切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2018, Vol. 12 ›› Issue (03) : 379 -384. doi: 10.3877/cma.j.issn.1674-134X.2018.03.014

所属专题: 文献

综述

髌下脂肪垫来源间充质干细胞软骨分化的研究进展
陈墅1, 周义钦1, 周嵘1, 钱齐荣1,()   
  1. 1. 200003 上海,海军军医大学附属长征医院关节外科
  • 收稿日期:2017-06-02 出版日期:2018-06-01
  • 通信作者: 钱齐荣

Research progress of infrapatellar fat pad derived adipose stem cells differentiating into cartilage

Shu Chen1, Yiqin Zhou1, Rong Zhou1, Qirong Qian1,()   

  1. 1. Department of the joint surgery, Shanghai Changzheng Hospital, Shanghai 200003, China
  • Received:2017-06-02 Published:2018-06-01
  • Corresponding author: Qirong Qian
  • About author:
    Corresponding author: Qian Qirong, Email:
引用本文:

陈墅, 周义钦, 周嵘, 钱齐荣. 髌下脂肪垫来源间充质干细胞软骨分化的研究进展[J]. 中华关节外科杂志(电子版), 2018, 12(03): 379-384.

Shu Chen, Yiqin Zhou, Rong Zhou, Qirong Qian. Research progress of infrapatellar fat pad derived adipose stem cells differentiating into cartilage[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2018, 12(03): 379-384.

间充质干细胞(MSCs)为重点的组织工程学研究已成为软骨损伤修复与再生的研究热点,髌下脂肪垫(IPFP)是脂肪间充质干细胞(ASCs)的新型优良组织来源,其取材方便,供区损伤小。且IPFP-ASCs体外增殖快,成软骨分化能力较强。低氧,转化生长因子β1、β3,骨形态发生蛋白7等可以促进其分化。体内试验表明其可以有效改善软骨损伤患者症状,提高关节功能。虽然目前仍存在生物学和技术上的困难需克服,但IPFP-ASCs有望成为修复包括骨关节炎在内的关节软骨损伤的良好策略。

Tissue engineering approaches for promoting the repair of cartilage lesions have focused on cell-based therapies involving mesenchymal stem cells(MSCs). Infrapatellar fat pad (IPFP) is an attractive cell resource of the adipose mesenchymal stem cells(ASCs), which can be collected and harvested by a convenient and minimally invasive procedure. The proliferation of IPFP-ASCs in vitro is fast and the ability to differentiate into cartilage is relatively strong. Hypoxia, TGF-β1, TGF-β3, BMP-7 have been proved to be able to enhance the chondrogenesis of infrapatellar fat pad derived adipose stem cells. In vivo studies indicate that application of IPFP-ASCs can effectively improve symptoms of cartilage injury and joint function. Although there are biological and technical difficulties to be overcome, the implantation of IPFP-ASCs are expected to become a good strategy to repair articular cartilage injury, including osteoarthritis.

[1]
Oldershaw RA. Cell sources for the regeneration of articular cartilage: the past, the horizon and the future[J]. Int J Exp Pathol, 2012, 93(6):389-400.
[2]
Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies[J]. Tissue Eng, 2001, 7(2):211-228.
[3]
Ronzière MC, Perrier E, Mallein-Gerin F, et al. Chondrogenic potential of bone marrow-and adipose tissue-derived adult human mesenchymal stem cells[J]. Biomed Mater Eng, 2010, 20(3):145-158.
[4]
Zhu Y, Liu T, Song K, et al. Adipose-derived stem cell: a better stem cell than BMSC[J]. Cell Biochem Funct, 2008, 26(6):664-675.
[5]
Clockaerts S, Bastiaansen-Jenniskens YM, Runhaar J, et al. The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue: a narrative review[J]. Osteoarthritis Cartilage, 2010, 18(7):876-882.
[6]
Felimban R, Ye K, Traianedes K, et al. Differentiation of stem cells from human infrapatellar fat pad: characterization of cells undergoing chondrogenesis[J]. Tissue Eng Part A, 2014, 20(15/16):2213-2223.
[7]
Klein-Wieringa IR, Kloppenburg M, Bastiaansen-Jenniskens YM, et al. The infrapatellar fat pad of patients with osteoarthritis has an inflammatory phenotype[J]. Ann Rheum Dis, 2011, 70(5):851-857.
[8]
Wickham MQ, Erickson GR, Gimble JM, et al. Multipotent stromal cells derived from the infrapatellar fat pad of the knee[J]. Clin Orthop Relat Res, 2003, 412(6):196-212.
[9]
Dragoo JL, Samimi B, Zhu M, et al. Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads[J]. J Bone Joint Surg Br, 2003, 85(5):740-747.
[10]
Zhang N, Dietrich MA, Lopez MJ. Canine intra-articular multipotent stromal cells (MSC) from adipose tissue have the highest in vitro expansion rates, multipotentiality, and MSC immunophenotypes[J]. Vet Surg, 2013, 42(2):137-146.
[11]
Tangchitphisut P, Srikaew N, Numhom S, et al. Infrapatellar fat pad: an alternative source of adipose-derived mesenchymal stem cells[J]. Arthritis, 2016, 25(11):1-10.
[12]
Bobacz K, Sunk IG, Hayer S, et al. Differentially regulated expression of growth differentiation factor 5 and bone morphogenetic protein 7 in articular cartilage and synovium in murine chronic arthritis: potential importance for cartilage breakdown and synovial hypertrophy[J]. Arthritis Rheum, 2008, 58(1):109-118.
[13]
Almeida HV, Liu Y, Cunniffe GM, et al. Controlled release of transforming growth factor-β3 from cartilage-extra-cellular-matrix-derived scaffolds to promote chondrogenesis of human-joint-tissue-derived stem cells[J]. Acta Biomater, 2014, 10(10):4400-4409.
[14]
Gimble JM, Bunnell BA, Frazier T, et al. Adipose-derived stromal/stem cells: a primer[J]. Organogenesis, 2013, 9(1):3-10.
[15]
刘玉平,刘涛,王明明,等.人髌下脂肪垫来源脂肪间充质干细胞的分离、培养及鉴定[J].中国组织工程研究,2015,19(41):6566-6571.
[16]
Khan WS, Adesida AB, Hardingham TE. Hypoxic conditions increase hypoxia-inducible transcription factor 2alpha and enhance chondrogenesis in stem cells from the infrapatellar fat pad of osteoarthritis patients[J]. Arthritis Res Ther, 2007, 9(3):55-63.
[17]
Vinardell T, Rolfe RA, Buckley CT, et al. Hydrostatic pressure acts to stabilise a chondrogenic phenotype in porcine joint tissue derived stem cells[J]. Eur Cell Mater, 2012, 23(2):121-132.
[18]
Carroll SF, Buckley CT, Kelly DJ. Cyclic hydrostatic pressure promotes a stable cartilage phenotype and enhances the functional development of cartilaginous grafts engineered using multipotent stromal cells isolated from bone marrow and infrapatellar fat pad[J]. J Biomech, 2014, 47(9):2115-2121.
[19]
Ding DC, Wu KC, Chou HL, et al. Human infrapatellar fat Pad-Derived stromal cells have more potent differentiation capacity than other mesenchymal cells and can be enhanced by hyaluronan[J]. Cell Transplant, 2015, 24(7):1221-1232.
[20]
Nikpou P, Nejad DM, Shafaei H, et al. Study of chondrogenic potential of stem cells in co-culture with chondrons[J]. Iran J Basic Med Sci, 2016, 19(6):638-645.
[21]
Nikpou P, Soleimani Rad J, Mohammad Nejad D, et al. Indirect coculture of stem cells with fetal chondrons using PCL electrospun nanofiber scaffolds[J]. Artif Cells Nanomed Biotechnol, 2017, 45(2):283-290.
[22]
Lopa S, Colombini A, Sansone V, et al. Influence on chondrogenesis of human osteoarthritic chondrocytes in co-culture with donor-matched mesenchymal stem cells from infrapatellar fat pad and subcutaneous adipose tissue[J]. Int J Immunopathol Pharmacol, 2013, 26(1 Suppl):23-31.
[23]
杨君君,陈诚,杨柳,等.人髌下脂肪垫干细胞与骨关节炎软骨细胞间接共培养可促进其向软骨细胞分化[J].细胞与分子免疫学杂志,2017,33(02):196-201.
[24]
López-Ruiz E, Perán M, Cobo-Molinos J, et al. Chondrocytes extract from patients with osteoarthritis induces chondrogenesis in infrapatellar fat pad-derived stem cells[J]. Osteoarthritis Cartilage, 2013, 21(1):246-258.
[25]
Meretoja VV, Dahlin RL, Wright S, et al. The effect of hypoxia on the chondrogenic differentiation of co-cultured articular chondrocytes and mesenchymal stem cells in scaffolds[J]. Biomaterials, 2013, 34(17):4266-4273.
[26]
Antonioli E, Piccinato CA, Nader HB, et al. Modulation of hyaluronan synthesis by the interaction between mesenchymal stem cells and osteoarthritic chondrocytes[J]. Stem Cells Int, 2015,26(6):1-11.
[27]
Hopper N, Wardale J, Howard D, et al. Peripheral blood derived mononuclear cells enhance the migration and chondrogenic differentiation of multipotent mesenchymal stromal cells[J]. Stem Cells Int, 2015,10(12):1-9.
[28]
Chen WH, Lin CM, Huang CF, et al. Functional recovery in osteoarthritic chondrocytes through hyaluronic acid and platelet-rich plasma-inhibited infrapatellar fat pad adipocytes[J]. Am J Sports Med, 2016, 44(10):2696-2705.
[29]
Lee SY, Nakagawa T, Reddi AH. Induction of chondrogenesis and expression of superficial zone protein (SZP)/lubricin by mesenchymal progenitors in the infrapatellar fat pad of the knee joint treated with TGF-beta1 and BMP-7[J]. Biochem Biophys Res Commun, 2008, 376(1):148-153.
[30]
Khan WS, Tew SR, Adesida AB, et al. Human infrapatellar fat pad-derived stem cells Express the pericyte marker 3G5 and show enhanced chondrogenesis after expansion in fibroblast growth factor-2[J]. Arthritis Res Ther, 2008, 10(4):74-84.
[31]
Chlapanidas T, Faragò S, Mingotto F, et al. Regenerated silk fibroin scaffold and infrapatellar adipose stromal vascular fraction as feeder-layer: a new product for cartilage advanced therapy[J]. Tissue Eng Part A, 2011, 17(13/14):1725-1733.
[32]
He F, Pei M. Extracellular matrix enhances differentiation of adipose stem cells from infrapatellar fat pad toward chondrogenesis[J]. J Tissue Eng Regen Med, 2013, 7(1):73-84.
[33]
Ye K, Felimban R, Traianedes K, et al. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold[J]. PLoS One, 2014, 9(6):99410-99418.
[34]
Ye K, Traianedes K, Choong PF, et al. Chondrogenesis of human infrapatellar fat pad stem cells on acellular dermal matrix[J]. Front Surg, 2016, 3(3):3-11.
[35]
Almeida HV, Eswaramoorthy R, Cunniffe GM, et al. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration[J]. Acta Biomater, 2016, 36(4):55-62.
[36]
Almeida HV, Mulhall KJ, O’brien FJ, et al. Stem cells display a donor dependent response to escalating levels of growth factor release from extracellular matrix-derived scaffolds[J]. J Tissue Eng Regen Med, 2017, 11(11):2979-2987.
[37]
Pizzute T, Zhang Y, He F, et al. Ascorbate-dependent impact on cell-derived matrix in modulation of stiffness and rejuvenation of infrapatellar fat derived stem cells toward chondrogenesis[J]. Biomed Mater, 2016, 11(4):45009-450027.
[38]
Prabhakar A, Lynch AP, Ahearne M. Self-Assembled infrapatellar Fat-Pad progenitor cells on a Poly-ε-Caprolactone film for cartilage regeneration[J]. Artif Organs, 2016, 40(4):376-384.
[39]
Luo L, O’reilly AR, Thorpe SD, et al. Engineering zonal cartilaginous tissue by modulating Oxygen levels and mechanical cues through the depth of infrapatellar fat pad stem cell laden hydrogels[J]. J Tissue Eng Regen Med, 2017, 11(9):2613-2628.
[40]
Toghraie FS, Chenari N, Gholipour MA, et al. Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in Rabbit[J]. Knee, 2011, 18(2):71-75.
[41]
Uccelli A, Pistoia V, Moretta L. Mesenchymal stem cells: a new strategy for immunosuppression?[J]. Trends Immunol, 2007, 28(5):219-226.
[42]
Koh YG, Choi YJ. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis[J]. Knee, 2012, 19(6):902-907.
[43]
Koh YG, Jo SB, Kwon OR, et al. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis[J]. Arthroscopy, 2013, 29(4):748-755.
[44]
Liu Y, Buckley CT, Almeida HV, et al. Infrapatellar fat pad-derived stem cells maintain their chondrogenic capacity in disease and can be used to engineer cartilaginous grafts of clinically relevant dimensions[J]. Tissue Eng Part A, 2014, 20(21/22):3050-3062.
[45]
Skalska U, Kontny E. Adipose-derived mesenchymal stem cells from infrapatellar fat pad of patients with rheumatoid arthritis and osteoarthritis have comparable immunomodulatory properties[J]. Autoimmunity, 2016, 49(2):124-131.
[46]
Skalska U, Prochorec-Sobieszek M, Kontny E. Osteoblastic potential of infrapatellar fat pad-derived mesenchymal stem cells from rheumatoid arthritis and osteoarthritis patients[J]. Int J Rheum Dis, 2016, 19(6):577-585.
[47]
Richter DL, Schenck RC, Wascher DC, et al. Knee articular cartilage repair and restoration techniques: a review of the literature[J]. Sports Health, 2016, 8(2):153-160.
[48]
Garcia J, Mennan C, Mccarthy HS, et al. Chondrogenic potency analyses of Donor-Matched chondrocytes and mesenchymal stem cells derived from bone marrow, infrapatellar fat pad, and subcutaneous fat[J]. Stem Cells Int, 2016,1155(10):1-11.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[3] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[4] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[5] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[6] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[7] 李鸿昌, 孙艳宏, 高旺, 张金才, 牛亚清, 张国梁. 滑膜软骨瘤病的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 679-683.
[8] 赵之栋, 李众利. 骨关节炎早期诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 689-693.
[9] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[10] 樊绪国, 赵永刚. 全膝关节置换术中髌骨轨迹的研究进展及处理策略[J]. 中华关节外科杂志(电子版), 2023, 17(05): 701-707.
[11] 刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东. 机器人辅助膝关节单髁置换术的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 715-721.
[12] 陈志超, 张志伟, 蒋勰, 顾祖超, 蒋菁芸, 许婷婷. 带线锚钉结合缝线捆扎固定髌骨下极粉碎性骨折[J]. 中华关节外科杂志(电子版), 2023, 17(05): 732-735.
[13] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[14] 周晓强, 孙超, 虞宵, 金宇杰, 李志强, 张向鑫, 陈广祥. 同一患者同期行全膝和单髁置换术的早期临床疗效[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 275-281.
[15] 马聪, 李雪靖, 郑晓佐, 张晓阳, 段坤峰, 刘国强, 郄素会. 关节腔内注射富血小板血浆与透明质酸钠治疗Ⅰ-Ⅲ期膝骨关节炎的对比研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 282-288.
阅读次数
全文


摘要