切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 715 -721. doi: 10.3877/cma.j.issn.1674-134X.2023.05.018

综述

机器人辅助膝关节单髁置换术的研究进展
刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东()   
  1. 046000 长治医学院研究生院;046000 长治市第二人民医院关节外科
    046000 长治医学院研究生院;046000 长治医学院附属和平医院骨科
    046000 长治医学院附属和平医院骨科
    046000 长治市第二人民医院关节外科
  • 收稿日期:2022-12-17 出版日期:2023-10-01
  • 通信作者: 李晓东

Research progress on robotic-assisted unicompartmental knee arthroplasty

Lun Liu, Yunlu Wang, Xiyong Li, Pengfei Han, Peng Zhang, Xiaodong Li()   

  1. Graduate School of Changzhi Medical College, Changzhi 046000, China; Department of Joint Surgery, The Second People's Hospital of Changzhi City, Changzhi 046000, China
    Graduate School of Changzhi Medical College, Changzhi 046000, China; Department of Orthopedics, Heping Hospital Affiliated To Changzhi Medical College, Changzhi 046000, China
    Department of Orthopedics, Heping Hospital Affiliated To Changzhi Medical College, Changzhi 046000, China
    Department of Joint Surgery, The Second People's Hospital of Changzhi City, Changzhi 046000, China
  • Received:2022-12-17 Published:2023-10-01
  • Corresponding author: Xiaodong Li
引用本文:

刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东. 机器人辅助膝关节单髁置换术的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 715-721.

Lun Liu, Yunlu Wang, Xiyong Li, Pengfei Han, Peng Zhang, Xiaodong Li. Research progress on robotic-assisted unicompartmental knee arthroplasty[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(05): 715-721.

近年来,膝关节单髁置换术(UKA)在治疗单间室膝关节骨关节炎(KOA)方面取得了令人满意的效果,随着机器人辅助技术的飞速发展并逐渐与临床相结合,机器人辅助UKA(rUKA)因提高了截骨、假体植入位置的精度、减少了恢复术后下肢力线的误差,得到了临床医生的广泛关注。但rUKA同样有其局限性,比如较高的成本、早期较长的手术时间以及一些相关的并发症。同时,早期的临床疗效很好,但中期随访显示rUKA在假体生存率方面并没有优势。由于缺乏长期随访的结果,目前尚不清楚提高假体植入的精度能否改善临床预后、提高假体生存率。然而,提高假体植入的精度对患者可能是有益的,因此机器人辅助技术值得被用于UKA中。本文通过简要介绍rUKA的历史、组成及分类、手术操作系统的分类、现状疗效以及预后、优缺点,就目前rUKA在临床上的应用作一综述。

In recent years, unicompartmental knee arthroplasty (UKA) has achieved satisfactory results in the treatment of single-compartment knee osteoarthritis (KOA), with the rapid development of robot-assisted technology and gradually combined with clinical practice, robotic-assisted UKA (rUKA) has received extensive attention from clinicians because it improves the accuracy of osteotomy, prosthesis placement position, and reduces the error of lower limb force line after recovery. But rUKA also has its limitations, such as higher cost, longer surgery time and associated complications. At the same time, the early clinical effect is good, but the interim follow-up showed that rUKA did not have an advantage in prosthesis survival. Due to the lack of long-term follow-up results, it is unclear whether improving the precision of prosthesis implantation improves clinical outcomes and improves prosthesis survival. However, improving the precision of prosthetic implantation could be beneficial for patients, so robotic-assisted technology is worth using in the UKA. This article briefly introduced the history, composition and classification of rUKA, classification of surgical operating systems, current efficacy, prognosis, advantages and disadvantages, and reviewed the current clinical application of rUKA.

[1]
Bayoumi T, van der List JP, Ruderman LV, et al. Successful same-day discharge in 88% of patients after unicompartmental knee arthroplasty: a systematic review and meta-analysis[J]. Knee Surg Sports Traumatol Arthrosc, 2023, 31(3): 946-962.
[2]
Chalmers BP, Mehrotra KG, Sierra RJ, et al. Reliable outcomes and survivorship of unicompartmental knee arthroplasty for isolated compartment osteonecrosis[J]. Bone Joint J, 2018, 100-B(4): 450-454.
[3]
朱科朝,王俏杰,陈云苏,等. 机器人辅助下膝关节单髁置换术短期临床疗效[J/CD]. 中华关节外科杂志(电子版), 2019, 13(5): 547-553.
[4]
Cobb J, Henckel J, Gomes P, et al. Hands-on robotic unicompartmental knee replacement: a prospective, randomised controlled study of the acrobot system[J]. J Bone Joint Surg Br, 2006, 88(2): 188-197.
[5]
Cool CL, Needham KA, Khlopas A, et al. Revision analysis of robotic arm-assisted and manual unicompartmental knee arthroplasty[J]. J Arthroplasty, 2019, 34(5): 926-931.
[6]
Deese JM, Gratto-Cox G, Carter DA, et al. Patient reported and clinical outcomes of robotic-arm assisted unicondylar knee arthroplasty: minimum two year follow-up[J]. J Orthop, 2018, 15(3): 847-853.
[7]
Wong J, Murtaugh T, Lakra A, et al. Robotic-assisted unicompartmental knee replacement offers no early advantage over conventional unicompartmental knee replacement[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(7): 2303-2308.
[8]
van der List JP, Chawla H, Joskowicz L, et al. Current state of computer navigation and robotics in unicompartmental and total knee arthroplasty: a systematic review with meta-analysis[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(11): 3482-3495.
[9]
Kwoh YS, Hou J, Jonckheere EA, et al. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery[J]. IEEE Trans Biomed Eng, 1988, 35(2): 153-160.
[10]
Spencer EH. The ROBODOC clinical trial: a robotic assistant for total hip arthroplasty[J]. Orthop Nurs, 1996, 15(1): 9-14.
[11]
Matsen FA 3rd, Garbini JL, Sidles JA, et al. Robotic assistance in orthopaedic surgery. A proof of principle using distal femoral arthroplasty[J]. Clin Orthop Relat Res, 1993,(296): 178-186.
[12]
Shatrov J, Murphy GT, Duong J, et al. Robotic-assisted total knee arthroplasty with the OMNIBot platform: a review of the principles of use and outcomes[J]. Arch Orthop Trauma Surg, 2021, 141(12): 2087-2096.
[13]
Batailler C, Bordes M, Lording T, et al. Improved sizing with image-based robotic-assisted system compared to image-free and conventional techniques in medial unicompartmental knee arthroplasty[J]. Bone Joint J, 2021, 103-B(4): 610-618.
[14]
Banerjee S, Cherian JJ, Elmallah RK, et al. Robot-assisted total hip arthroplasty[J]. Expert Rev Med Devices, 2016, 13(1): 47-56.
[15]
Roche M. The MAKO robotic-arm knee arthroplasty system[J]. Arch Orthop Trauma Surg, 2021, 141(12): 2043-2047.
[16]
Vaidya N, Gadekar A, Agrawal VO, et al. Learning curve for robotic assisted total knee arthroplasty: our experience with imageless hand-held Navio system[J]. J Robot Surg, 2023, 17(2): 393-403.
[17]
Boylan M, Suchman K, Vigdorchik J, et al. Technology-assisted hip and knee arthroplasties: an analysis of utilization trends[J]. J Arthroplasty, 2018, 33(4): 1019-1023.
[18]
Fuller SI, Cohen JS, Malyavko A, et al. Knee arthroplasty utilization trends from 2010 to 2019[J]. Knee, 2022, 39: 209-215.
[19]
Banger M, Doonan J, Rowe P, et al. Robotic arm-assisted versus conventional medial unicompartmental knee arthroplasty: five-year clinical outcomes of a randomized controlled trial[J]. Bone Joint J, 2021, 103-B(6): 1088-1095.
[20]
Motesharei A, Rowe P, Blyth M, et al. A comparison of gait one year post operation in an RCT of robotic UKA versus traditional Oxford UKA[J]. Gait Posture, 2018, 62: 41-45.
[21]
Gaudiani MA, Samuel LT, Diana JN, et al. 5-year survivorship and outcomes of robotic-arm-assisted medial unicompartmental knee arthroplasty[J]. Appl Bionics Biomech, 2022, 2022: 8995358.
[22]
Zhang J, Ng N, Scott CEH, et al. Robotic arm-assisted versus manual unicompartmental knee arthroplasty: a systematic review and meta-analysis of the MAKO robotic system[J]. Bone Joint J, 2022, 104-B(5): 541-548.
[23]
Mohan T, Panicker J, Thilak J, et al. Short-term outcomes of robotic lateral unicompartmental knee arthroplasty: an Indian perspective[J]. Indian J Orthop, 2022, 56(4): 655-663.
[24]
Cao Z, Liu Y, Yang M, et al. Effects of surgeon handedness on the outcomes of unicompartmental knee arthroplasty: asingle center’s experience[J]. Orthop Surg, 2022, 14(12): 3293-3299.
[25]
Zhang F, Li H, Ba Z, et al. Robotic arm-assisted vs conventional unicompartmental knee arthroplasty: a meta-analysis of the effects on clinical outcomes[J]. Medicine, 2019, 98(35): e16968.
[26]
Kayani B, Konan S, Tahmassebi J, et al. An assessment of early functional rehabilitation and hospital discharge in conventional versus robotic-arm assisted unicompartmental knee arthroplasty: a prospective cohort study[J]. Bone Joint J, 2019, 101-B(1): 24-33.
[27]
Battenberg AK, Netravali NA, Lonner JH. A novel handheld robotic-assisted system for unicompartmental knee arthroplasty: surgical technique and early survivorship[J]. J Robot Surg, 2020, 14(1): 55-60.
[28]
Pearle AD, van der List JP, Lee L, et al. Survivorship and patient satisfaction of robotic-assisted medial unicompartmental knee arthroplasty at a minimum two-year follow-up[J]. Knee, 2017, 24(2): 419-428.
[29]
Evans JT, Walker RW, Evans JP, et al. How long does a knee replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up[J]. Lancet, 2019, 393(10172): 655-663.
[30]
Kleeblad LJ, Borus TA, Coon TM, et al. Midterm survivorship and patient satisfaction of robotic-arm-assisted medial unicompartmental knee arthroplasty: amulticenter study[J]. J Arthroplasty, 2018, 33(6): 1719-1726.
[31]
Robinson PG, Clement ND, Hamilton D, et al. A systematic review of robotic-assisted unicompartmental knee arthroplasty: prosthesis design and type should be reported[J]. Bone Joint J, 2019, 101-B(7): 838-847.
[32]
Chawla H, van der List JP, Christ AB, et al. Annual revision rates of partial versus total knee arthroplasty: a comparative meta-analysis[J]. Knee, 2017, 24(2): 179-190.
[33]
Gilmour A, MacLean AD, Rowe PJ, et al. Robotic-arm-assisted vs conventional unicompartmental knee arthroplasty. the 2-year clinical outcomes of a randomized controlled trial[J]. J Arthroplasty, 2018, 33(7S): S109-S115.
[34]
Roche MW, Vakharia RM, Law TY, et al. Accuracy of intraoperative mechanical axis alignment to long-leg radiographs following robotic-arm-assisted unicompartmental knee arthroplasty[J]. J Knee Surg, 2023, 36(7): 752-758.
[35]
Fu J, Wang Y, Li X, et al. Robot-assisted vs. conventional unicompartmental knee arthroplasty: systematic review and meta-analysis[J]. Orthopade, 2018, 47(12): 1009-1017.
[36]
Lonner JH, Smith JR, Picard F, et al. High degree of accuracy of a novel image-free handheld robot for unicondylar knee arthroplasty in a cadaveric study[J]. Clin Orthop Relat Res, 2015, 473(1): 206-212.
[37]
Lonner JH, John TK, Conditt MA. Robotic arm-assisted UKA improves tibial component alignment: a pilot study[J]. Clin Orthop Relat Res, 2010, 468(1): 141-146.
[38]
Bell SW, Anthony I, Jones B, et al. Improved accuracy of component positioning with robotic-assisted unicompartmental knee arthroplasty: data from a prospective, randomized controlled study[J]. J Bone Joint Surg Am, 2016, 98(8): 627-635.
[39]
Foissey C, Batailler C, Vahabi A, et al. Better accuracy and implant survival in medial imageless robotic-assisted unicompartmental knee arthroplasty compared to conventional unicompartmental knee arthroplasty: two- to eleven-year follow-up of three hundred fifty-six consecutive knees[J]. Int Orthop, 2023, 47(2): 533-541.
[40]
Hansen DC, Kusuma SK, Palmer RM, et al. Robotic guidance does not improve component position or short-term outcome in medial unicompartmental knee arthroplasty[J]. J Arthroplasty, 2014, 29(9): 1784-1789.
[41]
Batailler C, Lording T, Naaim A, et al. No difference of gait parameters in patients with image-free robotic-assisted medial unicompartmental knee arthroplasty compared to a conventional technique: early results of a randomized controlled trial[J]. Knee Surg Sports Traumatol Arthrosc, 2023, 31(3): 803-813.
[42]
MacCallum KP, Danoff JR, Geller JA. Tibial baseplate positioning in robotic-assisted and conventional unicompartmental knee arthroplasty[J]. Eur J Orthop Surg Traumatol, 2016, 26(1): 93-98.
[43]
Bush AN, Ziemba-Davis M, Deckard E R, et al. An experienced surgeon can meet or exceed robotic accuracy in manual unicompartmental knee arthroplasty [J]. J Bone Joint Surg Am, 2019, 101(16): 1479-1484.
[44]
Plate JF, Mofidi A, Mannava S, et al. Achieving accurate ligament balancing using robotic-assisted unicompartmental knee arthroplasty[J/OL]. Adv Orthop, 2013, 2013: 837167.DOI: 10.1155/2013/837167.
[45]
Zambianchi F, Franceschi G, Banchelli F, et al. Robotic arm-assisted lateral unicompartmental knee arthroplasty: how are components aligned?[J]. J Knee Surg, 2022, 35(11): 1214-1222.
[46]
罗文礼,王磊,罗明星,等. 探讨单髁置换术于膝内侧间室骨关节炎的价值[J/CD]. 中华关节外科杂志(电子版), 2021, 15(3): 364-368.
[47]
Liddle AD, Judge A, Pandit H, et al. Adverse outcomes after total and unicompartmental knee replacement in 101,330 matched patients: a study of data from the National Joint Registry for England and Wales [J]. Lancet, 2014, 384(9952): 1437-1445.
[48]
Kolessar DJ, Hayes DS, Harding JL, et al. Robotic-arm assisted technology’s impact on knee arthroplasty and associated healthcare costs[J]. J Health Econ Outcomes Res, 2022, 9(2): 57-66.
[49]
Bernard-de-Villeneuve F, Kayikci K, Sappey-Marinier E, et al. Health economic value of CT scan based robotic assisted UKA: a systematic review of comparative studies[J]. Arch Orthop Trauma Surg, 2021, 141(12): 2129-2138.
[50]
Moschetti WE, Konopka JF, Rubash HE, et al. Can robot-assisted unicompartmental knee arthroplasty be cost-effective? A Markov decision analysis[J]. J Arthroplasty, 2016, 31(4): 759-765.
[51]
Clement ND, Deehan DJ, Patton JT. Robot-assisted unicompart-mental knee arthroplasty for patients with isolated medial compartment osteoarthritis is cost-effective: a markov decision analysis [J]. Bone Joint J, 2019, 101-b(9): 1063-1070.
[52]
Schopper C, Proier P, Luger M, et al. The learning curve in robotic assisted knee arthroplasty is flattened by the presence of a surgeon experienced with robotic assisted surgery[J]. Knee Surg Sports Traumatol Arthrosc, 2023, 31(3): 760-767.
[1] 邓华梅, 袁札根, 曾德荣, 潘珊珊, 张葆青, 欧爱华, 曹学伟. 全膝关节置换术中气压止血带应用效果与影响因素分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 788-794.
[2] 张思平, 刘伟, 马鹏程. 全膝关节置换术后下肢轻度内翻对线对疗效的影响[J]. 中华关节外科杂志(电子版), 2023, 17(06): 808-817.
[3] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[4] 王宏宇. 固定与活动平台假体在全膝关节置换术中的应用价值[J]. 中华关节外科杂志(电子版), 2023, 17(06): 871-876.
[5] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[6] 李辉, 吴奇, 张子琦, 张晗, 王仿, 许鹏. 日间全膝关节置换术早期疗效及标准化流程探索[J]. 中华关节外科杂志(电子版), 2023, 17(06): 889-892.
[7] 王桂冠, 徐杰. 运动学对线在全膝关节置换术中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 726-731.
[8] 杨依琴, 何敏仪, 杜桂菊, 刘欣, 詹文英. 膝关节置换术后康复应用基于保护动机理论的健康教育[J]. 中华关节外科杂志(电子版), 2023, 17(05): 741-746.
[9] 姚轶超, 张麒, 滕海茂, 黄攀, 吴雷涛, 韩哲. 膝关节置换术后恐动症与康复效果及社会支持的相关性[J]. 中华关节外科杂志(电子版), 2023, 17(05): 613-618.
[10] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[11] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[12] 樊绪国, 赵永刚. 全膝关节置换术中髌骨轨迹的研究进展及处理策略[J]. 中华关节外科杂志(电子版), 2023, 17(05): 701-707.
[13] 罗佳, 赵晶晶, 曹小珍, 钟玲, 范林军, 曾令娟. 单侧腋窝双侧乳晕入路机器人甲状腺术后局部加压预防皮下隧道出血的对照研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 603-606.
[14] 贾卓奇, 周维茹, 张勇, 张广健, 付军科. 达·芬奇机器人与腹腔镜食管裂孔疝修补术的对比研究[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 410-414.
[15] 朱伟权, 叶善平, 唐和春, 刘东宁, 鞠后琼, 仲崇晗, 黄智翔, 李太原. 机器人辅助直肠癌NOSES术后细菌学及肿瘤学结果的前瞻性研究[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 282-287.
阅读次数
全文


摘要