonecrosis of the femoral head via bioinformatics analysis and experimental verification[J/OL]. J Orthop Surg Res, 2022, 17(1): 86. DOI:10.1186/s13018-022-02977-x.
[2]
Zhao DW, Yu M, Hu K, et al. Prevalence of nontraumatic osteonecrosis of the femoral head and its associated risk factors in the Chinese population: results from a nationally representative survey[J]. Chin Med J, 2015, 128(21): 2843-2850.
[3]
Tan B, Li W, Zeng P, et al. Epidemiological study based on China osteonecrosis of the femoral head database[J]. Orthop Surg, 2021, 13(1): 153-160.
[4]
Zhao D, Zhang F, Wang B, et al. Guidelines for clinical diagnosis and treatment of osteonecrosis of the femoral head in adults (2019 version)[J]. J OrthopTranslat, 2020, 21: 100-110.
[5]
费腾, 阎作勤. 激素性股骨头坏死发病机制的研究进展[J/OL]. 中华关节外科杂志(电子版), 2011, 5(4): 504-508.
[6]
Zhang J, Cao J, Liu Y, et al. Advances in the pathogenesis of steroid-associated osteonecrosis of the femoral head[J/OL]. Biomolecules, 2024, 14(6): 667. DOI:10.3390/biom14060667.
[7]
Yang N, Sun H, Xue Y, et al. Inhibition of MAGL activates the Keap1/Nrf2 pathway to attenuate glucocorticoid-induced osteonecrosis of the femoral head[J/OL]. Clin Transl Med, 2021, 11(6): e447. DOI:10.1002/ctm2.447.
[8]
Chang C, Greenspan A, Eric Gershwin M. The pathogenesis, diagnosis and clinical manifestations of steroid-induced osteonecrosis[J/OL]. J Autoimmun, 2020, 110: 102460.DOI:10.1016/j.jaut.2020.102460.
[9]
Lu GD, Cheng P, Liu T, et al. BMSC-derived exosomal miR-29a promotes angiogenesis and osteogenesis[J/OL]. Front Cell Dev Biol, 2020, 8: 608521.DOI:10.3389/fcell.2020.608521.
[10]
Xu Y, Jiang Y, Wang Y, et al. LINC00473-modified bone marrow mesenchymal stem cells incorporated thermosensitive PLGA hydrogel transplantation for steroid-induced osteonecrosis of femoral head: a detailed mechanistic study and validity evaluation[J/OL]. Bioeng Transl Med, 2022, 7(2): e10275. DOI:10.1002/btm2.10275.
[11]
Wang L, Tian X, Li K, et al. Combination use of core decompression for osteonecrosis of the femoral head: a systematic review and meta-analysis using Forest and Funnel Plots[J/OL]. Comput Math Methods Med, 2021, 2021: 1284149.DOI:10.1155/2021/1284149.
[12]
Tie Y, Tang F, Peng D, et al. TGF-beta signal transduction: biology, function and therapy for diseases[J/OL]. Mol Biomed, 2022, 3(1): 45. DOI:10.1186/s43556-022-00109-9.
[13]
Eiraku N, Chiba N, Nakamura T, et al. BMP9 directly induces rapid GSK3-β phosphorylation in a Wnt-independent manner through class I PI3K-Akt axis in osteoblasts[J]. FASEBJ, 2019, 33(11): 12124-12134.
[14]
Bharadwaz A, Jayasuriya AC. Osteogenic differentiation cues of the bone morphogenetic protein-9 (BMP-9) and its recent advances in bone tissue regeneration[J/OL]. Mater SciEng C Mater BiolAppl, 2021, 120: 111748.DOI:10.1016/j.msec.2020.111748.
[15]
Kumlin M, Ungerstedt J, Cai H, et al. The functional and molecular impact of triamcinolone acetonide on primary human bone marrow mesenchymal stem cells[J/OL]. Sci Rep, 2023, 13(1): 21787. DOI:10.1038/s41598-023-48448-z.
[16]
Olivares-Navarrete R, Hyzy SL, Haithcock DA, et al. Coordinated regulation of mesenchymal stem cell differentiation on microstructured titanium surfaces by endogenous bone morphogenetic proteins[J]. Bone, 2015, 73: 208-216.
[17]
Fan J, Lee CS, Kim S, et al. Trb3 controls mesenchymal stem cell lineage fate and enhances bone regeneration by scaffold-mediated local gene delivery[J/OL]. Biomaterials, 2021, 264: 120445.DOI:10.1016/j.biomaterials.2020.120445.
[18]
Pan FY, Li ZM, Liu XW, et al. Effect of strontium ranelate on rabbits with steroid-induced osteonecrosis of femoral head through TGF-β1/BMP2 pathway[J]. Eur Rev Med Pharmacol Sci, 2020, 24(3): 1000-1006.
[19]
Yuan S, Zhang C, Wang B. Neohesperidin promotes the proliferation and osteogenic differentiation of BMSCs via BMP2-Wnt/β-catenin pathway[J]. Cell Cycle, 2022, 21(2): 187-201.
[20]
Zhang P, Tao F, Li Q, et al. 5-Azacytidine and trichostatin A enhance the osteogenic differentiation of bone marrow mesenchymal stem cells isolated from steroid-induced avascular necrosis of the femoral head in rabbit[J]. J Biosci, 2019, 44(4): 87.
[21]
Arya PN, Saranya I, Selvamurugan N. Crosstalk between Wnt and bone morphogenetic protein signaling during osteogenic differentiation[J]. World J Stem Cells, 2024, 16(2): 102-113.
[22]
Wang W, Zhang H, Sandai D, et al. ATP-induced cell death: a novel hypothesis for osteoporosis[J/OL]. Front Cell Dev Biol, 2023, 11: 1324213.DOI:10.3389/fcell.2023.1324213.
[23]
龚高进,黄海汛.齐墩果酸调节Wnt/β-catenin信号通路减轻大鼠激素性股骨头坏死[J].中国组织工程研究202428(27):4373-4377.
[24]
Han L, Gong S, Wang R, et al. Knockdown of POSTN inhibits osteogenic differentiation of mesenchymal stem cells from patients with steroid-induced osteonecrosis[J/OL]. Front Cell Dev Biol, 2020, 8: 606289.DOI:10.3389/fcell.2020.606289.
[25]
谢映春, 涂小林. 体外激活骨细胞Notch信号对骨髓基质细胞成骨分化的影响[J]. 第三军医大学学报, 2020, 42(9): 891-898.
[26]
He Y, Zou L. Notch-1 inhibition reduces proliferation and promotes osteogenic differentiation of bone marrow mesenchymal stem cells[J]. Exp Ther Med, 2019, 18(3): 1884-1890.
[27]
Pereira RM, Delany AM, Durant D, et al. Cortisol regulates the expression of Notch in osteoblasts[J]. J Cell Biochem, 2002, 85(2): 252-258.
[28]
樊俊, 吴陈欢,程中华. 解整合素金属蛋白酶10与激素性股骨头坏死患者骨髓间充质干细胞的增殖及成骨分化[J]. 中国组织工程研究, 2023, 27(10): 1507-1513.
[29]
杨信信. ERK5信号通路调控骨髓间充质干细胞成脂分化和成骨分化的机制研究[D].兰州:兰州大学, 2020.
[30]
Sirabella R, Secondo A, Pannaccione A, et al. ERK1/2, p38, and JNK regulate the expression and the activity of the three isoforms of the Na+/Ca2+ exchanger, NCX1, NCX2, and NCX3, in neuronal PC12 cells[J]. J Neurochem, 2012, 122(5): 911-922.
[31]
Qin W, Shang Q, Shen G, et al. Restoring bone-fat equilibrium: baicalin’s impact on P38 MAPK pathway for treating diabetic osteoporosis[J/OL]. Biomed Pharmacother, 2024, 175: 116571.DOI:10.1016/j.biopha.2024.116571.
[32]
张雄卫. 川骨片基于MAPK通路对SANFH兔ERK1、ERK2及P38蛋白的干预实验研究[D].成都:成都中医药大学, 2019.
[33]
Chen M, Luo D, Zhan J, et al. Fasudil enhanced differentiation of BMSCs in vivo and vitro, involvement of P38 signaling pathway[J/OL]. ChemBiol Interact, 2020, 317: 108944.DOI:10.1016/j.cbi.2020.108944.
[34]
Loh HY, Norman BP, Lai KS, et al. Post-transcriptional regulatory crosstalk between microRNAs and canonical TGF-β/BMP signallingcascades on osteoblast lineage: acomprehensive review[J/OL]. Int J MolSci, 2023, 24(7): 6423. DOI:10.3390/ijms24076423.
[35]
Xiang J, Fu HQ, Xu Z, et al. lnc RNA SNHG1 attenuates osteogenic differentiation via the miR-101/DKK1 axis in bone marrow mesenchymal stem cells[J]. Mol Med Rep, 2020, 22(5): 3715-3722.
[36]
Nappi F. Non-coding RNA-targeted therapy: astate-of-the-art review[J/OL]. Int J Mol Sci, 2024, 25(7): 3630. DOI:10.3390/ijms25073630.
[37]
Xu P, Chang J, Ma G, et al. miR-145 inhibits the differentiation and proliferation of bone marrow stromal mesenchymal stem cells by GABARAPL1 in steroid-induced femoral head necrosis[J/OL]. BMC Musculoskelet Disord, 2022, 23(1): 1020. DOI:10.1186/s12891-022-05928-z.
[38]
Fang SH, Chen L, Chen HH, et al. miR-15b ameliorates SONFH by targeting Smad 7 and inhibiting osteogenic differentiation of BMSCs[J]. Eur Rev Med Pharmacol Sci, 2019, 23(22): 9761-9771.
[39]
El-Derany MO, Abdel Hamid SG. Upregulation of miR-96-5p by bone marrow mesenchymal stem cells and their exosomes alleviate non-alcoholic steatohepatitis: Emphasis on caspase-2 signaling inhibition[J/OL]. Biochem Pharmacol, 2021, 190: 114624.DOI:10.1016/j.bcp.2021.114624.
[40]
Li T, Li H, Li T, et al. microRNA expression profile of dexamethasone-induced human bone marrow-derived mesenchymal stem cells during osteogenic differentiation[J]. J Cell Biochem, 2014, 115(10): 1683-1691.
[41]
Cui Y, Huang T, Zhang Z, et al. The potential effect of BMSCs with miR-27a in improving steroid-induced osteonecrosis of the femoral head[J/OL]. Sci Rep, 2022, 12(1): 21051. DOI:10.1038/s41598-022-25407-8.
[42]
Xiang S, Li Z, Weng X. The role of lncRNA RP11-154D6 in steroid-induced osteonecrosis of the femoral head through BMSC regulation[J]. J Cell Biochem, 2019, 120(10): 18435-18445.
[43]
Fang B, Li Y, Chen C, et al. HuoXue Tong Luo capsule ameliorates osteonecrosis of femoral head through inhibiting lncRNA-Miat [J/OL]. J Ethnopharmacol, 2019, 238: 111862.DOI:10.1016/j.jep.2019.111862.
[44]
Xu Y, Xin R, Sun H, et al. Long non-coding RNAs LOC100126784 and POM121L9P derived from bone marrow mesenchymal stem cells enhance osteogenic differentiation via the miR-503-5p/SORBS1 axis[J/OL]. Front Cell Dev Biol, 2021, 9: 723759.DOI:10.3389/fcell.2021.723759.
[45]
Huang XZ, Huang J, Li WZ, et al. LncRNA-MALAT1 promotes osteogenic differentiation through regulating ATF4 by sponging miR-214: Implication of steroid-induced avascular necrosis of the femoral head [J/OL]. Steroids, 2020, 154: 108533.DOI:10.1016/j.steroids.2019.108533.
[46]
Zhang F, Peng W, Wang T, et al. Lnc Tmem235 promotes repair of early steroid-induced osteonecrosis of the femoral head by inhibiting hypoxia-induced apoptosis of BMSCs[J]. Exp Mol Med, 2022, 54(11): 1991-2006.
[47]
姚源. circRNA_1809通过miR-370-3p/Kitlg途径促进大鼠骨髓间充质干细胞成骨分化的机制研究 [D]. 新疆医科大学,2022.
[48]
Kuang MJ, Xing F, Wang D, et al. CircUSP45 inhibited osteogenesis in glucocorticoid-induced osteonecrosis of femoral head by sponging miR-127-5p through PTEN/AKT signal pathway: experimental studies [J]. Biochem Biophys Res Commun, 2019, 509(1): 255-261.
[49]
孙志博, 马中希, 叶志伟, 等. AID对激素性股骨头坏死骨髓间充质干细胞的影响[J]. 中国矫形外科杂志, 2021, 29(23): 2168-2172.
[50]
Wang SH, Gou GH, WuCC, et al. Increased COUP-TFII expression mediates the differentiation imbalance of bone marrow-derived mesenchymal stem cells in femoral head osteonecrosis[J/OL]. Biomed Res Int, 2019, 2019: 9262430.DOI:10.1155/2019/9262430.
[51]
Zhao J, Chen A, Wang R, et al. Bmi-1 epigenetically orchestrates osteogenic and adipogenicdifferentiation of bone marrow mesenchymal stem cells to delay bone aging[J/OL]. Adv Sci, 2024, 11(46): e2404518. DOI:10.1002/advs.202404518.
[52]
Zhang XX, Liang X, Li SR, et al. Bone marrow mesenchymal stem cells overexpressing HIF-1α prevented the progression of glucocorticoid-induced avascular osteonecrosis of femoral heads in mice[J/OL]. Cell Transplant, 2022, 31: 9636897221082687. DOI:10.1177/09636897221082687.
[53]
韩晓峰. 蓬松蛋白的DNA甲基化修饰调控骨髓间充质干细胞成骨分化的研究[D].上海:上海交通大学, 2019.
[54]
Hu X, Li B, Wu F, et al. GPX7 facilitates BMSCs osteoblastogenesis via ER stress and mTORpathway[J]. J Cell Mol Med, 2021, 25 (22): 10454-10465.
[55]
Chen T, Wang H, Jiang C, et al. PKD1 alleviates oxidative stress-inhibited osteogenesis of rat bone marrow-derived mesenchymal stem cells through TAZ activation[J]. J Cell Biochem, 2021, 122(11): 1715-1725.
[56]
Ma L, Feng X, Wang K, et al. Dexamethasone promotes mesenchymal stem cell apoptosis and inhibits osteogenesis by disrupting mitochondrial dynamics[J]. FEBS Open Bio, 2020, 10 (2): 211-220.
[57]
Wang Y, Chen Y, Zhou T, et al. A novel multifunctional nanocomposite hydrogel orchestrates the macrophage reprogramming-osteogenesis crosstalk to boost bone defect repair[J/OL]. J Nanobiotechnology, 2024, 22(1): 702. DOI:10.1186/s12951-024-02996-2.
[58]
Fang J, Silva M, Lin R, et al. Artemisinin reverses glucocorticoid-induced injury in bone marrow-derived mesenchymal stem cells through regulation of ERK1/2-CREB signaling pathway[J/OL]. Oxid Med Cell Longev, 2021, 2021: 5574932. DOI:10.1155/2021/5574932.
[59]
Qi M, Zhang L, Ma Y, et al. Autophagy maintains the function of bone marrow mesenchymal stem cells to prevent estrogen deficiency-induced osteoporosis[J]. Theranostics, 2017, 7(18): 4498-4516.
[60]
Ma Y, Qi M, An Y, et al. Autophagy controls mesenchymal stem cell properties and senescence during bone aging[J/OL]. Aging Cell, 2018, 17(1): e12709. DOI:10.1111/acel.12709.
[61]
Zhou M, Liu L, Xu Y, et al. Effects of osteoblast autophagy on glucocorticoid-induced femoral head necrosis[J]. Jt Dis Relat Surg, 2020, 31(3): 411-418.
[62]
朱琛煜. SIRT1在运动促进BMSC自噬及成骨分化中的作用研究[D].上海:上海体育学院, 2023.
[63]
毕煦昆, 郭成龙, 赵建栋, 等. 骨髓间充质干细胞来源外泌体及其相关信号通路在激素性股骨头坏死中作用的研究进展[J]. 中国生物工程杂志, 2022, 42(10): 70-79.
[64]
Huber J, Griffin MF, Longaker MT, et al. Exosomes: atool for bone tissue engineering [J]. Tissue Eng Part B Rev, 2022, 28(1): 101-113.
[65]
Maevskaia E, Guerrero J, Ghayor C, et al. Functionalization of ceramic scaffolds with exosomes from bone marrow mesenchymal stromal cells for bone tissue engineering[J/OL]. Int J Mol Sci, 2024, 25(7): 3826. DOI:10.3390/ijms25073826.
[66]
Fang S, He T, Jiang J, et al. Osteogenic effect of tsRNA-10277-loaded exosome derived from bone mesenchymal stem cells on steroid-induced osteonecrosis of the femoral head[J]. Drug Des Devel Ther, 2020, 14: 4579-4591.
[67]
李泳峰. 骨髓间充质干细胞来源的外泌体对激素性股骨头坏死的成骨作用[D].福州:福建医科大学, 2019.
[68]
申恩谱, 黄霸, 刘丹平, 等. 褪黑素预处理的骨髓间充质干细胞外泌体促进骨髓间充质干细胞成骨[J]. 中国组织工程研究, 2022, 26(30): 4800-4805.
[1] 翟禹樵, 鲜思平, 陈明灿, 蒋珊. 动力交叉钉治疗股骨颈骨折后早期股骨头坏死风险预测[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 402-408.
[2] 王章正, 莫亮, 何伟, 周驰, 陈镇秋, 方斌, 刘予豪. 股骨头坏死疼痛时间与软骨退变程度的病理学研究[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 65-75.
[3] 王静, 赵乐, 曾健康, 李培杰, 谭飞, 李嘉欢, 乔永杰, 周胜虎. 富血小板血浆治疗早期股骨头坏死的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 773-777.
[4] 罗欢, 李川, 蔡兴博, 浦路桥, 孟晨, 赵庆刚, 徐永清. 臀下动脉来源的股骨头后上支持带动脉观察[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 439-444.
[5] 何甘霖, 陈香侬, 李萍, 甄佳怡, 李京霞, 邹外一, 许多荣. 白血病异基因造血干细胞移植术后股骨坏死的影响因素[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 450-456.
[6] 李志文, 李远志, 李华, 方志远. 糖皮质激素治疗膝骨关节炎疗效的网状Meta分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 484-496.
[7] 刘晓凡. 老年股骨头坏死髋关节置换术后康复应用多维度干预[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 314-319.
[8] 田志敏, 何淳诺, 李焕玺, 吴昊越, 刘鹏, 乔永杰, 周胜虎, 蓝平衡, 郭氧, 张浩强. 股骨头坏死动物模型研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 383-389.
[9] 何梦媛, 胡鸿保, 谢庆云, 廖冬发, 王维. 股骨头坏死的代谢组学的相关研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 379-382.
[10] 许正文, 李振, 侯振扬, 苏长征, 朱彪. 富血小板血浆联合植骨治疗早期非创伤性股骨头坏死[J/OL]. 中华关节外科杂志(电子版), 2023, 17(06): 773-779.
[11] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J/OL]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[12] 文旻, 越桐, 李明, 张丹, 苏改秀, 赖建铭, 吴凤岐. 儿童原发性干燥综合征患儿的早期肾损伤特点及临床诊治[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(02): 230-236.
[13] 杨皓媛, 龚杰, 邹青伟, 阮航. 哮喘孕妇的母婴不良妊娠结局研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 522-529.
[14] 浦路桥, 李川, 齐宝闯, 卜鹏飞, 蔡兴博, 白艳, 罗欢, 徐永清. 改良与传统股方肌骨瓣治疗青壮年股骨头坏死的临床疗效比较[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(03): 165-170.
[15] 张耕毓, 唐冲, 张昆, 张辉, 张清华, 刘家帮. 股骨头坏死髓芯减压术的文献计量学分析及单中心病例报道[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 771-780.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?