切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 673 -678. doi: 10.3877/cma.j.issn.1674-134X.2023.05.011

综述

外泌体在骨质疏松症诊疗中应用的研究进展
王岩, 马剑雄(), 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙   
  1. 300050 天津大学天津医院(天津市天津医院)骨科研究所;300050 天津市骨科生物力学与医学工程重点实验室
  • 收稿日期:2022-11-28 出版日期:2023-10-01
  • 通信作者: 马剑雄
  • 基金资助:
    国家重点研发计划项目(2022YFC3601904); 天津市自然科学基金重点项目(22JCZDJC00340); 天津市卫生健康科技项目(TJWJ2022QN053); 国家自然科学基金项目(32271432)

Research progress in application of exosomes in diagnosis and treatment of osteoporosis

Yan Wang, Jianxiong Ma(), Shuang Lang, Benchao Dong, Aixian Tian, Yan Li, Lei Sun, Hongzhen Jin, Bin Lu, Ying Wang, Haohao Bai, Xinlong Ma   

  1. Institute of Orthopedics, Tianjin Hospital, Tianjin University (Institute of Orthopedics, Tianjin Hospital), Tianjin 300050, China; Tianjin Key Laboratory of orthopedic biomechanics and medical engineering, Tianjin 300050, China
  • Received:2022-11-28 Published:2023-10-01
  • Corresponding author: Jianxiong Ma
引用本文:

王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.

Yan Wang, Jianxiong Ma, Shuang Lang, Benchao Dong, Aixian Tian, Yan Li, Lei Sun, Hongzhen Jin, Bin Lu, Ying Wang, Haohao Bai, Xinlong Ma. Research progress in application of exosomes in diagnosis and treatment of osteoporosis[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(05): 673-678.

随着全球老龄化进程的不断升级,骨质疏松症患者的数量也在逐年增加。目前,治疗骨质疏松症以及相关骨科疾病的手段复杂多样,但尚缺乏理想的早期或保守干预手段。外泌体作为细胞间信号交流的关键媒介,其自身携带的蛋白质、核酸、脂类等各种物质能够介导机体组织代谢。近年来,相关研究证明外泌体在骨和软骨的形成、代谢和病理变化中起着十分重要的作用。由于外泌体具有体积小、来源丰富、免疫原性低的优点,不仅可以作为传统骨科疾病治疗手段的替代品,也可以作为鉴别骨科疾病的重要标志物。本文对各类细胞来源的外泌体在骨质疏松症以及相关骨科疾病诊疗中应用的研究进展进行了综述,为今后外泌体在相关骨科疾病中的进一步研究和临床应用提供理论依据,以期为临床防治领域开辟一条新道路。

With the continuous upgrading of global aging process, the number of osteoporosis patients is also increasing year by year. At present, the treatment of osteoporosis and related orthopedic diseases is complex and varied, but there is a lack of ideal early or conservative intervention. Exosomes, as the key medium of signal communication between cells, carry proteins, nucleic acids, lipids and other substances that can mediate tissue metabolism. In recent years, relevant studies have demonstrated that exosomes play a very important role in the formation, metabolism and pathological changes of bone and cartilage. Exosomes can not only be used as a substitute for traditional orthopedic diseases, but also as an important marker for the identification of orthopedic diseases due to their advantages of small size, rich source and low immunogenicity. This paper reviewed the research progress of exosomes from various cell sources in the diagnosis and treatment of osteoporosis and related orthopedic diseases, providing theoretical basis for further research and clinical application of exosomes in related orthopedic diseases, so as to open up a new road in the field of clinical prevention and treatment.

[1]
Zhao H, Li X, Zhang D, et al. Integrative bone metabolomics-lipidomics strategy for pathological mechanism of postmenopausal osteoporosis mouse model[J/OL]. Sci Rep, 2018, 8(1): 16456. DOI: 10.1038/s41598-018-34574-6.
[2]
Mei Z, Dong X, Qian Y, et al. Association between the metabolome and bone mineral density in a Chinese population[J/OL]. EBio Medicine, 2020, 62: 103111. DOI: 10.1016/j.ebiom.2020.103111.
[3]
Ren X, Liu H, Wu X, et al. Reactive oxygen species (ROS)-responsive biomaterials for the treatment of bone-related diseases[J/OL]. Front Bioeng Biotechnol, 2021, 9: 820468. DOI: 10.3389/fbioe.2021.820468.
[4]
Ensrud KE, Crandall CJ. Osteoporosis[J/OL]. Ann Intern Med, 2017, 167(3): ITC17. DOI: 10.7326/aitc201708010.
[5]
Chen J, Zhang H, Wu X, et al. PTHG2 reduces bone loss in ovariectomized mice by directing bone marrow mesenchymal stem cell fate[J/OL]. Stem Cells Int, 2021, 2021: 8546739. DOI: 10.1155/2021/8546739.
[6]
Kim JM, Lin C, Stavre Z, et al. Osteoblast-osteoclast communication and bone homeostasis[J/OL]. Cells, 2020, 9(9): 2073. DOI: 10.3390/cells9092073.
[7]
Li Q, Huang QP, Wang YL, et al. Extracellular vesicle-mediated bone metabolism in the bone microenvironment[J]. J Bone Miner Metab, 2018, 36(1): 1-11.
[8]
Masaoutis C, Theocharis S. The role of exosomes in bone remodeling: implications for bone physiology and disease[J/OL]. Dis Markers, 2019, 2019: 9417914. DOI: 10.1155/2019/9417914.
[9]
Debnath S, Yallowitz AR, McCormick J, et al. Discovery of a periosteal stem cell mediating intramembranous bone formation[J]. Nature, 2018, 562(7725): 133-139.
[10]
Huang X, Lan Y, Shen J, et al. Extracellular vesicles in bone homeostasis: emerging mediators of osteoimmune interactions and promising therapeutic targets[J]. Int J Biol Sci, 2022, 18(10): 4088-4100.
[11]
Spicer JA, Miller CK, O'Connor PD, et al. Inhibition of the cytolytic protein perforin prevents rejection of transplanted bone marrow stem cells in vivo[J]. J Med Chem, 2020, 63(5): 2229-2239.
[12]
Huang J, Xiong J, Yang L, et al. Cell-free exosome-laden scaffolds for tissue repair[J]. Nanoscale, 2021, 13(19): 8740-8750.
[13]
Bjørge IM, Kim SY, Mano JF, et al. Extracellular vesicles, exosomes and shedding vesicles in regenerative medicine - a new paradigm for tissue repair[J]. Biomater Sci, 2017, 6(1): 60-78.
[14]
Zou J, Yang W, Cui W, et al. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon-bone healing[J/OL]. J Nanobiotechnology, 2023, 21(1): 14. DOI: 10.1186/s12951-023-01778-6.
[15]
Wang S, Lei B, Zhang E, et al. Targeted therapy for inflammatory diseases with mesenchymal stem cells and their derived exosomes: from basic to clinics[J]. Int J Nanomedicine, 2022, 17: 1757-1781.
[16]
Cheng Q, Dai Z, Shi X, et al. Expanding the toolbox of exosome-based modulators of cell functions[J/OL]. Biomaterials, 2021, 277: 121129. DOI: 10.1016/j.biomaterials.2021.121129.
[17]
Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go[J]. Cell, 2016, 164(6): 1226-1232.
[18]
Qin Y, Sun R, Wu C, et al. Exosome: anovel approach to stimulate bone regeneration through regulation of osteogenesis and angiogenesis[J/OL]. Int J Mol Sci, 2016, 17(5): 712. DOI: 10.3390/ijms17050712.
[19]
Jiang F, Zhang W, Zhou M, et al. Human amniotic mesenchymal stromal cells promote bone regeneration via activating endogenous regeneration[J]. Theranostics, 2020, 10(14): 6216-6230.
[20]
Tao SC, Guo SC, Zhang CQ. Modularized extracellular vesicles: the dawn of prospective personalized and precision medicine[J/OL]. Adv Sci, 2018, 5(2): 1700449. DOI: 10.1002/advs.201700449.
[21]
Liu S, Xu X, Liang S, et al. The application of MSCs-derived extracellular vesicles in bone disorders: novel cell-free therapeutic strategy[J/OL]. Front Cell Dev Biol, 2020, 8: 619. DOI: 10.3389/fcell.2020.00619.
[22]
马明,贾更新,刘小龙,等. 间充质干细胞来源细胞外囊泡治疗膝骨关节炎的研究进展[J/CD]. 中华关节外科杂志(电子版), 2022, 16(4): 472-476.
[23]
Gao Q, Wang L, Wang S, et al. Bone marrow mesenchymal stromal cells: identification, classification, and differentiation[J/OL]. Front Cell Dev Biol, 2021, 9: 787118. DOI: 10.3389/fcell.2021.787118.
[24]
Yang Y, Yuan L, Cao H, et al. Application and molecular mechanisms of extracellular vesicles derived from mesenchymal stem cells in osteoporosis[J]. Curr Issues Mol Biol, 2022, 44(12): 6346-6367.
[25]
Zhai M, Zhu Y, Yang M, et al. Human mesenchymal stem cell derived exosomes enhance cell-free bone regeneration by altering their miRNAs profiles[J/OL]. Adv Sci, 2020, 7(19): 2001334. DOI: 10.1002/advs.202001334.
[26]
Zhang D, Wu Y, Li Z, et al. miR-144-5p, an exosomal miRNA from bone marrow-derived macrophage in type 2 diabetes, impairs bone fracture healing via targeting Smad1[J/OL]. J Nanobiotechnology, 2021, 19(1): 226. DOI: 10.1186/s12951-021-00964-8.
[27]
Yang X, Yang J, Lei P, et al. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis[J]. Aging, 2019, 11(20): 8777-8791.
[28]
Cui Y, Guo Y, Kong L, et al. A bone-targeted engineered exosome platform delivering siRNA to treat osteoporosis[J]. Bioact Mater, 2022, 10: 207-221.
[29]
Xu S, Wang Z. Bone marrow mesenchymal stem cell-derived exosomes enhance osteoclastogenesis during alveolar bone deterioration in rats[J/OL]. RSC Adv, 2017, 7(34): 21153-21163. DOI: 10.1039/C6RA27931G.
[30]
Xu R, Shen X, Si Y, et al. microRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment[J/OL]. Aging Cell, 2018, 17(4): e12794. DOI: 10.1111/acel.12794.
[31]
Yao H, Cao Z, Wu W. Human umbilical cord mesenchymal stromal cells promotes the proliferation and osteogenic differentiation of autologous bone marrow stem cells by secreting exosomes[J]. Bioengineered, 2022, 13(4): 9901-9915.
[32]
Yang BC, Kuang MJ, Kang JY, et al. Human umbilical cord mesenchymal stem cell-derived exosomes act via the miR-1263/Mob1/Hippo signaling pathway to prevent apoptosis in disuse osteoporosis[J]. Biochem Biophys Res Commun, 2020, 524(4): 883-889.
[33]
Hu Y, Zhang Y, Ni CY, et al. Human umbilical cord mesenchymal stromal cells-derived extracellular vesicles exert potent bone protective effects by CLEC11A-mediated regulation of bone metabolism[J]. Theranostics, 2020, 10(5): 2293-2308.
[34]
Zhang Y, Xie Y, Hao Z, et al. Umbilical mesenchymal stem cell-derived exosome-encapsulated hydrogels accelerate bone repair by enhancing angiogenesis[J]. ACS Appl Mater Interfaces, 2021, 13(16): 18472-18487.
[35]
Wang SZ, Jia J, Chen CH. lncRNA-KCNQ1OT1: apotential target in exosomes derived from adipose-derived stem cells for the treatment of osteoporosis[J/OL]. Stem Cells Int, 2021, 2021: 7690006. DOI:10.1155/2021/7690006.
[36]
Kim DK, Lee S, Kim M, et al. Exosome-coated silk fibroin 3D-scaffold for inducing osteogenic differentiation of bone marrow derived mesenchymal stem cells[J/OL]. Chem Eng J, 2021, 406: 127080. DOI: 10.1016/j.cej.2020.127080.
[37]
Qi X, Zhang J, Yuan H, et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats[J]. Int J Biol Sci, 2016, 12(7): 836-849.
[38]
Zhu Y, Wang Y, Zhao B, et al. Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis[J/OL]. Stem Cell Res Ther, 2017, 8(1): 64. DOI: 10.1186/s13287-017-0510-9.
[39]
Zhao D, Huang S, Lu F, et al. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head[J]. Biomaterials, 2016, 81: 84-92.
[40]
马剑雄,何伟伟,赵杰,等. 股骨头坏死发病机制研究的最新进展[J]. 中国组织工程研究2017, 21(27): 4397-4402.
[41]
Teotia AK, Qayoom I, Singh P, et al. Exosome-functionalized ceramic bone substitute promotes critical-sized bone defect repair in rats[J]. ACS Appl Bio Mater, 2021, 4(4): 3716-3726.
[42]
Sun W, Zhao C, Li Y, et al. Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity[J/OL]. Cell Discov, 2016, 2: 16015. DOI: 10.1038/celldisc.2016.15.
[43]
Li D, Liu J, Guo B, et al. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation[J/OL]. Nat Commun, 2016, 7: 10872. DOI: 10.1038/ncomms10872.
[44]
Wang Q, Shen X, Chen Y, et al. Osteoblasts-derived exosomes regulate osteoclast differentiation through miR-503-3p/Hpse axis[J/OL]. Acta Histochem, 2021, 123(7): 151790. DOI: 10.1016/j.acthis.2021.151790.
[45]
Niedermair T, Lukas C, Li S, et al. Influence of extracellular vesicles isolated from osteoblasts of patients with cox-arthrosis and/or osteoporosis on metabolism and osteogenic differentiation of BMSCs[J/OL]. Front Bioeng Biotechnol, 2020, 8: 615520. DOI:10.3389/fbioe.2020.615520.
[46]
Yao Y, Wang Y. ATDC5: an excellent in vitro model cell line for skeletal development[J]. J Cell Biochem, 2013, 114(6): 1223-1229.
[47]
Wang R, Jiang W, Zhang L, et al. Intra-articular delivery of extracellular vesicles secreted by chondrogenic progenitor cells from MRL/MpJ superhealer mice enhances articular cartilage repair in a mouse injury model[J/OL]. Stem Cell Res Ther, 2020, 11(1): 93. DOI: 10.1186/s13287-020-01594-x.
[48]
Zha Y, Li Y, Lin T, et al. Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects[J]. Theranostics, 2021, 11(1): 397-409.
[49]
Zhang Y, Cai F, Liu J, et al. Transfer RNA-derived fragments as potential exosome tRNA-derived fragment biomarkers for osteoporosis[J]. Int J Rheum Dis, 2018, 21(9): 1659-1669.
[50]
Chen M, Li Y, Lv H, et al. Quantitative proteomics and reverse engineer analysis identified plasma exosome derived protein markers related to osteoporosis[J/OL]. J Proteomics, 2020, 228: 103940. DOI: 10.1016/j.jprot.2020.103940.
[51]
Zhu HY, Gao YC, Wang Y, et al. Circulating exosome levels in the diagnosis of steroid-induced osteonecrosis of the femoral head[J]. Bone Joint Res, 2016, 5(6): 276-279.
[52]
Xun J, Li C, Liu M, et al. Serum exosomes from young rats improve the reduced osteogenic differentiation of BMSCs in aged rats with osteoporosis after fatigue loading in vivo[J/OL]. Stem Cell Res Ther, 2021, 12(1): 424. DOI: 10.1186/s13287-021-02449-9.
[53]
Du Y, Tang H, Gu X, et al. Radiation can regulate the expression of miRNAs associated with osteogenesis and oxidation in exosomes from peripheral blood plasma[J/OL]. Oxid Med Cell Longev, 2021, 2021: 6646323. DOI: 10.1155/2021/6646323.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[3] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[4] 中华医学会骨科学分会关节外科学组, 广东省医学会骨质疏松和骨矿盐疾病分会, 广东省佛山市顺德区第三人民医院. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)[J]. 中华关节外科杂志(电子版), 2023, 17(06): 751-764.
[5] 刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东. 机器人辅助膝关节单髁置换术的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 715-721.
[6] 浦路桥, 徐永清, 齐保闯, 施洪鑫, 林玮, 卜鹏飞, 白艳, 唐志方, 李川. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)计划书[J]. 中华关节外科杂志(电子版), 2023, 17(05): 747-750.
[7] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[8] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[9] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[10] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[11] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[12] 金浪, 石洁, 黄正, 贾永伟, 张建坡, 魏礼成, 金昊雷. 3D打印数字技术辅助改良交叉PVP对重度骨质疏松性椎体压缩骨折脊柱-骨盆矢状面平衡状态的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 263-268.
[13] 周晓强, 孙超, 虞宵, 金宇杰, 李志强, 张向鑫, 陈广祥. 同一患者同期行全膝和单髁置换术的早期临床疗效[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 275-281.
[14] 马聪, 李雪靖, 郑晓佐, 张晓阳, 段坤峰, 刘国强, 郄素会. 关节腔内注射富血小板血浆与透明质酸钠治疗Ⅰ-Ⅲ期膝骨关节炎的对比研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 282-288.
[15] 王娟, 高俊, 周伊兰, 李小红, 史兵伟, 潘美珍. 血清IL-2、IL-17和骨密度关系及其对骨质疏松症的预测价值[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 295-300.
阅读次数
全文


摘要