切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (06) : 842 -846. doi: 10.3877/cma.j.issn.1674-134X.2023.06.012

综述

微小RNA与全膝关节置换术后深静脉血栓的研究进展
闫文, 谢兴文, 顾玉彪(), 雷宁波, 马成, 于文霞, 高亚雄, 张磊   
  1. 730000 兰州,甘肃中医药大学
    730000 兰州,甘肃中医药大学附属医院
    730000 兰州,甘肃省中医院
  • 收稿日期:2022-08-04 出版日期:2023-12-01
  • 通信作者: 顾玉彪
  • 基金资助:
    国家自然科学基金项目(82160918); 兰州市人才创新创业项目(2021-RC-131)

Research progress of microRNA and deep vein thrombosis after total knee arthroplasty

Wen Yan, Xingwen Xie, Yubiao Gu(), Ningbo Lei, Cheng Ma, Wenxia Yu, Yaxiong Gao, Lei Zhang   

  1. Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
    Gansu University of Traditional Chinese Medicine Affiliated Hospital, Lanzhou 730000, China
    Gansu Province Hospital of Traditional Chinese Medicine, Lanzhou 730000, China
  • Received:2022-08-04 Published:2023-12-01
  • Corresponding author: Yubiao Gu
引用本文:

闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.

Wen Yan, Xingwen Xie, Yubiao Gu, Ningbo Lei, Cheng Ma, Wenxia Yu, Yaxiong Gao, Lei Zhang. Research progress of microRNA and deep vein thrombosis after total knee arthroplasty[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(06): 842-846.

全膝关节置换术作为膝骨关节炎后期唯一的治疗手段,主要通过为患者进行人工关节的置换来改善患者的临床症状。下肢深静脉血栓作为全膝关节置换术后常见的并发症也常常出现。笔者通过查阅大量现代医学研究文献发现相关微小RNA(microRNA)的表达与血栓的形成密切相关。microRNA通过调控相关的凝血因子、蛋白、细胞因子等,抑制血栓的形成,进而达到预防深静脉血栓的效果。本文通过microRNA与深静脉血栓形成的相关因素进行综述,以期对全膝关节置换术后深静脉血栓的预防提供一些新的指导,旨在为microRNA预防深静脉血栓的深入研究提供参考依据。

Total knee arthroplasty, as the only treatment in the late stage of knee osteoarthritis, mainly improves the clinical symptoms of patients by replacing artificial joints for patients. Deep vein thrombosis of the lower extremity is the most common complication of total knee arthroplasty. By consulting a large number of modern medical research literature, the author found that the expression of related microRNA is closely related to the formation of thrombus. By regulating related coagulation factors, proteins, cytokines, etc., microRNA inhibits the formation of thrombus, thereby achieving the effect of preventing deep vein thrombosis. This article reviewed the related factors of microRNA and deep vein thrombosis, in order to provide some new guidance for the prevention of deep vein thrombosis after total knee arthroplasty, aiming to provide a reference for the in-depth study of microRNA prevention of deep vein thrombosis.

图1 microRNA与TKA(全膝关节置换术)后DVT(深静脉血栓)的相关性
Figure 1 Relationship between microRNA and DVT after TKA
[16]
Ma HP, Kong WX, Li XY, et al. miRNA-223 is an anticancer gene in human non-small cell lung cancer through the PI3K/AKT pathway by targeting EGFR[J]. Oncol Rep, 2019, 41(3): 1549-1559.
[17]
Elgheznawy A, Fleming I. Platelet-enriched microRNAs and cardiovascular homeostasis[J]. Antioxid Redox Signal, 2018, 29(9): 902-921.
[18]
Dragomir MP, Knutsen E, Calin GA. SnapShot: unconventional miRNA functions[J]. Cell, 2018, 174(4): 1038-1038.e1.
[19]
Nelson AE. Osteoarthritis year in review 2017: clinical[J]. Osteoarthritis Cartilage, 2018, 26(3): 319-325.
[20]
Taipaleenmäki H. Regulation of bone metabolism by microRNAs[J]. Curr Osteoporos Rep, 2018, 16(1): 1-12.
[21]
Azboy I, Barrack R, Thomas AM, et al. Aspirin and the prevention of venous thromboembolism following total joint arthroplasty: commonly asked questions[J]. Bone Joint J, 2017, 99-B(11): 1420-1430.
[22]
Palmieri O, Creanza TM, Bossa F, et al. Functional implications of microRNAs in Crohn’s disease revealed by integrating microRNA and messenger RNA expression profiling[J/OL]. Int J Mol Sci, 2017, 18(7): 1580. DOI: 10.3390/ijms18071580.
[23]
Neudecker V, Haneklaus M, Jensen O, et al. Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome[J]. J Exp Med, 2017, 214(6): 1737-1752.
[24]
Hessam S, Sand M, Skrygan M, et al. Expression of miRNA-155, miRNA-223, miRNA-31, miRNA-21, miRNA-125b, and miRNA-146a in the inflammatory pathway of hidradenitis suppurativa[J]. Inflammation, 2017, 40(2): 464-472.
[25]
Bowyer A, Gray E, Lowe A, et al. Laboratory coagulation tests and recombinant porcine factor Ⅷ:a United Kingdom Haemophilia Centre Doctors' Organisation guideline[J]. Haemophilia, 2022, 28(3): 515-519.
[26]
Alqahtany FS, ALBackr HB, Aldakhil LO, et al. Hemostatic profile detailing in apparent VWD cases: a cross sectional study[J]. Saudi J Biol Sci, 2021, 28(12): 6701-6704.
[27]
Chi G, Lee JJ, Memar Montazerin S, etal. Association of D-dimer with short-term risk of venous thromboembolism in acutely ill medical patients: a systematic review and meta-analysis[J]. Vasc Med, 2022, 27(5): 478-486.
[28]
Oto J, Fernández-Pardo áMiralles M, et al. Activated protein C assays: a review[J]. Clin Chim Acta, 2020, 502: 227-232.
[29]
Msalati A, Bashein A, Ghrew M, et al. Association of venous thromboembolism and myocardial infarction with Factor V Leiden and Factor II gene mutations among Libyan patients[J/OL]. Libyan J Med, 2021, 16(1): 1857525. DOI: 10.1080/19932820.2020.1857525.
[30]
Wei Y, He Y, Guo X. Clinical phenotype and genetic analysis of twins with congenital coagulation factor V deficiency[J/OL]. J Pediatr Hematol Oncol, 2022, 44(2): e482-e486. DOI: 10.1097/MPH.0000000000002261.
[31]
Kulahcioglu S, Ayturk M, Sari M. Multiple thrombotic sources and embolic events at arterial sites in a patient with protein-C deficiency[J]. Blood Coagul Fibrinolysis, 2021, 32(8): 607-610.
[32]
Becher T, Schimanski R, Müller J, et al. Plasma levels of thrombin and activated protein C in patients with acute myocardial Infarction: an observational study[J/OL]. Int J Cardiol Heart Vasc, 2022, 42: 101097. DOI: 10.1016/j.ijcha.2022.101097.
[33]
Kwaan HC. The role of fibrinolytic system in health and disease[J/OL]. Int J Mol Sci, 2022, 23(9): 5262. DOI: 10.3390/ijms23095262.
[1]
Tian Y, Wang TS, Bu H, et al. Role of exosomal miR-223 in chronic skeletal muscle inflammation[J]. Orthop Surg, 2022, 14(4): 644-651.
[2]
王聪,梁钰琪,张国荣,等. 全膝关节置换术患者不满意危险因素分析[J/CD]. 中华关节外科杂志(电子版), 2021, 15(3): 289-293.
[3]
柏正文,沈惠良,安帅. 利伐沙班预防全膝关节置换术后深静脉血栓效果[J/CD]. 中华关节外科杂志(电子版), 2020, 14(5): 572-577.
[4]
于晓朴,边云飞,庞有成,等. 外泌体miRNA在缺血性心脏病中的作用机制及靶向治疗前景[J]. 中国动脉硬化杂志2021, 29(2): 171-178.
[5]
Wang L, Song X, Gu L, et al. NOT2 proteins promote polymerase II-dependent transcription and interact with multiple microRNA biogenesis factors in Arabidopsis[J]. Plant Cell, 2013, 25(2): 715-727.
[6]
Abdeltawab A, Zaki ME, Abdeldayem Y, et al. Circulating micro RNA-223 and angiopoietin-like protein 8 as biomarkers of gestational diabetes mellitus[J]. Br J Biomed Sci, 2021, 78(1): 12-17.
[7]
Stower H. An miRNA linked to metabolic disease[J/OL]. Nat Med, 2020, 26(11): 1677. DOI: 10.1038/s41591-020-1137-4.
[8]
Chen X, Li TH, Zhao Y, et al. Deep-belief network for predicting potential miRNA-disease associations[J/OL]. Brief Bioinform, 2021, 22(3): bbaa186. DOI: 10.1093/bib/bbaa186.
[9]
Zeng Z, Xia L, Fan X, et al. Platelet-derived miR-223 promotes a phenotypic switch in arterial injury repair[J]. J Clin Invest, 2019, 129(3): 1372-1386.
[10]
Ajuyah P, Hill M, Ahadi A, et al. microRNA (miRNA)-to-miRNAregulation of programmed cell death 4 (PDCD4)[J/OL]. Mol Cell Biol, 2019, 39(18): e00086-e00019. DOI: 10.1128/MCB.00086-19.
[11]
Jeffries J, Zhou W, Hsu AY, et al. miRNA-223 at the crossroads of inflammation and cancer[J]. Cancer Lett, 2019, 451: 136-141.
[12]
Wang J, Liu S, Li J, et al. Roles for microRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells[J/OL]. Stem Cell Res Ther, 201910(1):197. DOI:10.1186/s13287-019-130.
[13]
Zarecki P, Hackl M, Grillari J, et al. Serum microRNAs as novel biomarkers for osteoporotic vertebral fractures[J/OL]. Bone, 2020, 130: 115105. DOI: 10.1016/j.bone.2019.115105.
[14]
Starikova I, Jamaly S, Sorrentino A, et al. Differential expression of plasma miRNAs in patients with unprovoked venous thromboembolism and healthy control individuals[J]. Thromb Res, 2015, 136(3): 566-572.
[15]
Huang X, Liu F, Hou J, et al. Inflammation-induced overexpression of microRNA-223-3p regulates odontoblastic differentiation of human dental pulp stem cells by targeting SMAD3[J]. Int Endod J, 2019, 52(4): 491-503.
[1] 王宏宇. 固定与活动平台假体在全膝关节置换术中的应用价值[J]. 中华关节外科杂志(电子版), 2023, 17(06): 871-876.
[2] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[3] 李辉, 吴奇, 张子琦, 张晗, 王仿, 许鹏. 日间全膝关节置换术早期疗效及标准化流程探索[J]. 中华关节外科杂志(电子版), 2023, 17(06): 889-892.
[4] 邓华梅, 袁札根, 曾德荣, 潘珊珊, 张葆青, 欧爱华, 曹学伟. 全膝关节置换术中气压止血带应用效果与影响因素分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 788-794.
[5] 张思平, 刘伟, 马鹏程. 全膝关节置换术后下肢轻度内翻对线对疗效的影响[J]. 中华关节外科杂志(电子版), 2023, 17(06): 808-817.
[6] 姚轶超, 张麒, 滕海茂, 黄攀, 吴雷涛, 韩哲. 膝关节置换术后恐动症与康复效果及社会支持的相关性[J]. 中华关节外科杂志(电子版), 2023, 17(05): 613-618.
[7] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[8] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[9] 樊绪国, 赵永刚. 全膝关节置换术中髌骨轨迹的研究进展及处理策略[J]. 中华关节外科杂志(电子版), 2023, 17(05): 701-707.
[10] 刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东. 机器人辅助膝关节单髁置换术的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 715-721.
[11] 王桂冠, 徐杰. 运动学对线在全膝关节置换术中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 726-731.
[12] 杨依琴, 何敏仪, 杜桂菊, 刘欣, 詹文英. 膝关节置换术后康复应用基于保护动机理论的健康教育[J]. 中华关节外科杂志(电子版), 2023, 17(05): 741-746.
[13] 张再博, 王冰雨, 焦志凯, 檀碧波. 胃癌术后下肢深静脉血栓危险因素的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(06): 475-480.
[14] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[15] 宋碧萱, 郭海川, 韩子钰, 周瑞娟, 李承思, 姬晨妮. 开放式楔形胫骨高位截骨术后下肢深静脉血栓形成的危险因素分析及预测列线图的构建[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 226-232.
阅读次数
全文


摘要