[1] |
Oldershaw RA. Cell sources for the regeneration of articular cartilage: the past, the horizon and the future[J]. Int J Exp Pathol, 2012, 93(6):389-400.
|
[2] |
Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies[J]. Tissue Eng, 2001, 7(2):211-228.
|
[3] |
Ronzière MC, Perrier E, Mallein-Gerin F, et al. Chondrogenic potential of bone marrow-and adipose tissue-derived adult human mesenchymal stem cells[J]. Biomed Mater Eng, 2010, 20(3):145-158.
|
[4] |
Zhu Y, Liu T, Song K, et al. Adipose-derived stem cell: a better stem cell than BMSC[J]. Cell Biochem Funct, 2008, 26(6):664-675.
|
[5] |
Clockaerts S, Bastiaansen-Jenniskens YM, Runhaar J, et al. The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue: a narrative review[J]. Osteoarthritis Cartilage, 2010, 18(7):876-882.
|
[6] |
Felimban R, Ye K, Traianedes K, et al. Differentiation of stem cells from human infrapatellar fat pad: characterization of cells undergoing chondrogenesis[J]. Tissue Eng Part A, 2014, 20(15/16):2213-2223.
|
[7] |
Klein-Wieringa IR, Kloppenburg M, Bastiaansen-Jenniskens YM, et al. The infrapatellar fat pad of patients with osteoarthritis has an inflammatory phenotype[J]. Ann Rheum Dis, 2011, 70(5):851-857.
|
[8] |
Wickham MQ, Erickson GR, Gimble JM, et al. Multipotent stromal cells derived from the infrapatellar fat pad of the knee[J]. Clin Orthop Relat Res, 2003, 412(6):196-212.
|
[9] |
Dragoo JL, Samimi B, Zhu M, et al. Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads[J]. J Bone Joint Surg Br, 2003, 85(5):740-747.
|
[10] |
Zhang N, Dietrich MA, Lopez MJ. Canine intra-articular multipotent stromal cells (MSC) from adipose tissue have the highest in vitro expansion rates, multipotentiality, and MSC immunophenotypes[J]. Vet Surg, 2013, 42(2):137-146.
|
[11] |
Tangchitphisut P, Srikaew N, Numhom S, et al. Infrapatellar fat pad: an alternative source of adipose-derived mesenchymal stem cells[J]. Arthritis, 2016, 25(11):1-10.
|
[12] |
Bobacz K, Sunk IG, Hayer S, et al. Differentially regulated expression of growth differentiation factor 5 and bone morphogenetic protein 7 in articular cartilage and synovium in murine chronic arthritis: potential importance for cartilage breakdown and synovial hypertrophy[J]. Arthritis Rheum, 2008, 58(1):109-118.
|
[13] |
Almeida HV, Liu Y, Cunniffe GM, et al. Controlled release of transforming growth factor-β3 from cartilage-extra-cellular-matrix-derived scaffolds to promote chondrogenesis of human-joint-tissue-derived stem cells[J]. Acta Biomater, 2014, 10(10):4400-4409.
|
[14] |
Gimble JM, Bunnell BA, Frazier T, et al. Adipose-derived stromal/stem cells: a primer[J]. Organogenesis, 2013, 9(1):3-10.
|
[15] |
刘玉平,刘涛,王明明,等.人髌下脂肪垫来源脂肪间充质干细胞的分离、培养及鉴定[J].中国组织工程研究,2015,19(41):6566-6571.
|
[16] |
Khan WS, Adesida AB, Hardingham TE. Hypoxic conditions increase hypoxia-inducible transcription factor 2alpha and enhance chondrogenesis in stem cells from the infrapatellar fat pad of osteoarthritis patients[J]. Arthritis Res Ther, 2007, 9(3):55-63.
|
[17] |
Vinardell T, Rolfe RA, Buckley CT, et al. Hydrostatic pressure acts to stabilise a chondrogenic phenotype in porcine joint tissue derived stem cells[J]. Eur Cell Mater, 2012, 23(2):121-132.
|
[18] |
Carroll SF, Buckley CT, Kelly DJ. Cyclic hydrostatic pressure promotes a stable cartilage phenotype and enhances the functional development of cartilaginous grafts engineered using multipotent stromal cells isolated from bone marrow and infrapatellar fat pad[J]. J Biomech, 2014, 47(9):2115-2121.
|
[19] |
Ding DC, Wu KC, Chou HL, et al. Human infrapatellar fat Pad-Derived stromal cells have more potent differentiation capacity than other mesenchymal cells and can be enhanced by hyaluronan[J]. Cell Transplant, 2015, 24(7):1221-1232.
|
[20] |
Nikpou P, Nejad DM, Shafaei H, et al. Study of chondrogenic potential of stem cells in co-culture with chondrons[J]. Iran J Basic Med Sci, 2016, 19(6):638-645.
|
[21] |
Nikpou P, Soleimani Rad J, Mohammad Nejad D, et al. Indirect coculture of stem cells with fetal chondrons using PCL electrospun nanofiber scaffolds[J]. Artif Cells Nanomed Biotechnol, 2017, 45(2):283-290.
|
[22] |
Lopa S, Colombini A, Sansone V, et al. Influence on chondrogenesis of human osteoarthritic chondrocytes in co-culture with donor-matched mesenchymal stem cells from infrapatellar fat pad and subcutaneous adipose tissue[J]. Int J Immunopathol Pharmacol, 2013, 26(1 Suppl):23-31.
|
[23] |
杨君君,陈诚,杨柳,等.人髌下脂肪垫干细胞与骨关节炎软骨细胞间接共培养可促进其向软骨细胞分化[J].细胞与分子免疫学杂志,2017,33(02):196-201.
|
[24] |
López-Ruiz E, Perán M, Cobo-Molinos J, et al. Chondrocytes extract from patients with osteoarthritis induces chondrogenesis in infrapatellar fat pad-derived stem cells[J]. Osteoarthritis Cartilage, 2013, 21(1):246-258.
|
[25] |
Meretoja VV, Dahlin RL, Wright S, et al. The effect of hypoxia on the chondrogenic differentiation of co-cultured articular chondrocytes and mesenchymal stem cells in scaffolds[J]. Biomaterials, 2013, 34(17):4266-4273.
|
[26] |
Antonioli E, Piccinato CA, Nader HB, et al. Modulation of hyaluronan synthesis by the interaction between mesenchymal stem cells and osteoarthritic chondrocytes[J]. Stem Cells Int, 2015,26(6):1-11.
|
[27] |
Hopper N, Wardale J, Howard D, et al. Peripheral blood derived mononuclear cells enhance the migration and chondrogenic differentiation of multipotent mesenchymal stromal cells[J]. Stem Cells Int, 2015,10(12):1-9.
|
[28] |
Chen WH, Lin CM, Huang CF, et al. Functional recovery in osteoarthritic chondrocytes through hyaluronic acid and platelet-rich plasma-inhibited infrapatellar fat pad adipocytes[J]. Am J Sports Med, 2016, 44(10):2696-2705.
|
[29] |
Lee SY, Nakagawa T, Reddi AH. Induction of chondrogenesis and expression of superficial zone protein (SZP)/lubricin by mesenchymal progenitors in the infrapatellar fat pad of the knee joint treated with TGF-beta1 and BMP-7[J]. Biochem Biophys Res Commun, 2008, 376(1):148-153.
|
[30] |
Khan WS, Tew SR, Adesida AB, et al. Human infrapatellar fat pad-derived stem cells Express the pericyte marker 3G5 and show enhanced chondrogenesis after expansion in fibroblast growth factor-2[J]. Arthritis Res Ther, 2008, 10(4):74-84.
|
[31] |
Chlapanidas T, Faragò S, Mingotto F, et al. Regenerated silk fibroin scaffold and infrapatellar adipose stromal vascular fraction as feeder-layer: a new product for cartilage advanced therapy[J]. Tissue Eng Part A, 2011, 17(13/14):1725-1733.
|
[32] |
He F, Pei M. Extracellular matrix enhances differentiation of adipose stem cells from infrapatellar fat pad toward chondrogenesis[J]. J Tissue Eng Regen Med, 2013, 7(1):73-84.
|
[33] |
Ye K, Felimban R, Traianedes K, et al. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold[J]. PLoS One, 2014, 9(6):99410-99418.
|
[34] |
Ye K, Traianedes K, Choong PF, et al. Chondrogenesis of human infrapatellar fat pad stem cells on acellular dermal matrix[J]. Front Surg, 2016, 3(3):3-11.
|
[35] |
Almeida HV, Eswaramoorthy R, Cunniffe GM, et al. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration[J]. Acta Biomater, 2016, 36(4):55-62.
|
[36] |
Almeida HV, Mulhall KJ, O’brien FJ, et al. Stem cells display a donor dependent response to escalating levels of growth factor release from extracellular matrix-derived scaffolds[J]. J Tissue Eng Regen Med, 2017, 11(11):2979-2987.
|
[37] |
Pizzute T, Zhang Y, He F, et al. Ascorbate-dependent impact on cell-derived matrix in modulation of stiffness and rejuvenation of infrapatellar fat derived stem cells toward chondrogenesis[J]. Biomed Mater, 2016, 11(4):45009-450027.
|
[38] |
Prabhakar A, Lynch AP, Ahearne M. Self-Assembled infrapatellar Fat-Pad progenitor cells on a Poly-ε-Caprolactone film for cartilage regeneration[J]. Artif Organs, 2016, 40(4):376-384.
|
[39] |
Luo L, O’reilly AR, Thorpe SD, et al. Engineering zonal cartilaginous tissue by modulating Oxygen levels and mechanical cues through the depth of infrapatellar fat pad stem cell laden hydrogels[J]. J Tissue Eng Regen Med, 2017, 11(9):2613-2628.
|
[40] |
Toghraie FS, Chenari N, Gholipour MA, et al. Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in Rabbit[J]. Knee, 2011, 18(2):71-75.
|
[41] |
Uccelli A, Pistoia V, Moretta L. Mesenchymal stem cells: a new strategy for immunosuppression?[J]. Trends Immunol, 2007, 28(5):219-226.
|
[42] |
Koh YG, Choi YJ. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis[J]. Knee, 2012, 19(6):902-907.
|
[43] |
Koh YG, Jo SB, Kwon OR, et al. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis[J]. Arthroscopy, 2013, 29(4):748-755.
|
[44] |
Liu Y, Buckley CT, Almeida HV, et al. Infrapatellar fat pad-derived stem cells maintain their chondrogenic capacity in disease and can be used to engineer cartilaginous grafts of clinically relevant dimensions[J]. Tissue Eng Part A, 2014, 20(21/22):3050-3062.
|
[45] |
Skalska U, Kontny E. Adipose-derived mesenchymal stem cells from infrapatellar fat pad of patients with rheumatoid arthritis and osteoarthritis have comparable immunomodulatory properties[J]. Autoimmunity, 2016, 49(2):124-131.
|
[46] |
Skalska U, Prochorec-Sobieszek M, Kontny E. Osteoblastic potential of infrapatellar fat pad-derived mesenchymal stem cells from rheumatoid arthritis and osteoarthritis patients[J]. Int J Rheum Dis, 2016, 19(6):577-585.
|
[47] |
Richter DL, Schenck RC, Wascher DC, et al. Knee articular cartilage repair and restoration techniques: a review of the literature[J]. Sports Health, 2016, 8(2):153-160.
|
[48] |
Garcia J, Mennan C, Mccarthy HS, et al. Chondrogenic potency analyses of Donor-Matched chondrocytes and mesenchymal stem cells derived from bone marrow, infrapatellar fat pad, and subcutaneous fat[J]. Stem Cells Int, 2016,1155(10):1-11.
|