切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 673 -678. doi: 10.3877/cma.j.issn.1674-134X.2023.05.011

综述

外泌体在骨质疏松症诊疗中应用的研究进展
王岩, 马剑雄(), 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙   
  1. 300050 天津大学天津医院(天津市天津医院)骨科研究所;300050 天津市骨科生物力学与医学工程重点实验室
  • 收稿日期:2022-11-28 出版日期:2023-10-01
  • 通信作者: 马剑雄
  • 基金资助:
    国家重点研发计划项目(2022YFC3601904); 天津市自然科学基金重点项目(22JCZDJC00340); 天津市卫生健康科技项目(TJWJ2022QN053); 国家自然科学基金项目(32271432)

Research progress in application of exosomes in diagnosis and treatment of osteoporosis

Yan Wang, Jianxiong Ma(), Shuang Lang, Benchao Dong, Aixian Tian, Yan Li, Lei Sun, Hongzhen Jin, Bin Lu, Ying Wang, Haohao Bai, Xinlong Ma   

  1. Institute of Orthopedics, Tianjin Hospital, Tianjin University (Institute of Orthopedics, Tianjin Hospital), Tianjin 300050, China; Tianjin Key Laboratory of orthopedic biomechanics and medical engineering, Tianjin 300050, China
  • Received:2022-11-28 Published:2023-10-01
  • Corresponding author: Jianxiong Ma
引用本文:

王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J/OL]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.

Yan Wang, Jianxiong Ma, Shuang Lang, Benchao Dong, Aixian Tian, Yan Li, Lei Sun, Hongzhen Jin, Bin Lu, Ying Wang, Haohao Bai, Xinlong Ma. Research progress in application of exosomes in diagnosis and treatment of osteoporosis[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(05): 673-678.

随着全球老龄化进程的不断升级,骨质疏松症患者的数量也在逐年增加。目前,治疗骨质疏松症以及相关骨科疾病的手段复杂多样,但尚缺乏理想的早期或保守干预手段。外泌体作为细胞间信号交流的关键媒介,其自身携带的蛋白质、核酸、脂类等各种物质能够介导机体组织代谢。近年来,相关研究证明外泌体在骨和软骨的形成、代谢和病理变化中起着十分重要的作用。由于外泌体具有体积小、来源丰富、免疫原性低的优点,不仅可以作为传统骨科疾病治疗手段的替代品,也可以作为鉴别骨科疾病的重要标志物。本文对各类细胞来源的外泌体在骨质疏松症以及相关骨科疾病诊疗中应用的研究进展进行了综述,为今后外泌体在相关骨科疾病中的进一步研究和临床应用提供理论依据,以期为临床防治领域开辟一条新道路。

With the continuous upgrading of global aging process, the number of osteoporosis patients is also increasing year by year. At present, the treatment of osteoporosis and related orthopedic diseases is complex and varied, but there is a lack of ideal early or conservative intervention. Exosomes, as the key medium of signal communication between cells, carry proteins, nucleic acids, lipids and other substances that can mediate tissue metabolism. In recent years, relevant studies have demonstrated that exosomes play a very important role in the formation, metabolism and pathological changes of bone and cartilage. Exosomes can not only be used as a substitute for traditional orthopedic diseases, but also as an important marker for the identification of orthopedic diseases due to their advantages of small size, rich source and low immunogenicity. This paper reviewed the research progress of exosomes from various cell sources in the diagnosis and treatment of osteoporosis and related orthopedic diseases, providing theoretical basis for further research and clinical application of exosomes in related orthopedic diseases, so as to open up a new road in the field of clinical prevention and treatment.

[1]
Zhao H, Li X, Zhang D, et al. Integrative bone metabolomics-lipidomics strategy for pathological mechanism of postmenopausal osteoporosis mouse model[J/OL]. Sci Rep, 2018, 8(1): 16456. DOI: 10.1038/s41598-018-34574-6.
[2]
Mei Z, Dong X, Qian Y, et al. Association between the metabolome and bone mineral density in a Chinese population[J/OL]. EBio Medicine, 2020, 62: 103111. DOI: 10.1016/j.ebiom.2020.103111.
[3]
Ren X, Liu H, Wu X, et al. Reactive oxygen species (ROS)-responsive biomaterials for the treatment of bone-related diseases[J/OL]. Front Bioeng Biotechnol, 2021, 9: 820468. DOI: 10.3389/fbioe.2021.820468.
[4]
Ensrud KE, Crandall CJ. Osteoporosis[J/OL]. Ann Intern Med, 2017, 167(3): ITC17. DOI: 10.7326/aitc201708010.
[5]
Chen J, Zhang H, Wu X, et al. PTHG2 reduces bone loss in ovariectomized mice by directing bone marrow mesenchymal stem cell fate[J/OL]. Stem Cells Int, 2021, 2021: 8546739. DOI: 10.1155/2021/8546739.
[6]
Kim JM, Lin C, Stavre Z, et al. Osteoblast-osteoclast communication and bone homeostasis[J/OL]. Cells, 2020, 9(9): 2073. DOI: 10.3390/cells9092073.
[7]
Li Q, Huang QP, Wang YL, et al. Extracellular vesicle-mediated bone metabolism in the bone microenvironment[J]. J Bone Miner Metab, 2018, 36(1): 1-11.
[8]
Masaoutis C, Theocharis S. The role of exosomes in bone remodeling: implications for bone physiology and disease[J/OL]. Dis Markers, 2019, 2019: 9417914. DOI: 10.1155/2019/9417914.
[9]
Debnath S, Yallowitz AR, McCormick J, et al. Discovery of a periosteal stem cell mediating intramembranous bone formation[J]. Nature, 2018, 562(7725): 133-139.
[10]
Huang X, Lan Y, Shen J, et al. Extracellular vesicles in bone homeostasis: emerging mediators of osteoimmune interactions and promising therapeutic targets[J]. Int J Biol Sci, 2022, 18(10): 4088-4100.
[11]
Spicer JA, Miller CK, O'Connor PD, et al. Inhibition of the cytolytic protein perforin prevents rejection of transplanted bone marrow stem cells in vivo[J]. J Med Chem, 2020, 63(5): 2229-2239.
[12]
Huang J, Xiong J, Yang L, et al. Cell-free exosome-laden scaffolds for tissue repair[J]. Nanoscale, 2021, 13(19): 8740-8750.
[13]
Bjørge IM, Kim SY, Mano JF, et al. Extracellular vesicles, exosomes and shedding vesicles in regenerative medicine - a new paradigm for tissue repair[J]. Biomater Sci, 2017, 6(1): 60-78.
[14]
Zou J, Yang W, Cui W, et al. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon-bone healing[J/OL]. J Nanobiotechnology, 2023, 21(1): 14. DOI: 10.1186/s12951-023-01778-6.
[15]
Wang S, Lei B, Zhang E, et al. Targeted therapy for inflammatory diseases with mesenchymal stem cells and their derived exosomes: from basic to clinics[J]. Int J Nanomedicine, 2022, 17: 1757-1781.
[16]
Cheng Q, Dai Z, Shi X, et al. Expanding the toolbox of exosome-based modulators of cell functions[J/OL]. Biomaterials, 2021, 277: 121129. DOI: 10.1016/j.biomaterials.2021.121129.
[17]
Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go[J]. Cell, 2016, 164(6): 1226-1232.
[18]
Qin Y, Sun R, Wu C, et al. Exosome: anovel approach to stimulate bone regeneration through regulation of osteogenesis and angiogenesis[J/OL]. Int J Mol Sci, 2016, 17(5): 712. DOI: 10.3390/ijms17050712.
[19]
Jiang F, Zhang W, Zhou M, et al. Human amniotic mesenchymal stromal cells promote bone regeneration via activating endogenous regeneration[J]. Theranostics, 2020, 10(14): 6216-6230.
[20]
Tao SC, Guo SC, Zhang CQ. Modularized extracellular vesicles: the dawn of prospective personalized and precision medicine[J/OL]. Adv Sci, 2018, 5(2): 1700449. DOI: 10.1002/advs.201700449.
[21]
Liu S, Xu X, Liang S, et al. The application of MSCs-derived extracellular vesicles in bone disorders: novel cell-free therapeutic strategy[J/OL]. Front Cell Dev Biol, 2020, 8: 619. DOI: 10.3389/fcell.2020.00619.
[22]
马明,贾更新,刘小龙,等. 间充质干细胞来源细胞外囊泡治疗膝骨关节炎的研究进展[J/CD]. 中华关节外科杂志(电子版), 2022, 16(4): 472-476.
[23]
Gao Q, Wang L, Wang S, et al. Bone marrow mesenchymal stromal cells: identification, classification, and differentiation[J/OL]. Front Cell Dev Biol, 2021, 9: 787118. DOI: 10.3389/fcell.2021.787118.
[24]
Yang Y, Yuan L, Cao H, et al. Application and molecular mechanisms of extracellular vesicles derived from mesenchymal stem cells in osteoporosis[J]. Curr Issues Mol Biol, 2022, 44(12): 6346-6367.
[25]
Zhai M, Zhu Y, Yang M, et al. Human mesenchymal stem cell derived exosomes enhance cell-free bone regeneration by altering their miRNAs profiles[J/OL]. Adv Sci, 2020, 7(19): 2001334. DOI: 10.1002/advs.202001334.
[26]
Zhang D, Wu Y, Li Z, et al. miR-144-5p, an exosomal miRNA from bone marrow-derived macrophage in type 2 diabetes, impairs bone fracture healing via targeting Smad1[J/OL]. J Nanobiotechnology, 2021, 19(1): 226. DOI: 10.1186/s12951-021-00964-8.
[27]
Yang X, Yang J, Lei P, et al. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis[J]. Aging, 2019, 11(20): 8777-8791.
[28]
Cui Y, Guo Y, Kong L, et al. A bone-targeted engineered exosome platform delivering siRNA to treat osteoporosis[J]. Bioact Mater, 2022, 10: 207-221.
[29]
Xu S, Wang Z. Bone marrow mesenchymal stem cell-derived exosomes enhance osteoclastogenesis during alveolar bone deterioration in rats[J/OL]. RSC Adv, 2017, 7(34): 21153-21163. DOI: 10.1039/C6RA27931G.
[30]
Xu R, Shen X, Si Y, et al. microRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment[J/OL]. Aging Cell, 2018, 17(4): e12794. DOI: 10.1111/acel.12794.
[31]
Yao H, Cao Z, Wu W. Human umbilical cord mesenchymal stromal cells promotes the proliferation and osteogenic differentiation of autologous bone marrow stem cells by secreting exosomes[J]. Bioengineered, 2022, 13(4): 9901-9915.
[32]
Yang BC, Kuang MJ, Kang JY, et al. Human umbilical cord mesenchymal stem cell-derived exosomes act via the miR-1263/Mob1/Hippo signaling pathway to prevent apoptosis in disuse osteoporosis[J]. Biochem Biophys Res Commun, 2020, 524(4): 883-889.
[33]
Hu Y, Zhang Y, Ni CY, et al. Human umbilical cord mesenchymal stromal cells-derived extracellular vesicles exert potent bone protective effects by CLEC11A-mediated regulation of bone metabolism[J]. Theranostics, 2020, 10(5): 2293-2308.
[34]
Zhang Y, Xie Y, Hao Z, et al. Umbilical mesenchymal stem cell-derived exosome-encapsulated hydrogels accelerate bone repair by enhancing angiogenesis[J]. ACS Appl Mater Interfaces, 2021, 13(16): 18472-18487.
[35]
Wang SZ, Jia J, Chen CH. lncRNA-KCNQ1OT1: apotential target in exosomes derived from adipose-derived stem cells for the treatment of osteoporosis[J/OL]. Stem Cells Int, 2021, 2021: 7690006. DOI:10.1155/2021/7690006.
[36]
Kim DK, Lee S, Kim M, et al. Exosome-coated silk fibroin 3D-scaffold for inducing osteogenic differentiation of bone marrow derived mesenchymal stem cells[J/OL]. Chem Eng J, 2021, 406: 127080. DOI: 10.1016/j.cej.2020.127080.
[37]
Qi X, Zhang J, Yuan H, et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats[J]. Int J Biol Sci, 2016, 12(7): 836-849.
[38]
Zhu Y, Wang Y, Zhao B, et al. Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis[J/OL]. Stem Cell Res Ther, 2017, 8(1): 64. DOI: 10.1186/s13287-017-0510-9.
[39]
Zhao D, Huang S, Lu F, et al. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head[J]. Biomaterials, 2016, 81: 84-92.
[40]
马剑雄,何伟伟,赵杰,等. 股骨头坏死发病机制研究的最新进展[J]. 中国组织工程研究2017, 21(27): 4397-4402.
[41]
Teotia AK, Qayoom I, Singh P, et al. Exosome-functionalized ceramic bone substitute promotes critical-sized bone defect repair in rats[J]. ACS Appl Bio Mater, 2021, 4(4): 3716-3726.
[42]
Sun W, Zhao C, Li Y, et al. Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity[J/OL]. Cell Discov, 2016, 2: 16015. DOI: 10.1038/celldisc.2016.15.
[43]
Li D, Liu J, Guo B, et al. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation[J/OL]. Nat Commun, 2016, 7: 10872. DOI: 10.1038/ncomms10872.
[44]
Wang Q, Shen X, Chen Y, et al. Osteoblasts-derived exosomes regulate osteoclast differentiation through miR-503-3p/Hpse axis[J/OL]. Acta Histochem, 2021, 123(7): 151790. DOI: 10.1016/j.acthis.2021.151790.
[45]
Niedermair T, Lukas C, Li S, et al. Influence of extracellular vesicles isolated from osteoblasts of patients with cox-arthrosis and/or osteoporosis on metabolism and osteogenic differentiation of BMSCs[J/OL]. Front Bioeng Biotechnol, 2020, 8: 615520. DOI:10.3389/fbioe.2020.615520.
[46]
Yao Y, Wang Y. ATDC5: an excellent in vitro model cell line for skeletal development[J]. J Cell Biochem, 2013, 114(6): 1223-1229.
[47]
Wang R, Jiang W, Zhang L, et al. Intra-articular delivery of extracellular vesicles secreted by chondrogenic progenitor cells from MRL/MpJ superhealer mice enhances articular cartilage repair in a mouse injury model[J/OL]. Stem Cell Res Ther, 2020, 11(1): 93. DOI: 10.1186/s13287-020-01594-x.
[48]
Zha Y, Li Y, Lin T, et al. Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects[J]. Theranostics, 2021, 11(1): 397-409.
[49]
Zhang Y, Cai F, Liu J, et al. Transfer RNA-derived fragments as potential exosome tRNA-derived fragment biomarkers for osteoporosis[J]. Int J Rheum Dis, 2018, 21(9): 1659-1669.
[50]
Chen M, Li Y, Lv H, et al. Quantitative proteomics and reverse engineer analysis identified plasma exosome derived protein markers related to osteoporosis[J/OL]. J Proteomics, 2020, 228: 103940. DOI: 10.1016/j.jprot.2020.103940.
[51]
Zhu HY, Gao YC, Wang Y, et al. Circulating exosome levels in the diagnosis of steroid-induced osteonecrosis of the femoral head[J]. Bone Joint Res, 2016, 5(6): 276-279.
[52]
Xun J, Li C, Liu M, et al. Serum exosomes from young rats improve the reduced osteogenic differentiation of BMSCs in aged rats with osteoporosis after fatigue loading in vivo[J/OL]. Stem Cell Res Ther, 2021, 12(1): 424. DOI: 10.1186/s13287-021-02449-9.
[53]
Du Y, Tang H, Gu X, et al. Radiation can regulate the expression of miRNAs associated with osteogenesis and oxidation in exosomes from peripheral blood plasma[J/OL]. Oxid Med Cell Longev, 2021, 2021: 6646323. DOI: 10.1155/2021/6646323.
[1] 许银峰, 盛璞义, 余世明, 张阳春. 偏心性髋臼旋转截骨术治疗发育性髋关节发育不良[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 568-574.
[2] 刘鹏, 罗天, 许珂媛, 邓红美, 李瑄, 唐翠萍. 八段锦对膝关节炎疗效的初步步态分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 590-595.
[3] 蒲彦婷, 吴翠先, 兰玉梅. 类风湿关节炎患者骨质疏松症风险预测列线图模型构建[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 596-603.
[4] 郑永乐, 庞祖才, 陈家敏, 孙丙银. 骨碎补总黄酮抑制牵张成骨模型骨质疏松的作用研究[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 604-608.
[5] 蚁淳, 袁冬生, 熊学军. 系统免疫炎症指数与骨密度降低和骨质疏松的关联[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 609-617.
[6] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[7] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[8] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[9] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[10] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[11] 黄韬, 杨晓华, 薛天森, 肖睿. 改良“蛋壳”技术治疗老年OVCF及对脊柱矢状面平衡参数、预后的影响[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 340-348.
[12] 谭明明, 战世强, 侯宏涛, 曾翔硕. 经皮微创椎弓根螺钉内固定术对骨质疏松脊柱压缩性骨折患者临床研究[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 349-354.
[13] 王芳, 刘达, 左智炜, 盛金平, 陈庭进, 蒋锐. 定量CT与双能X线骨密度仪对骨质疏松诊断效能比较的Meta分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 363-371.
[14] 高广涵, 张耀南, 石磊, 王林, 王飞, 郑子天, 王鸿禹, 郭民政, 薛庆云. 膝骨关节炎患者前交叉韧带功能影像学影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 301-307.
[15] 周锐, 罗飞. 骨质疏松椎体骨折的分型进展[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 315-320.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?