切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (06) : 751 -764. doi: 10.3877/cma.j.issn.1674-134X.2023.06.001

指南与应用

中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)
中华医学会骨科学分会关节外科学组, 广东省医学会骨质疏松和骨矿盐疾病分会, 广东省佛山市顺德区第三人民医院   
  • 收稿日期:2023-11-01 出版日期:2023-12-01
  • 基金资助:
    广东省自然科学基金项目(2021A1515012424); 广东省中医药局科研项目(20242086)

Clinical intervention guideline for using of anti-osteoporosis drugs in postoperative fragile hip fractures in China (2023 Edition)

The Joint Surgery Branch of the Chinese Orthopedic Association, Guangdong’s Medical Association of Osteoporosis And Bone Mineral Research, Foshan Shunde 3rd Peoele’s Hospital   

  • Received:2023-11-01 Published:2023-12-01
引用本文:

中华医学会骨科学分会关节外科学组, 广东省医学会骨质疏松和骨矿盐疾病分会, 广东省佛山市顺德区第三人民医院. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)[J]. 中华关节外科杂志(电子版), 2023, 17(06): 751-764.

The Joint Surgery Branch of the Chinese Orthopedic Association, Guangdong’s Medical Association of Osteoporosis And Bone Mineral Research, Foshan Shunde 3rd Peoele’s Hospital. Clinical intervention guideline for using of anti-osteoporosis drugs in postoperative fragile hip fractures in China (2023 Edition)[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(06): 751-764.

髋部骨质疏松骨折(或称髋部脆性骨折)是指髋部受到轻微创伤即发生的骨折,是骨质疏松症的严重后果之一,也是老年人常见的骨折类型。近年来我国髋部脆性骨折发生率呈显著上升趋势,因其致残率和死亡率高给临床医生带来巨大挑战。髋部脆性骨折手术治疗方式常用内固定术或髋关节置换术。然而,髋部脆性骨折术后如果没有及时正确诊断并给予规范、有效、全程的抗骨质疏松治疗,容易出现再发骨折和假体松动风险。针对患者的特定风险和健康状况制定个体化的治疗方案,及时正确使用抗骨质疏松药物,是减少术后并发症的关键。本指南旨在提供髋部脆性骨折术后的抗骨质疏松药物选择和管理的临床指导,以帮助临床医生更加合理地选择药物治疗方案,有助于髋部骨折术后患者尽早临床愈合,减少卧床时间,降低再骨折及假体松动的发生率。

Hip osteoporosis fracture (also known as hip brittle fracture) refers to a fracture that occurs after minor trauma resulted from a serious consequence of osteoporosis. Hip fracture is also a common type of fracture in the elderly. In recent years, the incidence of hip fracture in China has shown a significant upward trend. The surgical treatment methods for elderly hip fractures commonly include internal fixation or hip joint replacement. However, if osteoporosis hip fractures are not diagnosed correctly in time and receive standardized, effective, and comprehensive anti osteoporosis treatment after surgery, there would be a great risk of re-fracture and prosthesis loosening. Therefore, developing personalized treatment plans target to the specific risks and health status of patients and using of anti osteoporosis drugs timely and correctly are key to reducing postoperative complications. This guideline aims to provide clinical guidance on the selection and management of anti-osteoporosis drugs after osteoporosis hip fracture surgery, help clinician to choose drug treatment plans more reasonably, help patients with hip fracture surgery to recover as soon as possible, reduce bedridden time, and reduce the incidence of re-fracture and prosthesis loosening.

表1 本指南中涉及的推荐强度分级与定义
表2 本指南中涉及到的证据质量分级与定义
表3 髋部脆性骨折术后抗骨质疏松药物选择推荐
[1]
Chen P, Li Z, Hu Y. Prevalence of osteoporosis in China: a meta-analysis and systematic review[J/OL]. BMC Public Health, 2016, 16(1): 1039. DOI: 10.1186/s12889-016-3712-7.
[2]
Tian S, Liu Y, Xu Y, et al. Prevalence of osteoporosis and its spatiotemporal patterns in a community-dwelling Chinese population: a systematic review and meta-analysis of data from 982 563 individuals[J/OL]. Lancet, 2020, 396:S6. DOI: 10.1016/S0140-6736(20)32426-0.
[3]
中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2022)[J]. 中国全科医学2023, 26(14): 1671-1691.
[4]
Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures[J]. Osteoporos Int, 2006, 17(12): 1726-1733.
[5]
赵燕玲,潘子昂,王石麟,等. 中国原发性骨质疏松症流行病学[J]. 中国骨质疏松杂志19984(1): 1-4, 27.
[6]
Laiz A, Malouf J, Marin A, et al. Impact of 3-monthly vitamin D supplementation plus exercise on survival after surgery for osteoporotic hip fracture in adult patients over 50 years: apragmatic randomized, partially blinded, controlled trial[J]. J Nutr Health Aging, 2017, 21(4): 413-420.
[7]
Handoll HH, Cameron ID, Mak JC, et al. Multidisciplinary rehabilitation for older people with hip fractures[J/OL]. Cochrane Database Syst Rev, 2021, 11(11): CD007125. DOI: 10.1002/14651858.CD007125.pub3.
[8]
Hawley S, Leal J, Delmestri A, et al. Anti-osteoporosis medication prescriptions and incidence of subsequent fracture among primary hip fracture patients in England and Wales: an interrupted time-series analysis[J]. J Bone Miner Res, 2016, 31(11): 2008-2015.
[9]
Wang PW, Li YZ, Zhuang HF, et al. Anti-osteoporosis medications associated with decreased mortality after hip fracture[J]. Orthop Surg, 2019, 11(5): 777-783.
[10]
Xiao PL, Hsu CJ, Ma YG, et al. Prevalence and treatment rate of osteoporosis in patients undergoing total knee and hip arthroplasty: a systematic review and meta-analysis[J/OL]. Arch Osteoporos, 2022, 17(1): 16. DOI: 10.1007/s11657-021-01055-9.
[11]
WHO handbook for guideline development, World Health Organization (2011).
[12]
蒋朱明,詹思延,贾晓巍,等. 制订/修订《临床诊疗指南》的基本方法及程序[J].中华医学杂志201696(4): 250-253.
[13]
Brouwers MC, Kho ME, Browman GP,et al. AGREE II: advancing guideline development, reporting and evaluation in health care[J/OL]. CMAJ, 2010, 182(18):E839-42. DOI: 10.1503/cmaj.090449.
[14]
Chen Y, Yang K, Marušic A, et al. A reporting tool for practice guidelines in health care: the RIGHT statement[J]. Ann Intern Med, 2017, 166(2): 128-132.
[15]
陶欢,杨乐天,平安,等. 随机或非随机防治性研究系统评价的质量评价工具AMSTAR2解读[J]. 中国循证医学杂志201818(1): 101-108.
[16]
杨智荣,孙凤,詹思延. 偏倚风险评估系列:(二)平行设计随机对照试验偏倚评估工具2.0介绍[J].中华流行病学杂志201738(9):1285-1291.
[17]
邬兰,张永,曾宪涛. QUADAS-2在诊断准确性研究的质量评价工具中的应用[J]. 湖北医药学院学报201332 (3):201-208.
[18]
Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses[J].Eur J Epidemiol, 2010, 25(9): 603-605.
[19]
杨楠,赵巍,潘旸,等.针对临床实践指南科学性,透明性和适用性的评级工具研发[J/OL].中华医学杂志2022, 102(30):9.DOI:10.3760/cma.j.cn112137-20220219-00340.
[20]
Guyatt G, OxmanAD, AklEA, etal. GRADE guidelines: 1. Introduction—grade evidence profiles and summary of findings tables[J].J Clin Epidemiol, 2011, 64(4): 383-394.
[21]
Vernooij RWM, Alonso-Coello P, BrouwersM, etal. Reporting items for updated clinical guidelines: checklist for the reporting of updated guidelines (CheckUp)[J/OL]. PLoS Med, 2017, 14(1): e1002207. DOI: 10.1371/journal.pmed.1002207.
[22]
Vernooij RW, Sanabria AJSolà I, et al. Guidance for updating clinical practice guidelines: a systematic review of methodological handbooks[J/OL]. Implement Sci, 20149:3. DOI: 10.1186/1748-5908-9-3.
[23]
Montoya-García MJ, Giner M, Marcos R, et al. Fragility fractures and imminent fracture risk in the Spanish population: aretrospective observational cohort study[J/OL]. J Clin Med, 2021, 10(5): 1082. DOI: 10.3390/jcm10051082.
[24]
Yao P, Parish S, Bennett DA, et al. Gender differences in modifiable risk factors for hip fracture: 10-year follow-up of a prospective study of 0.5 million Chinese adults[J]. J Intern Med, 2022, 291(4): 481-492.
[25]
Covino M, Vitiello R, De Matteis G, et al. Hip fracture risk in elderly with non-end-stage chronic kidney disease: afall related analysis[J]. Am J Med Sci, 2022, 363(1): 48-54.
[26]
Han S, Park J, Jang HD, et al. Changes in underweight status and risk of hip fracture: a Korean nationwide population-based cohort study[J/OL]. J Clin Med, 2022, 11(7): 1913. DOI: 10.3390/jcm11071913.
[27]
Kim SH, Yi SW, Yi JJ, et al. Association between body mass index and the risk of hip fracture by sex and age: aprospective cohort study[J]. J Bone Miner Res, 2018, 33(9): 1603-1611.
[28]
Rikkonen T, Sund R, Sirola J, et al. Obesity is associated with early hip fracture risk in postmenopausal women: a 25-year follow-up[J]. Osteoporos Int, 2021, 32(4): 769-777.
[29]
Swayambunathan J, Dasgupta A, Rosenberg PS, et al. Incidence of hip fracture over 4 decades in the Framingham heart study[J]. JAMA Intern Med, 2020, 180(9): 1225-1231.
[30]
Huang SW, Wang WT, Chou LC, et al. Chronic obstructive pulmonary disease increases the risk of hip fracture: anationwide population-based cohort study[J/OL]. Sci Rep, 2016, 6: 23360. DOI: 10.1038/srep23360.
[31]
Ahn HJ, Kim YJ, Lee HS, et al. High risk of fractures within 7 years of diagnosis in Asian patients with inflammatory bowel diseases[J/OL]. Clin Gastroenterol Hepatol, 2022, 20(5): e1022-e1039. DOI: 10.1016/j.cgh.2021.06.026.
[32]
Li J, Lu N, Lyu H, et al. Peptic ulcer disease and risk of hip fracture: ageneral population-based cohort study[J/OL]. J Clin Endocrinol Metab, 2022, 107(9): e3738-e3746. DOI: 10.1210/clinem/dgac358.
[33]
Liu Y, Guo YL, Meng S, et al. Gut microbiota-dependent Trimethylamine N-Oxide are related with hip fracture in postmenopausal women: a matched case-control study[J]. Aging, 2020, 12(11): 10633-10641.
[34]
Orwoll ES, Parimi N, Wiedrick J, et al. Analysis of the associations between the human fecal microbiome and bone density, structure, and strength: the osteoporotic fractures in men (MrOS) cohort[J]. J Bone Miner Res, 2022, 37(4): 597-607.
[35]
de Bruin IJA, Wyers CE, Souverein PC, et al. The risk of new fragility fractures in patients with chronic kidney disease and hip fracture-a population-based cohort study in the UK[J]. Osteoporos Int, 2020, 31(8): 1487-1497.
[36]
Nigwekar SU, Negri AL, Bajpai D, et al. Chronic prolonged hyponatremia and risk of hip fracture in elderly patients with chronic kidney disease[J]. Bone, 2019, 127: 556-562.
[37]
Li G, Prior JC, Leslie WD, et al. Frailty and risk of fractures in patients with type 2 diabetes[J]. Diabetes Care, 2019, 42(4): 507-513.
[38]
Axelsson KF, Litsne H, Kousoula K, et al. Risk of fracture in adults with type 2 diabetes in Sweden: a national cohort study[J/OL]. PLoS Med, 2023, 20(1): e1004172. DOI: 10.1371/journal.pmed.1004172.
[39]
Otete H, Deleuran T, Fleming KM, et al. Hip fracture risk in patients with alcoholic cirrhosis: a population-based study using English and Danish data[J]. J Hepatol, 2018, 69(3): 697-704.
[40]
Hjelholt TJ, Johnsen SP, Brynningsen PK, et al. Impact of stroke history on the risk of recurrent hip fracture or major osteoporotic fractures among patients with incident hip fracture: anationwide cohort study[J]. J Bone Miner Res, 2023, 38(2): 278-287.
[41]
Wu TY, Wu WT, Lee RP, et al. Tramadol may increase risk of hip fracture in older adults with post-traumatic osteoarthritis[J/OL]. J Pers Med, 2023, 13(4): 580. DOI: 10.3390/jpm13040580.
[42]
Andrade C. Antidepressant drugs and the risk of hip fracture in the elderly: is there more to it than confounding by indication?[J/OL]. J Clin Psychiatry, 2019, 80(4): 19f12999. DOI: 10.4088/JCP.19f12999.
[43]
LeBlanc KE, Muncie HL Jr, LeBlanc LL. Hip fracture: diagnosis, treatment, and secondary prevention[J]. Am Fam Physician, 2014, 89(12): 945-951.
[44]
Lau EM, Suriwongpaisal P, Lee JK, et al. Risk factors for hip fracture in Asian men and women: the Asian osteoporosis study[J]. J Bone Miner Res, 2001, 16(3): 572-580.
[45]
Kong SH, Jo AJ, Park CM, et al. Chronic airway disease as a major risk factor for fractures in osteopenic women: nationwide cohort study[J/OL]. Front Endocrinol, 202314:1085252.DOI: 10.3389/fendo.2023.1085252.
[46]
Camacho PM, Petak SM, Binkley N, et al. American Association of Clinical Endocrinologists /American College of Endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2020 update[J]. Endocr Pract, 2020, 26(Suppl 1): 1-46.
[47]
Snodgrass P, Zou A, Gruntmanis U, etal. Osteoporosis diagnosis, management, and referral practice after fragility fractures[J]. Curr Osteoporos Rep, 2022, 20(3): 163-169.
[48]
Hsu AHS, Yen CH, Kuo FC, et al. Zoledronic acid ameliorates the bone turnover activity and periprosthetic bone preservation in cementless total hip arthroplasty[J/OL]. Pharmaceuticals, 2022, 15(4): 420. DOI: 10.3390/ph15040420.
[49]
Motomura G, Mashima N, Imai H, et al. Effects of porous tantalum on periprosthetic bone remodeling around metaphyseal filling femoral stem: a multicenter, prospective, randomized controlled study[J/OL]. Sci Rep, 2022, 12(1): 914. DOI: 10.1038/s41598-022-04936-2.
[50]
Peitgen DS, Innmann MM, Merle C, et al. Periprosthetic bone mineral density around uncemented titanium stems in the second and third decade after total hip arthroplasty: a DXA study after 12, 17 and 21 years[J]. Calcif Tissue Int, 2018, 103(4): 372-379.
[51]
Anam AK, Insogna K. Update on osteoporosis screening and management[J]. Med Clin North Am, 2021, 105(6): 1117-1134.
[52]
Liu ZJ, Zhang C, Ma C, et al. Automatic phantom-less QCT system with high precision of BMD measurement for osteoporosis screening: technique optimisation and clinical validation[J]. J Orthop Translat, 2022, 33: 24-30.
[53]
Fu Y, Li C, Luo W, et al. Fragility fracture discriminative ability of radius quantitative ultrasound: a systematic review and meta-analysis[J]. Osteoporos Int, 2021, 32(1): 23-38.
[54]
Luo W, Chen Z, Zhang Q, et al. Osteoporosis diagnostic model using a multichannel convolutional neural network based on quantitative ultrasound radiofrequency signal[J]. Ultrasound Med Biol, 2022, 48(8): 1590-1601.
[55]
Kang X, Tian B, Zhao ZD, et al. Evaluation of the association between low-density lipoprotein (LDL) and all-cause mortality in geriatric patients with hip fractures: a prospective cohort study of 339 patients[J/OL]. J Pers Med, 2023, 13(2): 345. DOI: 10.3390/jpm13020345.
[56]
Lorentzon M, Branco J, Brandi ML, et al. Algorithm for the use of biochemical markers of bone turnover in the diagnosis, assessment and follow-up of treatment for osteoporosis[J]. Adv Ther, 2019, 36(10): 2811-2824.
[57]
李宁,李新萍,杨明辉,等. 老年髋部骨折的骨质疏松症诊疗专家共识[J]. 中华骨与关节外科杂志2021, 14(8): 657-663.
[58]
林华,徐又佳,刘强,等. 骨质疏松性骨折围手术期干预指南[J]. 中华骨质疏松和骨矿盐疾病杂志2018, 11(5): 438-448.
[59]
陆熙宴,饶洛逵. 老年骨质疏松性髋部骨折患者应用唑来膦酸联合活性维生素D治疗效果观察及对患者用药依从性的影响[J]. 中外医学研究2018, 16(16): 23-25.
[60]
王文建,王博韬,李昊辰,等. 维生素D辅助股骨近端防旋髓内钉内固定治疗老年股骨转子间骨折的远期疗效观察[J]. 医学信息2022, 35(14): 119-121.
[61]
于树军,王敬博,杨阳,等. 骨化三醇对老年髋部脆性骨折患者骨代谢指标和骨密度的影响[J]. 天津医科大学学报2020, 26(1): 44-46, 55.
[62]
钟刚,钟洲,龙成. 维生素D辅助股骨近端防旋髓内钉内固定治疗老年股骨转子间骨折的远期疗效观察[J/OL]. 中国医学前沿杂志(电子版), 2020, 12(11): 76-81.
[63]
陆熙宴,饶洛逵. 钙剂联合rhBMP-2局部注射治疗老年骨质疏松性髋部骨折的效果及其安全性[J]. 中外医学研究2018, 16(14): 10-12.
[64]
阮中坚. 单独补充维生素D与维生素D结合钙防治中老年骨质疏松性骨折的系统评价[D].广西医科大学,2015.
[65]
李宏超,宋慧. 抗骨吸收和促骨形成药物在骨质疏松症治疗中的联合应用[J]. 中国骨质疏松杂志2018, 24(3): 399-405.
[66]
Flodin L, Sääf M, Cederholm T, et al. Additive effects of nutritional supplementation, together with bisphosphonates, on bone mineral density after hip fracture: a 12-month randomized controlled study[J]. Clin Interv Aging, 2014, 9: 1043-1050.
[67]
Hanley DA, Adachi JD, Bell A, et al. Denosumab: mechanism of action and clinical outcomes[J]. Int J Clin Pract, 2012, 66(12): 1139-1146.
[68]
冯颖,修玲玲,苏磊. 骨质疏松症的药物治疗[J]. 医学综述2014, 20(1): 105-109.
[69]
Fusaro M, Cianciolo G, Brandi ML, et al. Vitamin K and osteoporosis[J/OL]. Nutrients, 2020, 12(12): 3625. DOI: 10.3390/nu12123625.
[70]
马远征,王以朋,刘强,等. 中国老年骨质疏松诊疗指南(2018)[J]. 中国老年学杂志2019, 39(11): 2557-2575.
[71]
Huang ZB, Wan SL, Lu YJ, et al. Does vitamin K2 play a role in the prevention and treatment of osteoporosis for postmenopausal women: a meta-analysis of randomized controlled trials[J]. Osteoporos Int, 2015, 26(3): 1175-1186.
[72]
杜艳萍,程群. 骨质疏松症使用甲状旁腺激素类似物和双膦酸盐序贯治疗的机制及策略[J]. 诊断学理论与实践2020, 19(3): 219-224.
[73]
夏维波. 骨质疏松症的联合治疗与序贯治疗[J]. 中华骨质疏松和骨矿盐疾病杂志2011, 4(2): 73-81.
[74]
Lin GL, Hankenson KD. Integration of BMP, Wnt, and Notch signaling pathways in osteoblast differentiation[J]. J Cell Biochem, 2011, 112(12): 3491-3501.
[75]
Chakraborty C, Sharma AR, Patra BC, et al. microRNAs mediated regulation of MAPK signaling pathways in chronic myeloid leukemia[J]. Oncotarget, 2016, 7(27): 42683-42697.
[76]
Choi EM, Lee YS. Paeoniflorin isolated from Paeonia lactiflora attenuates osteoblast cytotoxicity induced by antimycin A[J]. Food Funct, 2013, 4(9): 1332-1338.
[77]
Guo CC, Zheng LH, Fu JY, et al. Antiosteoporotic effects of Huangqi Sanxian Decoction in cultured rat osteoblasts by proteomic characterization of the target and mechanism[J/OL]. Evid Based Complement Alternat Med, 2015, 2015: 514063. DOI: 10.1155/2015/514063.
[78]
Guo D, Wang J, Wang X, et al. Double directional adjusting estrogenic effect of naringin from Rhizoma drynariae (Gusuibu)[J]. J Ethnopharmacol, 2011, 138(2): 451-457.
[79]
陈智能,徐杰,叶俊材,等. 三期辨证中药复方对老年性骨质疏松髋部骨折患者骨代谢标志物的影响[J]. 中华中医药杂志2018, 33(7): 3196-3199.
[80]
韩国瑞,董卫兵,明海武. 骨疏康胶囊辅助治疗绝经后骨质疏松性股骨转子间骨折的临床效果分析[J]. 中国合理用药探索2021, 18(6): 86-91.
[81]
周利,杨莎莎,苏亚平,等. 仙灵骨葆胶囊对老年胸腰椎压缩性骨折的作用[J]. 中国中西医结合外科杂志2018, 24(5): 577-581.
[82]
张殿乙,张楠,刘世珑,等. 仙灵骨葆胶囊联合唑来膦酸治疗骨质疏松性椎体压缩性骨折的临床研究[J]. 现代药物与临床2017, 32(4): 698-701.
[83]
张志超,张慧明,甄雪飞,等. 金天格胶囊联合唑来膦酸治疗骨质疏松性压缩骨折的效果及对骨密度的影响[J]. 现代中西医结合杂志2019, 28(19): 2123-2127.
[84]
赵洪霄,李英,王学武,等. 鲑鱼降钙素注射液、辛伐他汀联合金天格胶囊治疗老年骨质疏松Ⅰ度胸腰椎压缩性骨折的疗效观察[J]. 疑难病杂志2019, 18(4): 379-382, 387.
[85]
赵健,金红婷,夏臣杰. 强骨胶囊联合鲑鱼降钙素针剂辅助治疗老年骨质疏松性压缩骨折临床研究[J]. 新中医2019, 51(9): 141-143.
[86]
郑金艳,肖莎,吴然. 老年骨质疏松性髋部骨折术后发生心脏并发症的危险因素分析[J]. 河北医学2021, 27(1): 112-116.
[87]
吴俊妮,陈逸民. 绝经后女性骨质疏松性髋部骨折术后发生心血管系统并发症的危险因素分析[J]. 中国妇幼保健2022, 37(21): 4020-4023.
[88]
Shen SH, Huang KC, Tsai YH, et al. Risk analysis for second hip fracture in patients after hip fracture surgery: a nationwide population-based study[J]. J Am Med Dir Assoc, 2014, 15(10): 725-731.
[89]
Sennerby U, Farahmand B, Ahlbom A, et al. Cardiovascular diseases and future risk of hip fracture in women[J]. Osteoporos Int, 2007, 18(10): 1355-1362.
[90]
Chen X, He B, Zhou Y, et al. Investigating the effect of history of fractures and hypertension on the risk of all-cause death from osteoporosis: a retrospective cohort study[J/OL]. Medicine, 2023, 102(13): e33342. DOI: 10.1097/MD.0000000000033342.
[91]
Guzon-Illescas O, Perez Fernandez E, Crespí Villarias N, etal. Mortality after osteoporotic hip fracture: incidence, trends, and associated factors[J/OL]. J Orthop Surg Res, 2019, 14(1): 203. DOI: 10.1186/s13018-019-1226-6.
[92]
熊建,张博禹,韩权,等. 合并慢性肾功能不全骨质疏松性骨折患者的围术期治疗[J]. 解放军医学杂志2019, 44(2): 137-141.
[93]
Yamamoto M. Insights into bone fragility in diabetes: the crucial role of bone quality on skeletal strength[J]. Endocr J, 2015, 62(4): 299-308.
[94]
张文波,李克鹏,马国驹. 高龄髋部骨折后二次骨折的危险因素分析[J]. 中国骨质疏松杂志2013, 19(8): 804-806.
[95]
魏媛媛,马迎春. 慢性肾脏病患者功能评估及康复服务规范[J]. 中华全科医学2021, 19(12): 1983-1988.
[96]
Nicoli F, Dito G, Guabello G, et al. Hypercalciuria in postmenopausal women with reduced bone mineral density is associated with different mineral metabolic profiles: effects of treatment with thiazides and anti-resorptives[J/OL]. Front Med, 2021, 8: 780087. DOI: 10.3389/fmed.2021.780087.
[97]
Bokrantz T, Schiöler L, Boström KB, et al. Antihypertensive drug classes and the risk of hip fracture: results from the Swedish primary care cardiovascular database[J]. J Hypertens, 2020, 38(1): 167-175.
[98]
Rejnmark L, Vestergaard P, Heickendorff L, et al. Effects of long-term treatment with loop diuretics on bone mineral density, calcitropic hormones and bone turnover[J]. J Intern Med, 2005, 257(2): 176-184.
[99]
Ruiter R, Oei L, Visser LE, et al. The effect of thiazide and loop diuretics on urinary levels of free deoxypyridinoline: an osteoclastic bone-resorption marker[J]. J Clin Pharm Ther, 2013, 38(3): 225-229.
[100]
Rejnmark L, Vestergaard P, Heickendorff L, et al. Loop diuretics increase bone turnover and decrease BMD in osteopenic postmenopausal women: results from a randomized controlled study with bumetanide[J]. J Bone Miner Res, 2006, 21(1): 163-170.
[101]
Kim KJ, Hong N, Lee S, etal. A simple-to-use score for identifying individuals at high risk of denosumab-associated hypocalcemia in postmenopausal osteoporosis: areal-world cohort study[J]. Calcif Tissue Int, 2020, 107(6): 567-575.
[102]
Oliai Araghi S, Kiefte-de Jong JC, Trajanoska K, etal. Do vitamin D level and dietary calcium intake modify the association between loop diuretics and bone health?[J]. Calcif Tissue Int, 2020, 106(2): 104-114.
[103]
Abrahamsen B, Brixen K. Mapping the prescriptiome to fractures in men—a national analysis of prescription history and fracture risk[J]. Osteoporos Int, 2009, 20(4): 585-597.
[104]
Toulis KA, Hemming K, Stergianos S, et al. β-Adrenergic receptor antagonists and fracture risk: a meta-analysis of selectivity, gender, and site-specific effects[J]. Osteoporos Int, 2014, 25(1): 121-129.
[105]
Khosla S, Drake MT, Vol kman TL, et al. Sympathetic β1-adrenergic signaling contributes to regulation of human bone metabolism[J]. J Clin Invest, 2018, 128(11): 4832-4842.
[106]
Ma ZP, Liao JC, Zhao C, et al. Effects of the 1, 4-dihydropyridine L-type calcium channel blocker benidipine on bone marrow stromal cells[J]. Cell Tissue Res, 2015, 361(2): 467-476.
[107]
Wang B, Yang J, Fan L, et al. Osteogenic effects of antihypertensive drug benidipine on mouse MC3T3-E1 cells in vitro[J]. J Zhejiang Univ Sci B, 2021, 22(5): 410-420.
[108]
Vestergaard P, Rejnmark L, Mosekilde L. Are antiresorptive drugs effective against fractures in patients with diabetes?[J]. Calcif Tissue Int, 2011, 88(3): 209-214.
[109]
Fan Y, Wei F, Lang Y, et al. Diabetes mellitus and risk of hip fractures: a meta-analysis[J]. Osteoporos Int, 2016, 27(1): 219-228.
[110]
Cortet B, Lucas S, Legroux-Gerot I, et al.Bone disorders associated with diabetes mellitus and its treatments[J]. Jt Bone Spine, 2019, 86(3): 315-320.
[111]
Zhang YS, Zheng YD, Yuan Y, et al. Effects of anti-diabetic drugs on fracture risk: asystematic review and network meta-analysis[J/OL]. Front Endocrinol, 2021, 12: 735824. DOI: 10.3389/fendo.2021.735824.
[112]
Liu Q, Xu X, Yang Z, et al. Metformin alleviates the bone loss induced by ketogenic diet: an in vivo study in mice[J]. Calcif Tissue Int, 2019, 104(1): 59-69.
[113]
Ma P, Gu B, Ma J, et al. Glimepiride induces proliferation and differentiation of rat osteoblasts via the PI3 kinase/Akt pathway[J]. Metabolism, 2010, 59(3): 359-366.
[114]
Ma X, Meng J, Jia M, et al. Exendin-4, a glucagon-like peptide-1 receptor agonist, prevents osteopenia by promoting bone formation and suppressing bone resorption in aged ovariectomized rats[J]. J Bone Miner Res, 2013, 28(7): 1641-1652.
[115]
Mabilleau G, Mieczkowska A, Irwin N, etal. Beneficial effects of a N-terminally modified GIP agonist on tissue-level bone material properties[J]. Bone, 2014, 63: 61-68.
[116]
Shockley KR, Lazarenko OP, Czernik PJ, etal. PPARgamma2 nuclear receptor controls multiple regulatory pathways of osteoblast differentiation from marrow mesenchymal stem cells[J]. J Cell Biochem, 2009, 106(2): 232-246.
[117]
Schwartz AV, Sellmeyer DE. Thiazolidinediones: new evidence of bone loss[J]. J Clin Endocrinol Metab, 2007, 92(4): 1232-1234.
[118]
Taylor SI, Blau JE, Rother KI. Possible adverse effects of SGLT2 inhibitors on bone[J]. Lancet Diabetes Endocrinol, 2015, 3(1): 8-10.
[119]
Ruppert K, Cauley J, Lian Y, et al. The effect of insulin on bone mineral density among women with type 2 diabetes: a SWAN Pharmacoepidemiology study[J]. Osteoporos Int, 2018, 29(2): 347-354.
[120]
Schwartz AV, Hillier TA, Sellmeyer DE, et al. Older women with diabetes have a higher risk of falls: a prospective study[J]. Diabetes Care, 2002, 25(10): 1749-1754.
[121]
中华医学会骨科学分会.骨质疏松骨折诊疗指南(2022年版)[J].中华骨科杂志202242(22):1473-1491
[122]
Duque G, Demontiero O, Troen BR. Prevention and treatment of senile osteoporosis and hip fractures[J]. Minerva Med, 2009, 100(1): 79-94.
[123]
Shin YH, Shin WC, Kim JW. Effect of osteoporosis medication on fracture healing: an evidence based review[J]. J Bone Metab, 2020, 27(1): 15-26.
[124]
Nakatoh S, Fujimori K, Ishii S, et al. Association between pharmacotherapy and secondary hip fracture in a real-world setting: a nationwide database study[J]. J Bone Miner Metab, 2023, 41(2): 248-257.
[125]
Lin T, Yan SG, Cai XZ, et al. Bisphosphonates for periprosthetic bone loss after joint arthroplasty: a meta-analysis of 14 randomized controlled trials[J]. Osteoporos Int, 2012, 23(6): 1823-1834.
[126]
Nakura N, Hirakawa K, Takayanagi S, et al. Denosumab prevented periprosthetic bone resorption better than risedronate after total hip arthroplasty[J]. J Bone Miner Metab, 2023, 41(2): 239-247.
[127]
Palui R, Durgia H, Sahoo J, et al. Timing of osteoporosis therapies following fracture: the current status[J/OL]. Ther Adv Endocrinol Metab, 2022, 13: 20420188221112904. DOI: 10.1177/20420188221112904.
[128]
Kim TY, Ha YC, Kang BJ, et al. Does early administration of bisphosphonate affect fracture healing in patients with intertrochanteric fractures?[J]. J Bone Joint Surg Br, 2012, 94(7): 956-960.
[129]
Wang CY, Fu SH, Yang RS, et al. Timing of anti-osteoporosis medications initiation after a hip fracture affects the risk of subsequent fracture: a nationwide cohort study[J/OL]. Bone, 2020, 138: 115452. DOI: 10.1016/j.bone.2020.115452.
[130]
Mahaisavariya C, Vanitcharoenkul E, Kitcharanant N, et al. Exploring the osteoporosis treatment gap after fragility hip fracture at a Tertiary University Medical Center in Thailand[J/OL]. BMC Geriatr, 2023, 23(1): 70. DOI: 10.1186/s12877-023-03778-5.
[131]
Or O, Fisher Negev T, Hadad V, et al. Fracture liaison service for hip fractures: is it A game changer?[J]. Isr Med Assoc J, 2021, 23(8): 490-493.
[132]
Lyles KW, Colón-Emeric CS, Magaziner JS, et al. Zoledronic acid and clinical fractures and mortality after hip fracture[J]. N Engl J Med, 2007, 357(18): 1799-1809.
[133]
Colón-Emeric C, Nordsletten L, Olson S, et al. Association between timing of zoledronic acid infusion and hip fracture healing[J]. Osteoporos Int, 2011, 22(8): 2329-2336.
[134]
Vasikaran S, Eastell R, Bruyère O, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards[J]. Osteoporos Int, 2011, 22(2): 391-420.
[135]
Borgen TT, Solberg LB, Lauritzen T, et al. Target values and daytime variation of bone turnover markers in monitoring osteoporosis treatment after fractures[J/OL]. JBMR Plus, 2022, 6(6): e10633. DOI: 10.1002/jbm4.10633.
[136]
Nazrun AS, Tzar MN, Mokhtar SA, et al. A systematic review of the outcomes of osteoporotic fracture patients after hospital discharge: morbidity, subsequent fractures, and mortality[J]. Ther Clin Risk Manag, 2014, 10: 937-948.
[137]
González-Quevedo D, Bautista-Enrique D, Pérez-Del-Río V, et al. Fracture liaison service and mortality in elderly hip fracture patients: a prospective cohort study[J]. Osteoporos Int, 2020, 31(1): 77-84.
[138]
Merlijn T, Swart KMA, van der Horst HE, et al. Fracture prevention by screening for high fracture risk: a systematic review and meta-analysis[J]. Osteoporos Int, 2020, 31(2): 251-257.
[139]
Nakatoh S, Fujimori K, Ishii S, et al. Association between pharmacotherapy and secondary hip fracture in a real-world setting: a nationwide database study[J]. J Bone Miner Metab, 2023, 41(2): 248-257.
[140]
Dobre R, Niculescu DA, Petca RC, et al. Adherence to anti-osteoporotic treatment and clinical implications after hip fracture: asystematic review[J/OL]. J Pers Med, 2021, 11(5): 341. DOI: 10.3390/jpm11050341.
[141]
Mangano GRA, Avola M, Blatti C, et al. Non-adherence to anti-osteoporosismedication: factors influencing and strategies to overcome it. A narrative review[J/OL]. J Clin Med, 2022, 12(1): 14. DOI: 10.3390/jcm12010014.
[142]
Apostu D, Lucaciu O, Berce C, et al. Current methods of preventing aseptic loosening and improving osseointegration of titanium implants in cementless total hip arthroplasty: a review[J]. J Int MedRes2018, 46(6): 2104-2119.
[143]
Apostu D, Lucaciu O, Lucaciu GDO, et al. Systemic drugs that influence titanium implant osseointegration[J]. Drug Metab Rev, 2017, 49(1): 92-104.
[144]
Friedl G, Radl R, Stihsen C, et al. The effect of a single infusion of zoledronic acid on early implant migration in total hip arthroplasty. A randomized, double-blind, controlled trial[J]. J Bone Joint Surg Am, 2009, 91(2): 274-281.
[145]
Ohtori S, Inoue G, Orita S, et al. Comparison of teriparatide and bisphosphonate treatment to reduce pedicle screw loosening after lumbar spinal fusion surgery in postmenopausal women with osteoporosis from a bone quality perspective[J/OL]. Spine, 2013, 38(8): E487-E492. DOI: 10.1097/BRS.0b013e31828826dd.
[146]
Peng N, Li J. Application effect of case management mode combined with ERAS in elderly patients with hip fracture[J/OL]. Evid Based Complement Alternat Med, 2021, 2021: 1175020. DOI: 10.1155/2021/1175020.
[147]
Zhu W, Yan Y, Sun Y, et al. Implementation of Enhanced Recovery After Surgery (ERAS) protocol for elderly patients receiving surgery for intertrochanteric fracture: a propensity score-matched analysis[J/OL]. J Orthop Surg Res, 2021, 16(1): 469. DOI: 10.1186/s13018-021-02599-9.
[148]
Tao J, Yan Z, Bai G, et al. Enhanced recovery after surgery rehabilitation protocol in the perioperative period of orthopedics: asystematic review[J/OL]. J Pers Med, 2023, 13(3): 421. DOI: 10.3390/jpm13030421.
[149]
Ping H, Ling X, Xue Y, et al. Effect of ERAS combined with comfortable nursing on quality of life and complications in femoral neck fractures of the aged people[J/OL]. Evid Based Complement Alternat Med, 2021, 2021: 8753076. DOI: 10.1155/2021/8753076.
[150]
Ding ZC, Xu B, Liang ZM, et al. Limited influence of comorbidities on length of stay after total hip arthroplasty: experience of enhanced recovery after surgery[J]. Orthop Surg, 2020, 12(1): 153-161.
[151]
Zhang W, Li L, Zhou X, et al. Concurrent treatment with vitamin K2 and D3 on spine fusion in patients with osteoporosis-associated lumbar degenerative disorders[J]. Spine, 2022, 47(4): 352-360.
[152]
Adami S, Libanati C, Boonen S, et al. Denosumab treatment in postmenopausal women with osteoporosis does not interfere with fracture-healing: results from the FREEDOM trial[J]. J Bone Joint Surg Am, 2012, 94(23): 2113-2119.
[1] 阚艳敏, 王东, 丁建民, 经翔. 住院医师规范化培训教学活动指南在超声医学教学中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(05): 537-541.
[2] 段燕, 郭欣, 吕慧芳, 王国利, 黄明光, 董英俊. 乳腺癌患者辅助化疗后感染肺孢子菌一例[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 318-321.
[3] 刘丹丹, 宋鸣, 李霞, 徐夏君. 老年髋部骨折术后便秘的影响因素及其列线图预测模型[J]. 中华关节外科杂志(电子版), 2023, 17(05): 607-612.
[4] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[5] 浦路桥, 徐永清, 齐保闯, 施洪鑫, 林玮, 卜鹏飞, 白艳, 唐志方, 李川. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)计划书[J]. 中华关节外科杂志(电子版), 2023, 17(05): 747-750.
[6] 王波, 许珂, 刘林, 张斌飞, 庄岩, 许鹏. 全髋关节置换术在老年髋臼骨折中的应用[J]. 中华关节外科杂志(电子版), 2023, 17(03): 385-390.
[7] 江泽莹, 王安婷, 王姣丽, 陈慈, 周秋玲, 黄燕娟, 周芳, 薛琰, 周剑烽, 谭文勇, 杜美芳. 多种植物油组分预防肿瘤放化疗相关毒性反应的效果分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 523-527.
[8] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[9] 陈跃圻, 罗睿, 向涵, 余泳妍, 余挺. 骨质疏松症与牙周炎的因果关系:一项两样本孟德尔随机化研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 292-298.
[10] 汪必涛, 王征, 王国斌. 林奇综合征的治疗现状及进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 332-335.
[11] 李腾成, 狄金明. 2023 V1版前列腺癌NCCN指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 313-318.
[12] 金浪, 石洁, 黄正, 贾永伟, 张建坡, 魏礼成, 金昊雷. 3D打印数字技术辅助改良交叉PVP对重度骨质疏松性椎体压缩骨折脊柱-骨盆矢状面平衡状态的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 263-268.
[13] 王娟, 高俊, 周伊兰, 李小红, 史兵伟, 潘美珍. 血清IL-2、IL-17和骨密度关系及其对骨质疏松症的预测价值[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 295-300.
[14] 戴俊, 李硕, 曹影, 汪守峰, 宋红毛, 蔡菁菁, 邵敏, 陈莉, 程雷, 怀德. 鼻内镜下改良高选择性翼管神经低温等离子消融术对中重度变应性鼻炎的效果研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 689-693.
[15] 秦建军, 郭旭峰, 胡杨, 李向楠, 李卓毅, 林江波, 梅新宇, 唐鹏, 王长春, 王枫, 王洪琰, 尹俊, 袁勇, 赵晋波, 李志刚, 李印. 日本2022版食管癌诊治指南在中国的接受度——中国红杉树专家调研[J]. 中华胸部外科电子杂志, 2023, 10(04): 195-199.
阅读次数
全文


摘要