切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (04) : 534 -539. doi: 10.3877/cma.j.issn.1674-134X.2023.04.011

综述

碘乙酸钠在鼠类骨关节炎造模的方法和作用探索
施洪鑫, 唐志方, 郭民政, 浦路桥, 齐保闯, 任俊筱, 李川()   
  1. 671003 大理大学临床医学院
    650500 昆明医科大学
    650032 昆明,解放军联勤保障第九二〇医院
    650504 昆明,云南省中医药大学
  • 收稿日期:2023-01-28 出版日期:2023-08-01
  • 通信作者: 李川
  • 基金资助:
    云南省创伤骨科临床医学中心(ZX20191001); 技术创新人才培养对象项目李川(202005AD160146)

Exploration of methodology and role of sodium iodoacetate in modeling of rat osteoarthritis

Hongxin Shi, Zhifang Tang, Minzheng Guo, Luqiao Pu, Baochuang Qi, Junxiao Ren, Chuan Li()   

  1. School of Clinical Medicine, Dali University, Dali 671003, China
    Kunming Medical University, Kunming 650500, China
    The 920th Hospital of Joint Logistics Support Force of PLA, Kunming 650032, China
    Yunnan University of Chinese Medicine, Kunming 650504, China
  • Received:2023-01-28 Published:2023-08-01
  • Corresponding author: Chuan Li
引用本文:

施洪鑫, 唐志方, 郭民政, 浦路桥, 齐保闯, 任俊筱, 李川. 碘乙酸钠在鼠类骨关节炎造模的方法和作用探索[J/OL]. 中华关节外科杂志(电子版), 2023, 17(04): 534-539.

Hongxin Shi, Zhifang Tang, Minzheng Guo, Luqiao Pu, Baochuang Qi, Junxiao Ren, Chuan Li. Exploration of methodology and role of sodium iodoacetate in modeling of rat osteoarthritis[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(04): 534-539.

骨关节炎(OA)是一类多发于中老年人的退行性关节疾病,随着中国社会老龄化,该病的患病率逐年上升,且该病的发病机制复杂不明。目前在现有的保守治疗方法中,尚未发现针对发病原因和疼痛机制的有效疗法,并且其终末期的疗法常为关节置换,为了减轻患者因骨关节炎产生的疼痛和相关的治疗花费负担,构建骨关节炎相似表型的动物模型是研究其机制和各种新式保守治疗方法的重要基础之一。目前骨关节炎模型使用的动物种类繁多,方法也是各式各样,相关技术在不断更新和进步,但各种动物种类及造模方法都有其优缺点,为了节省研究的时间和经济成本,其中鼠类关节腔内注射碘乙酸钠导致的骨关节炎动物模型有其优势。由于骨关节炎较常发生在膝和髋两个部位,故本文通过回顾相关文献,对碘乙酸钠在膝和髋关节炎的造模方法和作用进行归纳整理和分析总结,望对骨关节炎的相关研究和临床转化有所帮助。

Osteoarthritis (OA) is a kind of degenerative joint disease mainly affecting middle-aged and elderly people. With the aging of Chinese society, the prevalence rate of this disease is increasing year by year, and the pathogenesis of this disease is complex and unclear. Currently, no effective treatment has been found for the pathogenesis and pain mechanism among the existing conservative treatment methods, and joint replacement is often the end-stage treatment. In order to reduce the pain caused by OA in patients and the related treatment cost burden, the establishment of animal models with similar phenotypes of osteoarthritis is one of the important bases for the study of its mechanism and various new conservative treatment methods. At present, various animal types and methods are used in OA models, and relevant technologies are constantly updated and advanced. However, various animal types and modeling methods have their advantages and disadvantages. In order to save research time and economic cost, animal models of OA caused by the injection of sodium iodoacetate into the joint cavity of mice have their advantages. As OA often occurs in knee and hip, this paper, by reviewing relevant literature, summarized, sorted out, analyzed and summed up the modeling methods and effects of sodium iodoacetate in knee and hip arthritis, hoping to contribute to related research and clinical transformation of osteoarthritis.

表1 OARSI评分表
Table 1 OARSI Scale
表2 KL等级评分表
Table 2 KL Grade Scale
图1 手术切开给药解剖图,绿色虚线为髋关节间隙[21]
Figure 1 Anatomy of surgical incision for drug administration, green dotted line is the hip joint space
图2 影像引导下穿刺给药示意图
Figure 2 Schematic diagram of image-guided puncture drug delivery
图3 膝关节体表标志注射示意图
Figure 3 Schematic diagram of the knee joint body marking for injection
表3 髋关节注射方法对比
Table 3 Comparison of hip injection methods
表4 膝关节注射方式对比
Table 4 Comparison of knee injection modalities
[1]
Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study[J]. Ann Rheum Dis, 2014, 73(7): 1323-1330.
[2]
Long H, Liu Q, Yin H, et al. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findingsfrom the global burden of disease study 2019[J]. Arthritis Rheumatol, 2022, 74(7): 1172-1183.
[3]
Tang X, Wang S, Zhan S, et al. The prevalence of symptomatic knee osteoarthritis in China: results from the China health and retirement longitudinal study[J]. Arthritis Rheumatol, 2016, 68(3): 648-653.
[4]
Rebai MA, Sahnoun N, Abdelhedi O, et al. Animal models of osteoarthritis: characterization of a model induced by Mono-Iodo-Acetate injected in rabbits[J/OL]. Libyan J Med, 2020, 15(1): 1753943. DOI: 10.1080/19932820.2020.1753943.
[5]
Meeson RL, Todhunter RJ, Blunn G, et al. Spontaneous dog osteoarthritis-a One Medicine vision[J]. Nat Rev Rheumatol, 2019, 15(5): 273-287.
[6]
Uilenreef J, van der Staay FJ, Meijer E. A monosodium iodoacetate osteoarthritis lameness model in growing pigs[J/OL]. Animals, 2019, 9(7): 405. DOI: 10.3390/ani9070405.
[7]
Janusz MJ, Bendele AM, Brown KK, et al. Induction of osteoarthritis in the rat by surgical tear of the meniscus: inhibition of joint damage by a matrix metalloproteinase inhibitor[J]. Osteoarthritis Cartilage, 2002, 10(10): 785-791.
[8]
Mejia S, Duerr FM, Griffenhagen G, et al. Evaluation of the effect of cannabidiol on naturally occurring osteoarthritis-associated pain: apilot study in dogs[J]. J Am Anim Hosp Assoc, 2021, 57(2): 81-90.
[9]
Collins KH, Paul HA, Reimer RA, et al. Relationship between inflammation, the gut microbiota, and metabolic osteoarthritis development: studies in a rat model[J]. Osteoarthritis Cartilage, 2015, 23(11): 1989-1998.
[10]
Collins KH, Hart DA, Seerattan RA, et al. High-fat/high-sucrose diet-induced obesity results in joint-specific development of osteoarthritis-like degeneration in a rat model[J]. Bone Joint Res, 2018, 7(4): 274-281.
[11]
Zhou X, Zheng Y, Sun W, et al. D-mannose alleviates osteoarthritis progression by inhibiting chondrocyte ferroptosis in a HIF-2α-dependent manner[J/OL]. Cell Prolif, 2021, 54(11): e13134. DOI: 10.1111/cpr.13134.
[12]
Wallace IJ, Bendele AM, Riew G, et al. Physical inactivity and knee osteoarthritis in guinea pigs[J]. Osteoarthritis Cartilage, 2019, 27(11): 1721-1728.
[13]
Bendele A, McComb J, Gould T, et al. Animal models of arthritis: relevance to human disease[J]. Toxicol Pathol, 1999, 27(1): 134-142.
[14]
van der Kraan PM, Vitters EL, van de Putte LB, et al. Development of osteoarthritic lesions in mice by metabolic and mechanical alterations in the knee joints[J]. Am J Pathol, 1989, 135(6): 1001-1014.
[15]
Kalbhen DA. Chemical model of osteoarthritis-a pharmacological evaluation[J]. J Rheumatol, 1987, 14(Spec No): 130-131.
[16]
Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis[J]. Ann Rheum Dis, 1957, 16(4): 494-502.
[17]
van der Sluijs JA, Geesink RG, van der Linden AJ, et al. The reliability of the Mankin score for osteoarthritis[J]. J Orthop Res, 1992, 10(1): 58-61.
[18]
Heinzel J, Längle G, Oberhauser V, et al. Use of the CatWalk gait analysis system to assess functional recovery in rodent models of peripheral nerve injury-a systematic review[J/OL]. J Neurosci Methods, 2020, 345: 108889. DOI: 10.1016/j.jneumeth.2020.108889.
[19]
Pritzker KPH, Gay S, Jimenez SA, et al. Osteoarthritis cartilage histopathology: grading and staging[J]. Osteoarthritis Cartilage, 2006, 14(1): 13-29.
[20]
Bove SE, Calcaterra SL, Brooker RM, et al. Weight bearing as a measure of disease progression and efficacy of anti-inflammatory compounds in a model of monosodium iodoacetate-induced osteoarthritis[J]. Osteoarthritis Cartilage, 2003, 11(11): 821-830.
[21]
Miyamoto S, Nakamura J, Ohtori S, et al. Intra-articular injection of mono-iodoacetate induces osteoarthritis of the hip in rats[J/OL]. BMC Musculoskelet Disord, 2016, 17: 132. DOI: 10.1186/s12891-016-0985-z.
[22]
Yoh S, Kawarai Y, Hagiwara S, et al. Intra-articular injection of monoiodoacetate induces diverse hip osteoarthritis in rats, depending on its dose[J/OL]. BMC Musculoskelet Disord, 2022, 23(1): 494. DOI: 10.1186/s12891-022-05454-y.
[23]
Dumond H, Presle N, Pottie P, et al. Site specific changes in gene expression and cartilage metabolism during early experimental osteoarthritis[J]. Osteoarthritis Cartilage, 2004, 12(4): 284-295.
[24]
Wang Y, Wang S, Luan S, et al. Accuracy and feasibility of ultrasound-guided intra-articular injection of the rat hip joint[J]. Ultrasound Med Biol, 2021, 47(10): 2936-2940.
[25]
Guzman RE, Evans MG, Bove S, et al. Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis[J]. Toxicol Pathol, 2003, 31(6): 619-624.
[26]
Udo M, Muneta T, Tsuji K, et al. Monoiodoacetic acid induces arthritis and synovitis in rats in a dose- and time-dependent manner: proposed model-specific scoring systems[J]. Osteoarthritis Cartilage, 2016, 24(7): 1284-1291.
[27]
Pitcher T, Sousa-Valente J, Malcangio M. The monoiodoacetate model of osteoarthritis pain in the mouse[J/OL]. J Vis Exp, 2016(111): 53746. DOI: 10.3791/53746.
[28]
Ruiz A, Bravo D, Duarte A, et al. Accuracy of ultrasound-guided versus landmark-guided intra-articular injection for rat knee joints[J]. Ultrasound Med Biol, 2019, 45(10): 2787-2796.
[29]
Miyamoto S, Nakamura J, Ohtori S, et al. Pain-related behavior and the characteristics of dorsal-root Ganglia in a rat model of hip osteoarthritis induced by mono-iodoacetate[J]. J Orthop Res, 2017, 35(7): 1424-1430.
[30]
Zhang L, Li M, Li X, et al. Characteristics of sensory innervation in synovium of rats within different knee osteoarthritis models and the correlation between synovial fibrosis and hyperalgesia[J]. J Adv Res, 2022, 35: 141-151.
[31]
李健雄,张程,辛鹏飞,等. 膝骨关节炎疼痛机制研究进展[J/CD]. 中华关节外科杂志(电子版), 2021, 15(5): 596-600.
[32]
Barve RA, Minnerly JC, Weiss DJ, et al. Transcriptional profiling and pathway analysis of monosodium iodoacetate-induced experimental osteoarthritis in rats: relevance to human disease[J]. Osteoarthritis Cartilage, 2007, 15(10): 1190-1198.
[1] 许银峰, 盛璞义, 余世明, 张阳春. 偏心性髋臼旋转截骨术治疗发育性髋关节发育不良[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 568-574.
[2] 刘鹏, 罗天, 许珂媛, 邓红美, 李瑄, 唐翠萍. 八段锦对膝关节炎疗效的初步步态分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 590-595.
[3] 苏介茂, 齐岩松, 王永祥, 魏宝刚, 马秉贤, 张鹏飞, 魏兴华, 徐永胜. 关节镜手术在早中期膝骨关节炎治疗的应用进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 646-652.
[4] 谢佳乐, 李琦, 芦升升, 姜劲松. 内侧膝骨关节炎伴胫股关节冠状半脱位的手术治疗[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 653-657.
[5] 庄若语, 杭明辉, 李文华, 张霆, 侯炜. 膝骨关节炎半定量磁共振评分研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 545-552.
[6] 李志文, 李远志, 李华, 方志远. 糖皮质激素治疗膝骨关节炎疗效的网状Meta分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 484-496.
[7] 王冰, 孙海宁, 于秀淳, 周珂, 翟凯, 苗族康. 膝骨关节炎的活动衬垫型单髁置换疗效与假体生存率[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 337-345.
[8] 张江礼, 刘金辉, 潘西庆, 刘光源, 范虓. 全膝关节置换应用智能辅助手术导航系统治疗膝骨关节炎[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 346-351.
[9] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[10] 陈松, 黄玲巧, 余清卿, 魏志鑫, 付琰. 单细胞RNA测序技术在骨关节炎软骨中的研究应用[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 363-371.
[11] 王颉, 周游. 二甲双胍治疗骨关节炎的机制及其研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 372-378.
[12] 杨士慷, 曹光磊. 膝骨关节炎三种术式患者满意度的术前影响因素[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 390-397.
[13] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[14] 高广涵, 张耀南, 石磊, 王林, 王飞, 郑子天, 王鸿禹, 郭民政, 薛庆云. 膝骨关节炎患者前交叉韧带功能影像学影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 301-307.
[15] 罗斯敏, 周苗苗, 石绮屏. 肥胖脂肪代谢及肠道微生物群异常与骨关节炎关系的研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(03): 200-205.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?