切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (03) : 348 -353. doi: 10.3877/cma.j.issn.1674-134X.2023.03.008

综述

白细胞介素家族炎性细胞因子在骨关节炎中的研究进展
李文金, 薛庆云()   
  1. 650106 昆明医科大学第二附属医院骨科
    100730 北京,卫生部北京医院
  • 收稿日期:2021-01-21 出版日期:2023-06-01
  • 通信作者: 薛庆云

Research progresses of interleukin family inflammatory cytokines in osteoarthritis

Wenjin Li, Qingyun Xue()   

  1. Department of Orthopedics, The Second Affiliated Hospital of Kunming Medical University, Kunming 650106, China
    Department of Orthopedics, Beijing Hospital, Beijing 100730, China
  • Received:2021-01-21 Published:2023-06-01
  • Corresponding author: Qingyun Xue
引用本文:

李文金, 薛庆云. 白细胞介素家族炎性细胞因子在骨关节炎中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 348-353.

Wenjin Li, Qingyun Xue. Research progresses of interleukin family inflammatory cytokines in osteoarthritis[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(03): 348-353.

骨关节炎(OA)是最常见的关节炎,典型症状是疼痛。OA可引发很多问题,包括功能受限和生活质量下降,是中老年人下肢失能的主要原因,严重威胁中老年人健康。损伤的持续刺激激活机体炎症及免疫反应在OA的发病中具有重要作用,细胞因子在其中扮演重要角色,越来越多的研究关注和探讨免疫细胞因子在OA中的发病机制,为OA的防治提供新的靶点和途径。本文就白细胞介素家族中主要的抗炎及促炎细胞因子在骨关节炎中的发病机制及治疗研究进展做一综述。

Osteoarthritis (OA) is the most common form of arthritis, and the typical symptom is pain. OA can lead to many complications, including disability and reduced the quality of life, and is a major cause of lower extremity disability in middle-aged and elderly people, posing a serious threat to their health. The continuous stimulation of damage activates the body's inflammatory and immune response plays an important role in the pathogenesis of OA, of which cytokines are the key. More and more studies are focusing on and exploring the pathogenesis of immune cytokines in OA to provide new targets and pathways for the prevention and treatment of OA. This paper reviewed the research progress on the pathogenesis and therapy of the major anti-inflammatory and pro-inflammatory cytokines of the interleukin family in osteoarthritis.

[1]
Chow YY, Chin KY. The role of inflammation in the pathogenesis of osteoarthritis[J/OL]. Mediators Inflamm, 2020, 2020: 8293921. DOI: 10.1155/2020/8293921.
[2]
Kovarik P, Ebner F, Sedlyarov V. Posttranscriptional regulation of cytokine expression[J]. Cytokine, 2017, 89: 21-26.
[3]
Malemud CJ. Matrix metalloproteinases and synovial joint pathology[J]. Prog Mol Biol Transl Sci, 2017, 148: 305-325.
[4]
van Dalen SCM, Blom AB, Slöetjes AW, et al. Interleukin-1 is not involved in synovial inflammation and cartilage destruction in collagenase-induced osteoarthritis[J]. Osteoarthr Cartil, 2017, 25(3): 385-396.
[5]
Attur M, Krasnokutsky S, Zhou H, et al. The combination of an inflammatory peripheral blood gene expression and imaging biomarkers enhance prediction of radiographic progression in knee osteoarthritis[J/OL]. Arthritis Res Ther, 2020, 22(1): 208. DOI: 10.1186/s13075-020-02298-6.
[6]
Wang C, Zeng L, Zhang T, et al. Tenuigenin prevents IL-1β-induced inflammation in human osteoarthritis chondrocytes by suppressing PI3K/AKT/NF-κB signaling pathway[J]. Inflammation, 2016, 39(2): 807-812.
[7]
Zhong L, Schivo S, Huang X, et al. Nitric oxide mediates crosstalk between interleukin 1β and WNT signaling in primary human chondrocytes by reducing DKK1 and FRZB expression[J/OL]. Int J Mol Sci, 2017, 18(11): 2491. DOI: 10.3390/ijms18112491.
[8]
Chen J, Wang C, Huang K, et al. Acacetin suppresses IL-1β-induced expression of matrix metalloproteinases in chondrocytes and protects against osteoarthritis in a mouse model by inhibiting NF-κB signaling pathways[J/OL]. Biomed Res Int, 2020, 2020: 2328401. DOI: 10.1155/2020/2328401.
[9]
Philp AM, Davis ET, Jones SW. Developing anti-inflammatory therapeutics for patients with osteoarthritis[J]. Rheumatology (Oxford), 2017, 56(6): 869-881.
[10]
Mladenovic Z, Saurel AS, Berenbaum F, et al. Potential role of hyaluronic acid on bone in osteoarthritis: matrix metalloproteinases, aggrecanases, and RANKL expression are partially prevented by hyaluronic acid in interleukin 1-stimulated osteoblasts[J]. J Rheumatol, 2014, 41(5): 945-954.
[11]
Avenoso A, D'Ascola A, Scuruchi M, et al. Hyaluronan in the experimental injury of the cartilage: biochemical action and protective effects[J]. Inflamm Res, 2018, 67(1): 5-20.
[12]
Xue EX, Lin JP, Zhang Y, et al. Pterostilbene inhibits inflammation and ROS production in chondrocytes by activating Nrf2 pathway[J]. Oncotarget, 2017, 8(26): 41988-42000.
[13]
Jotanovic Z, Mihelic R, Sestan B, et al. Role of interleukin-1 inhibitors in osteoarthritis: an evidence-based review[J]. Drugs Aging, 2012, 29(5): 343-358.
[14]
Jenei-Lanzl Z, Meurer A, Zaucke F. Interleukin-1β signaling in osteoarthritis - chondrocytes in focus[J]. Cell Signal, 2019, 53: 212-223.
[15]
Nasi S, Ea HK, So A, et al. Revisiting the role of interleukin-1 pathway in osteoarthritis: interleukin-1α and-1β,and NLRP3 inflammasome are not involved in the pathological features of the murine menisectomy model of osteoarthritis[J/OL]. Front Pharmacol, 2017, 8: 282. DOI: 10.3389/fphar.2017.00282.
[16]
Ajrawat P, Dwyer T, Chahal J. Autologous interleukin 1 receptor antagonist blood-derived products for knee osteoarthritis: a systematic review[J]. Arthroscopy, 2019, 35(7): 2211-2221.
[17]
Li EQ, Zhang JL. Therapeutic effects of triptolide from Tripterygium wilfordii Hook. f. on interleukin-1-beta-induced osteoarthritis in rats[J/OL]. Eur J Pharmacol, 2020, 883: 173341. DOI: 10.1016/j.ejphar.2020.173341.
[18]
Ansari MY, Khan NM, Haqqi TM. A standardized extract of Butea monosperma (Lam.) flowers suppresses the IL-1β-induced expression of IL-6 and matrix-metalloproteases by activating autophagy in human osteoarthritis chondrocytes[J]. Biomed Pharmacother, 2017, 96: 198-207.
[19]
Attur M, Zhou H, Samuels J, et al. Interleukin 1 receptor antagonist (IL1RN) gene variants predict radiographic severity of knee osteoarthritis and risk of incident disease[J]. Ann Rheum Dis, 2020, 79(3): 400-407.
[20]
Nixon AJ, Grol MW, Lang HM, et al. Disease-modifying osteoarthritis treatment with interleukin-1 receptor antagonist gene therapy in small and large animal models[J]. Arthritis Rheumatol, 2018, 70(11): 1757-1768.
[21]
Watson Levings RS, Broome TA, Smith AD, et al. Gene therapy for osteoarthritis: pharmacokinetics of intra-articular self-complementary adeno-associated virus interleukin-1 receptor antagonist delivery in an equine model[J]. Hum Gene Ther Clin Dev, 2018, 29(2): 90-100.
[22]
Gabner S, Ertl R, Velde K, et al. Cytokine-induced interleukin-1 receptor antagonist protein expression in genetically engineered equine mesenchymal stem cells for osteoarthritis treatment[J/OL]. J Gene Med, 2018, 20(5): e3021. DOI: 10.1002/jgm.3021.
[23]
Nguyen HN, Noss EH, Mizoguchi F, et al. Autocrine loop involving IL-6 family member LIF, LIF receptor, and STAT4 drives sustained fibroblast production of inflammatory mediators[J]. Immunity, 2017, 46(2): 220-232.
[24]
Wiegertjes R, van de Loo FAJ, Blaney Davidson EN. A roadmap to target interleukin-6 in osteoarthritis[J]. Rheumatology (Oxford), 2020, 59(10): 2681-2694.
[25]
Sahu N, Viljoen HJ, Subramanian A. Continuous low-intensity ultrasound attenuates IL-6 and TNFα-induced catabolic effects and repairs chondral fissures in bovine osteochondral explants[J/OL]. BMC Musculoskelet Disord, 2019, 20(1): 193. DOI: 10.1186/s12891-019-2566-4.
[26]
Nasi S, So A, Combes C, et al. Interleukin-6 and chondrocyte mineralisation act in tandem to promote experimental osteoarthritis[J]. Ann Rheum Dis, 2016, 75(7): 1372-1379.
[27]
Qu XQ, Wang WJ, Tang SS, et al. Correlation between interleukin-6 expression in articular cartilage bone and osteoarthritis[J]. Genet Mol Res, 2015, 14(4): 14189-14195.
[28]
Wang T, He C. Pro-inflammatory cytokines: the link between obesity and osteoarthritis[J]. Cytokine Growth Factor Rev, 2018, 44: 38-50.
[29]
Ai Z, Ning X, Shou T, et al. Association of interleukin-6 promoter polymorphism with knee osteoarthritis: a meta-analysis[J]. Chin Med J (Engl), 2014, 127(13): 2492-2496.
[30]
Blumenfeld O, Williams FM, Valdes A, et al. Association of interleukin-6 gene polymorphisms with hand osteoarthritis and hand osteoporosis[J]. Cytokine, 2014, 69(1): 94-101.
[31]
Yang H, Zhou X, Xu D, et al. The IL-6 rs12700386 polymorphism is associated with an increased risk of developing osteoarthritis in the knee in the Chinese Han population: a case-control study[J/OL]. BMC Med Genet, 2020, 21(1): 199. DOI: 10.1186/s12881-020-01139-2.
[32]
Favero M, Belluzzi E, Trisolino G, et al. Inflammatory molecules produced by meniscus and synovium in early and end-stage osteoarthritis: a coculture study[J]. J Cell Physiol, 2019, 234(7): 11176-11187.
[33]
Pratama DGK, Suyasa IK, Astawa P, et al. High IL-6 level as a marker of lumbar osteoarthritis in patients older than 55 years with low back pain[J]. Orthop Res Rev, 2019, 11: 17-21.
[34]
Latourte A, Cherifi C, Maillet J, et al. Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis[J]. Ann Rheum Dis, 2017, 76(4): 748-755.
[35]
Wu X, Cao L, Li F, et al. Interleukin-6 from subchondral bone mesenchymal stem cells contributes to the pathological phenotypes of experimental osteoarthritis[J]. Am J Transl Res, 2018, 10(4): 1143-1154.
[36]
Ansari MY, Khan NM, Ahmad N, et al. Genetic inactivation of ZCCHC6 suppresses interleukin-6 expression and reduces the severity of experimental osteoarthritis in mice[J]. Arthritis Rheumatol, 2019, 71(4): 583-593.
[37]
Garbers C, Heink S, Korn T, et al. Interleukin-6: designing specific therapeutics for a complex cytokine[J]. Nat Rev Drug Discov, 2018, 17(6): 395-412.
[38]
Si Z, Zhou S, Shen Z, et al. lncRNA HAND2-AS1 is downregulated in osteoarthritis and regulates IL-6 expression in chondrocytes[J/OL]. J Orthop Surg Res, 2021, 16(1): 68. DOI: 10.1186/s13018-021-02216-9.
[39]
Monasterio G, Castillo F, Rojas L, et al. Th1/Th17/Th22 immune response and their association with joint pain, imagenological bone loss, RANKL expression and osteoclast activity in temporomandibular joint osteoarthritis: a preliminary report[J]. J Oral Rehabil, 2018, 45(8): 589-597.
[40]
Sinkeviciute D, Aspberg A, He Y, et al. Characterization of the interleukin-17 effect on articular cartilage in a translational model: an explorative study[J/OL]. BMC Rheumatol, 2020, 4: 30. DOI: 10.1186/s41927-020-00122-x.
[41]
Na HS, Park JS, Cho KH, et al. Interleukin-1-interleukin-17 signaling axis induces cartilage destruction and promotes experimental osteoarthritis[J/OL]. Front Immunol, 2020, 11: 730. DOI: 10.3389/fimmu.2020.00730.
[42]
Bai Y, Gao S, Liu Y, et al. Correlation between Interleukin-17 gene polymorphism and osteoarthritis susceptibility in Han Chinese population[J/OL]. BMC Med Genet, 2019, 20(1): 20. DOI: 10.1186/s12881-018-0736-0.
[43]
Wan L, Zhao Q, Niu G, et al. Plasma miR-136 can be used to screen patients with knee osteoarthritis from healthy controls by targeting IL-17[J]. Exp Ther Med, 2018, 16(4): 3419-3424.
[44]
Huang T, Wang J, Zhou Y, et al. LncRNA CASC2 is up-regulated in osteoarthritis and participates in the regulation of IL-17 expression and chondrocyte proliferation and apoptosis[J/OL]. Biosci Rep, 2019, 39(5): BSR20182454. DOI: 10.1042/BSR20182454.
[45]
Koh SM, Chan CK, Teo SH, et al. Elevated plasma and synovial fluid interleukin-8 and interleukin-18 may be associated with the pathogenesis of knee osteoarthritis[J]. Knee, 2020, 27(1): 26-35.
[46]
Bao J, Chen Z, Xu L, et al. Rapamycin protects chondrocytes against IL-18-induced apoptosis and ameliorates rat osteoarthritis[J]. Aging (Albany NY), 2020, 12(6): 5152-5167.
[47]
Xue JF, Shi ZM, Zou J, et al. Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoarthritis[J]. Biomedecine Pharmacother, 2017, 89: 1252-1261.
[48]
Waly NE, Refaiy A, Aborehab NM. IL-10 and TGF-β:roles in chondroprotective effects of Glucosamine in experimental Osteoarthritis?[J]. Pathophysiology, 2017, 24(1): 45-49.
[49]
Schwarz S, Mrosewski I, Silawal S, et al. The interrelation of osteoarthritis and diabetes mellitus: considering the potential role of interleukin-10 and in vitro models for further analysis[J]. Inflamm Res, 2018, 67(4): 285-300.
[50]
Li S, Wan J, Anderson W, et al. Downregulation of IL-10 secretion by Treg cells in osteoarthritis is associated with a reduction in Tim-3 expression[J]. Biomedecine Pharmacother, 2016, 79: 159-165.
[51]
Suyasa IK, Kawiyana IK, Bakta IM, et al. Interleukin-6 and ratio of plasma interleukin-6/interleukin-10 as risk factors of symptomatic lumbar osteoarthritis[J]. World J Orthop, 2017, 8(2): 149-155.
[52]
Assis L, Tim C, Magri A, et al. Interleukin-10 and collagen type II immunoexpression are modulated by photobiomodulation associated to aerobic and aquatic exercises in an experimental model of osteoarthritis[J]. Lasers Med Sci, 2018, 33(9): 1875-1882.
[53]
Kwon JY, Lee SH, Na HS, et al. Kartogenin inhibits pain behavior, chondrocyte inflammation, and attenuates osteoarthritis progression in mice through induction of IL-10[J/OL]. Sci Rep, 2018, 8(1): 13832. DOI: 10.1038/s41598-018-32206-7.
[54]
Broeren MG, de Vries M, Bennink MB, et al. Suppression of the inflammatory response by disease-inducible interleukin-10 gene therapy in a three-dimensional micromass model of the human synovial membrane[J/OL]. Arthritis Res Ther, 2016, 18: 186. DOI: 10.1186/s13075-016-1083-1.
[55]
Watkins LR, Chavez RA, Landry R, et al. Targeted interleukin-10 plasmid DNA therapy in the treatment of osteoarthritis: Toxicology and pain efficacy assessments[J]. Brain Behav Immun, 2020, 90: 155-166.
[56]
van Geffen EW, van Caam APM, Vitters EL, et al. Interleukin-37 protects stem cell-based cartilage formation in an inflammatory osteoarthritis-like microenvironment[J]. Tissue Eng Part A, 2019, 25(15-16): 1155-1166.
[57]
Luo P, Feng C, Jiang C, et al. IL-37b alleviates inflammation in the temporomandibular joint cartilage via IL-1R8 pathway[J/OL]. Cell Prolif, 2019, 52(6): e12692. DOI: 10.1111/cpr.12692.
[58]
Ding L, Hong X, Sun B, et al. IL-37 is associated with osteoarthritis disease activity and suppresses proinflammatory cytokines production in synovial cells[J/OL]. Sci Rep, 2017, 7(1): 11601. DOI: 10.1038/s41598-017-11397-5.
[59]
van Geffen EW, van Caam APM, Schreurs W, et al. IL-37 diminishes proteoglycan loss in human OA cartilage: donor-specific link between IL-37 and MMP-3[J]. Osteoarthritis Cartilage, 2019, 27(1): 148-157.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[3] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[4] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[5] 刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东. 机器人辅助膝关节单髁置换术的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 715-721.
[6] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[7] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[8] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[9] 赵之栋, 李众利. 骨关节炎早期诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 689-693.
[10] 胡银华, 薛龙. 中国中老年人症状性膝骨关节炎的发病率及危险因素[J]. 中华关节外科杂志(电子版), 2023, 17(04): 470-478.
[11] 利洪艺, 杨浪, 温国洪, 关鸿, 茹江英, 王湘江. 全膝股骨假体矢状面位置与术后膝前痛及功能的关系[J]. 中华关节外科杂志(电子版), 2023, 17(04): 479-484.
[12] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[13] 周晓强, 孙超, 虞宵, 金宇杰, 李志强, 张向鑫, 陈广祥. 同一患者同期行全膝和单髁置换术的早期临床疗效[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 275-281.
[14] 马聪, 李雪靖, 郑晓佐, 张晓阳, 段坤峰, 刘国强, 郄素会. 关节腔内注射富血小板血浆与透明质酸钠治疗Ⅰ-Ⅲ期膝骨关节炎的对比研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 282-288.
[15] 张镇斌, 闫兆龙, 王功腾, 张文琦, 王旭凤, 李广兴, 孙华强, 李树锋. 关节镜对胫骨高位截骨术治疗膝骨关节炎的效果研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 218-225.
阅读次数
全文


摘要