切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 701 -707. doi: 10.3877/cma.j.issn.1674-134X.2023.05.016

综述

全膝关节置换术中髌骨轨迹的研究进展及处理策略
樊绪国, 赵永刚()   
  1. 671000 大理白族自治州人民医院骨三科
  • 收稿日期:2022-12-18 出版日期:2023-10-01
  • 通信作者: 赵永刚
  • 基金资助:
    大理州科技计划项目重点研发计划(D2022NB0203)

Research progress and management strategies of patellar tracking in total knee arthroplasty

Xuguo Fan, Yonggang Zhao()   

  1. Department of Orthopedics, Dali Bai Autonomous Prefecture People's Hospital, Dali 671000, China
  • Received:2022-12-18 Published:2023-10-01
  • Corresponding author: Yonggang Zhao
引用本文:

樊绪国, 赵永刚. 全膝关节置换术中髌骨轨迹的研究进展及处理策略[J]. 中华关节外科杂志(电子版), 2023, 17(05): 701-707.

Xuguo Fan, Yonggang Zhao. Research progress and management strategies of patellar tracking in total knee arthroplasty[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(05): 701-707.

全膝关节置换术是治疗终末期膝关节骨关节炎最有效的方式。成功的全膝关节置换术受到下肢力线、假体选择、髌骨的处理、截骨以及软组织平衡等因素的共同影响。其中良好的髌骨轨迹至关重要。髌骨轨迹不良会影响髌股关节应力,可能会导致膝前痛、髌骨脱位等并发症。本文针对全膝关节置换术中髌骨轨迹的研究进展进行综述,对影响髌骨轨迹的因素、评估髌骨轨迹和调整髌骨轨迹的方法等方面进行探讨。

Total knee arthroplasty is the most effective way to treat end-stage knee osteoarthritis. Successful total knee arthroplasty is influenced by a combination of axis of the lower limb, prosthesis selection, patellar management, osteotomy, and soft tissue balance. A good patellar tracking is crucial. Poor patellar tracking can affect patellofemoral stress and may lead to complications such as anterior knee pain and patellar dislocation. This article reviewed the research progress of patellar tracking in total knee arthroplasty, and discussed the factors affecting patellar tracking, the methods of assessing patellar tracking and adjusting patellar tracking.

[1]
Ferri R, Digennaro V, Panciera A, et al. Management of patella maltracking after total knee arthroplasty: a systematic review[J]. Musculoskelet Surg, 2023107(2): 143-157.
[2]
Donell S. Patellar tracking in primary total knee arthroplasty[J]. EFORT Open Rev, 2018, 3(4): 106-113
[3]
Narkbunnam R, Electricwala AJ, Huddleston JI 3rd, et al. Suboptimal patellofemoral alignment is associated with poor clinical outcome scores after primary total knee arthroplasty[J]. Arch Orthop Trauma Surg, 2019, 139(2): 249-254.
[4]
Yeroushalmi D, Zak S, Sharan M, et al. Patellar tracking in revision total knee arthroplasty: does retaining a patella from a different implant system matter?[J]. J Arthroplasty, 2021, 36(6): 2126-2130.
[5]
Assiotis A, To K, Morgan-Jones R, et al. Patellar complications following total knee arthroplasty: a review of the current literature[J]. Eur J Orthop Surg Traumatol, 2019, 29(8): 1605-1615.
[6]
Cao L, Sun K, Yang H, et al. Influence of patellar morphology classified by wiberg classification on knee joint function and patellofemoral tracking after total knee arthroplasty without patellar resurfacing[J]. J Arthroplasty, 2021, 36(9): 3148-3153.
[7]
Gasparini G, Familiari F, Ranuccio F. Patellar malalignment treatment in total knee arthroplasty[J]. Joints, 2013, 1(1): 10-17.
[8]
Antinolfi P, Manfreda F, Placella G, et al. The challenge of managing the "third-space" in total knee arthroplasty: review of current concepts[J]. Joints, 2018, 6(3): 204-210.
[9]
Rajkumar N, Soundarrajan D, Dhanasekararaja P, et al. Preoperative radiological parameters predicting the need for lateral retinacular release in total knee arthroplasty[J]. J Arthroplasty, 2019, 34(12): 2925-2930.
[10]
Dejour D, Ntagiopoulos PG, Saffarini M. Evidence of trochlear dysplasia in femoral component designs[J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22(11): 2599-2607.
[11]
Joseph L, Batailler C, Roger J, et al. Patellar component size effects patellar tilt in total knee arthroplasty with patellar resurfacing[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(2): 553-562.
[12]
赵传喜,曾明珠,曾子全,等. 髌骨缩小联合外侧支持带松解对膝关节置换术的疗效影响[J/CD]. 中华关节外科杂志(电子版), 2019, 13(2): 168-172, 241.
[13]
Inoue A, Arai Y, Nakagawa S, et al. Differences in patellofemoral alignment as a result of patellar shape in cruciate-retaining total knee arthroplasty without patellar resurfacing at a minimum three-year follow-up[J]. Knee, 2017, 24(6): 1448-1453.
[14]
D'Elicio DG, Attanasio M, Ruffo G, et al. Improving radiographic patello-femoral tracking in total knee arthroplasty with the use of a flexion spacer: a case-control study[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(2): 586-593.
[15]
Ko DO, Lee S, Kim JH, et al. The influence of femoral internal rotation on patellar tracking in total knee arthroplasty using gap technique[J]. Clin Orthop Surg, 2021, 13(3): 352-357.
[16]
Lustig S, Servien E, Batailler C. How to optimize patellar tracking in knee arthroplasty?[J/OL]. Orthop Traumatol Surg Res, 2023109(1S): 103458. DOI: 10.1016/j.otsr.2022.103458.
[17]
Kuo AW, Chen DB, Wood J, et al. Modern total knee arthroplasty designs do not reliably replicate anterior femoral morphology[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(9): 2808-2815.
[18]
Scott RD. Prosthetic replacement of the patellofemoral joint[J]. Orthop Clin North Am, 1979, 10(1): 129-137.
[19]
Lewonowski K, Dorr LD, McPherson EJ, et al. Medialization of the patella in total knee arthroplasty[J]. J Arthroplasty, 1997, 12(2): 161-167.
[20]
Cho WS, Woo JH, Park HY, et al. Should the 'no thumb technique’ be the golden standard for evaluating patellar tracking in total knee arthroplasty?[J]. Knee, 2011, 18(3): 177-179.
[21]
Strachan RK, Merican AM, Devadasan B, et al. A technique of staged lateral release to correct patellar tracking in total knee arthroplasty[J]. J Arthroplasty, 2009, 24(5): 735-742.
[22]
Goyal N, Matar WY, Parvizi J. Assessing patellar tracking during total knee arthroplasty: a technical note[J]. Am J Orthop, 2012, 41(10): 450-451.
[23]
Verma A, Lalchandani R. Prospective comparative study of intraoperative "Towel clip test" and "Vertical patella test" assessing lateral retinaculum tightness in patients undergoing TKA[J]. J Clin Orthop Trauma, 2019, 10(5): 995-998.
[24]
Indelli PF, Marcucci M, Cariello D, et al. Contemporary femoral designs in total knee arthroplasty: effects on the patello-femoral congruence[J]. Int Orthop, 2012, 36(6): 1167-1173.
[25]
Huang CH, Hsu LI, Chang TK, et al. Stress distribution of the patellofemoral joint in the anatomic V-shape and curved dome-shape femoral component: a comparison of resurfaced and unresurfaced patellae[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25(1): 263-271.
[26]
Deroche E, Batailler C, Swan J, et al. No difference between resurfaced and non-resurfaced patellae with a modern prosthesis design: a prospective randomized study of 250 total knee arthroplasties[J]. Knee Surg Sports Traumatol Arthrosc, 2022, 30(3): 1025-1038.
[27]
Sawaguchi N, Majima T, Ishigaki T, et al. Mobile-bearing total knee arthroplasty improves patellar tracking and patellofemoral contact stress: in vivo measurements in the same patients[J]. J Arthroplasty, 2010, 25(6): 920-925.
[28]
Skwara A, Tibesku CO, Ostermeier S, et al. Differences in patellofemoral contact stresses between mobile-bearing and fixed-bearing total knee arthroplasties: a dynamic in vitro measurement[J]. Arch Orthop Trauma Surg, 2009, 129(7): 901-907.
[29]
Sappey-Marinier E, de Abreu FGA, O'Loughlin P, et al. No difference in patellar position between mobile-bearing and fixed-bearing total knee arthroplasty for medial osteoarthritis: a prospective randomized study[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(5): 1542-1550.
[30]
Hantouly AT, Ahmed AF, Alzobi O, et al. Mobile-bearing versus fixed-bearing total knee arthroplasty: a meta-analysis of randomized controlled trials[J]. Eur J Orthop Surg Traumatol, 2022, 32(3): 481-495.
[31]
Bizzozero P, Bulaid Y, Flecher X, et al. Morphometric tibial implant decreases posterior overhang rate and improves clinical outcomes: results of a prospective, matched controlled study[J]. J Arthroplasty, 2018, 33(9): 2804-2809.
[32]
Kim CW, Lee CR, Huh TY. The effect of patellar facet angle on patellofemoral alignment and arthritis progression in posterior-stabilized total knee arthroplasty without patellar resurfacing[J/OL]. Knee Surg Relat Res, 2020, 32(1): 29. DOI: 10.1186/s43019-020-00045-4.
[33]
杨冠杰,刘磊,徐石庄,等. Wiberg分型对保留髌骨TKA术后髌骨轨迹及功能的影响[J]. 实用骨科杂志2019, 25(10): 883-887, 902.
[34]
Leichtle UG, Wünschel M, Leichtle CI, et al. Increased patellofemoral pressure after TKA: an in vitro study[J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22(3): 500-508.
[35]
Putman S, Boureau F, Girard J, et al. Patellar complications after total knee arthroplasty[J]. Orthop Traumatol Surg Res, 2019, 105(1S): S43-S51.
[36]
Prudhon JL, Caton JH, Aslanian T, et al. How is patella height modified after total knee arthroplasty?[J]. Int Orthop, 2018, 42(2): 311-316.
[37]
Hamilton WG, Ammeen DJ, Parks NL, et al. Patellar cut and composite thickness: the influence on postoperative motion and complications in total knee arthroplasty[J]. J Arthroplasty, 2017, 32(6): 1803-1807.
[38]
Kim JH, Yoo BW, Kim CW. Influence of the rotational alignment of the femoral and patellar components on patellar tilt in total knee arthroplasty[J]. Knee Surg Relat Res, 2015, 27(3): 163-167.
[39]
Lewis PL, Gamboa AE, Campbell DG, et al. Outcome of prosthesis matched and unmatched patella components in primary and revision total knee replacement[J]. Knee, 2017, 24(5): 1227-1232.
[40]
Russell RD, Huo MH, Jones RE. Avoiding patellar complications in total knee replacement[J]. Bone Joint J, 2014, 96-B(11 Supple A): 84-86.
[41]
McConaghy K, Derr T, Molloy RM, et al. Patellar management during total knee arthroplasty: a review[J]. EFORT Open Rev, 2021, 6(10): 861-871.
[42]
Tanikawa H, Tada M, Ogawa R, et al. Influence of Patella thickness on Patellofemoral pressure in total knee Arthroplasty[J/OL]. BMC Musculoskelet Disord, 2021, 22(1): 298. DOI: 10.1186/s12891-021-04175-y.
[43]
Belvedere C, Ensini A, Tamarri S, et al. Does navigated patellar resurfacing in total knee arthroplasty result in proper bone cut, motion and clinical outcomes?[J]. Clin Biomech, 2019, 69: 168-177.
[44]
Nazarian DG, Booth RE Jr. Extensor mechanism allografts in total knee arthroplasty[J]. Clin Orthop Relat Res, 1999(367): 123-129.
[45]
Terashima T, Onodera T, Sawaguchi N, et al. External rotation of the femoral component decreases patellofemoral contact stress in total knee arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2015, 23(11): 3266-3272.
[46]
Babazadeh S, Dowsey MM, Vasimalla MG, et al. Knee arthroplasty component malrotation does not affect function or quality of life in the short to medium term[J]. J Arthroplasty, 2019, 34(7): 1382-1386.
[47]
Steinbrück A, Schr?der C, Woiczinski M, et al. Influence of tibial rotation in total knee arthroplasty on knee kinematics and retropatellar pressure: an in vitro study[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(8): 2395-2401.
[48]
Westerman RW, Bhangoo NS, James P. When and how is Patella tracking best assessed in total knee arthroplasty surgery?[J]. J Knee Surg, 2016, 29(4): 337-340.
[49]
Hochreiter B, Moser LB, Hess S, et al. Osteoarthritic knees have a highly variable patellofemoral alignment: a systematic review[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(2): 483-490.
[50]
Zha GC, Sun JY, Dong SJ. Less anterior knee pain with a routine lateral release in total knee arthroplasty without patellar resurfacing: a prospective, randomized study[J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22(3): 517-525.
[51]
Keshmiri A, Maderbacher G, Baier C, et al. Kinematic alignment in total knee arthroplasty leads to a better restoration of patellar kinematics compared to mechanic alignment[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(5): 1529-1534.
[52]
Lozano R, Campanelli V, Howell S, et al. Kinematic alignment more closely restores the groove location and the sulcus angle of the native trochlea than mechanical alignment: implications for prosthetic design[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(5): 1504-1513.
[53]
Koh DTS, Woo YL, Yew AKS, et al. Kinematic aligned femoral rotation leads to greater patella tilt but similar clinical outcomes when compared to traditional femoral component rotation in total knee arthroplasty. A propensity score matched study[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(4): 1059-1066.
[54]
Nodzo SR, Kasparek M, Rueckl K, et al. The location of the medial parapatellar arthrotomy influences intraoperative patella tracking[J]. Knee Surg Sports Traumatol Arthrosc, 2018, 26(6): 1786-1791.
[55]
Plate JF, Seyler TM, Halvorson JJ, et al. Non-anatomical capsular closure of a standard parapatellar knee arthrotomy leads to patellar maltracking and decreased range of motion: a cadaver study[J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22(3): 543-549.
[56]
Wada K, Hamada D, Tamaki S, et al. Influence of medial collateral ligament release for internal rotation of Tibia in posterior-stabilized total knee arthroplasty: acadaveric study[J]. J Arthroplasty, 2017, 32(1): 270-273.
[57]
Noh JH, Kim NY, Song KI. Intraoperative patellar maltracking and postoperative radiographic patellar malalignment were more frequent in cases of complete medial collateral ligament release in cruciate-retaining total knee arthroplasty[J/OL]. Knee Surg Relat Res, 2021, 33(1): 9. DOI: 10.1186/s43019-021-00091-6.
[58]
孙茂淋,杨柳,何锐,等. 3D打印导板改善人工全膝关节置换术中股骨旋转对线及髌骨轨迹的疗效研究[J]. 中国修复重建外科杂志2020, 34(3): 335-340.
[1] 邓华梅, 袁札根, 曾德荣, 潘珊珊, 张葆青, 欧爱华, 曹学伟. 全膝关节置换术中气压止血带应用效果与影响因素分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 788-794.
[2] 张思平, 刘伟, 马鹏程. 全膝关节置换术后下肢轻度内翻对线对疗效的影响[J]. 中华关节外科杂志(电子版), 2023, 17(06): 808-817.
[3] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[4] 王宏宇. 固定与活动平台假体在全膝关节置换术中的应用价值[J]. 中华关节外科杂志(电子版), 2023, 17(06): 871-876.
[5] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[6] 李辉, 吴奇, 张子琦, 张晗, 王仿, 许鹏. 日间全膝关节置换术早期疗效及标准化流程探索[J]. 中华关节外科杂志(电子版), 2023, 17(06): 889-892.
[7] 姚轶超, 张麒, 滕海茂, 黄攀, 吴雷涛, 韩哲. 膝关节置换术后恐动症与康复效果及社会支持的相关性[J]. 中华关节外科杂志(电子版), 2023, 17(05): 613-618.
[8] 刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东. 机器人辅助膝关节单髁置换术的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 715-721.
[9] 王桂冠, 徐杰. 运动学对线在全膝关节置换术中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 726-731.
[10] 陈志超, 张志伟, 蒋勰, 顾祖超, 蒋菁芸, 许婷婷. 带线锚钉结合缝线捆扎固定髌骨下极粉碎性骨折[J]. 中华关节外科杂志(电子版), 2023, 17(05): 732-735.
[11] 杨依琴, 何敏仪, 杜桂菊, 刘欣, 詹文英. 膝关节置换术后康复应用基于保护动机理论的健康教育[J]. 中华关节外科杂志(电子版), 2023, 17(05): 741-746.
[12] 邵长杰, 杜晓颖, 徐奎帅, 张靓, 纪岩磊. 住院天数影响全膝关节置换术后下肢深静脉血栓形成[J]. 中华关节外科杂志(电子版), 2023, 17(04): 588-591.
[13] 周晓强, 金宇杰, 李志强, 徐人杰, 张向鑫, 陈广祥, 虞宵. 运动学与机械学对线在全膝关节置换中的比较研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 554-559.
[14] 李博, 张立茉, 乔成钢, 包金全, 白志刚, 赵文强. 全膝关节置换术下肢力线的影响因素[J]. 中华关节外科杂志(电子版), 2023, 17(03): 398-403.
[15] 刘亚茹, 毛彦杰, 张仁波, 何阿祥, 张先龙, 刘万军. 全膝关节置换术行髌骨置换的疗效及其影响因素[J]. 中华关节外科杂志(电子版), 2023, 17(02): 201-208.
阅读次数
全文


摘要