[1] |
梁森,张世杰,张玉华,等.黄河滩区居民髋关节疾病患病率及其影响因素的调查研究[J].中国全科医学,2018,21(17):2106-2110.
|
[2] |
Riddle DL, Stratford PW. Body weight changes and corresponding changes in pain and function in persons with symptomatic knee osteoarthritis: a cohort study[J]. Arthritis Care Res (Hoboken), 2013, 65(1): 15-22.
|
[3] |
Kawahito Y. Guidelines for the management of rheumatoid arthritis] [J]. Nihon Rinsho, 2016, 74(6): 939-943.
|
[4] |
Iijima H, Fukutani N, Isho T, et al. Relationship between pedometer-based physical activity and physical function in patients with osteoarthritis of the knee: a cross-sectional study[J]. Arch Phys Med Rehabil, 2017, 98(7): 1382-1388.e4.
|
[5] |
Abdelraouf OR, Abdel-Aziem AA. Ankle and foot mechanics in individuals with chronic ankle instability during shod walking and barefoot walking: a cross-sectional study[J]. Chin J Traumatol, 2021, 24(3): 174-179.
|
[6] |
Tsai TY, Li JS, Wang S, et al. In-vivo 6 degrees-of-freedom kinematics of metal-on-polyethylene total hip arthroplasty during gait[J]. J Biomech, 2014, 47(7): 1572-1576.
|
[7] |
Yim JH, Seon JK, Kim YK, et al. Anterior translation and rotational stability of anterior cruciate ligament-deficient knees during walking: speed and turning direction[J]. J Orthop Sci, 2015, 20(1): 155-162.
|
[8] |
钟国庆,曾小龙,谢宇,等.全身关节过度活动患者步行时膝关节步态图特征[J/CD].中华关节外科杂志(电子版),2020,14(1):33-39.
|
[9] |
Ewen AM, Stewart S, St Clair Gibson A, et al. Post-operative gait analysis in total hip replacement patients-a review of current literature and meta-analysis[J]. Gait Posture, 2012, 36(1): 1-6.
|
[10] |
王浩洋,康鹏德,聂涌,等.直接前入路全髋关节置换后早期三维步态分析[J].北京大学学报(医学版),2017,49(2):196-200.
|
[11] |
陈云苏,赵松,曹乐,等.全髋表面置换与金属对金属大直径股骨头全髋置换术后的步态分析比较[J].中华骨科杂志,2010,30(11):1116-1120.
|
[12] |
Hannigan JJ, Osternig LR, Chou LS. Sex-Specific relationships between hip strength and hip, pelvis, and trunk kinematics in healthy runners[J]. J Appl Biomech, 2018, 34(1): 76-81.
|
[13] |
Leijendekkers RA, Marra M, Kolk S, et al. Gait symmetry and hip strength in women with developmental dysplasia following hip arthroplasty compared to healthy subjects: a cross-sectional study[J/OL]. PLoS One, 2018, 13(2): e0193487. DOI: 10.1371/journal.pone.0193487.
|
[14] |
Mahfouz M, Abdel FE, Bowers LS, et al. Three-dimensional morphology of the knee reveals ethnic differences[J]. Clin Orthop Relat Res, 2012, 470(1): 172-185.
|
[15] |
Haddad B, Konan S, Mannan K, et al. Evaluation of the posterior tibial slope on Mr images in different population groups using the tibial proximal anatomical axis[J]. Acta Orthop Belg, 2012, 78(6): 757-763.
|
[16] |
De Asla RJ, Wan L, Rubash HE, et al. Six DOF in vivo kinematics of the ankle joint complex: application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique[J]. J Orthop Res, 2006, 24(5): 1019-1027.
|
[17] |
Zhang Y, Huang WH, Yao ZL, et al. Anterior cruciate ligament injuries alter the kinematics of knees with or without meniscal deficiency[J]. Am J Sports Med, 2016, 44(12): 3132-3139.
|
[18] |
Ford KR, Myer GD, Toms HE, et al. Gender differences in the kinematics of unanticipated cutting in young athletes[J]. Med Sci Sports Exerc, 2005, 37(1): 124-129.
|
[19] |
Gil S, Loturco I, Tricoli V, et al. Tensiomyography parameters and jumping and sprinting performance in Brazilian elite soccer players[J]. Sports Biomech, 2015, 14(3): 340-350.
|
[20] |
Zhang Y, Yao ZL, Wang SB, et al. Motion analysis of Chinese normal knees during gait based on a novel portable system[J]. Gait Posture, 2015, 41(3): 763-768.
|
[21] |
Zeng X, Yang T, Kong L, et al. Changes in 6DOF knee kinematics during gait with decreasing gait speed[J]. Gait Posture, 2022, 91: 52-58.
|
[22] |
Peebles AT, Miller TK, Queen RM. Landing biomechanics deficits in anterior cruciate ligament reconstruction patients can be assessed in a non-laboratory setting[J]. J Orthop Res, 2022, 40(1): 150-158.
|
[23] |
Pua YH, Low J, Woon EL, et al. Knee performance and self-efficacy trajectory curves after ACL reconstruction: a longitudinal study[J]. Phys Ther Sport, 2021, 49: 157-163.
|
[24] |
Hewett TE, Ford KR, Myer GD, et al. Gender differences in hip adduction motion and torque during a single-leg agility maneuver[J]. J Orthop Res, 2006, 24(3): 416-421.
|
[25] |
Bruening D, Frimenko RE, Goodyear CD, et al. Sex differences in whole body gait kinematics at preferred speeds[J]. Gait Posture, 2015, 41(2): 540-545.
|
[26] |
Chehab EF, Andriacchi TP, Favre J. Speed, age, sex, and body mass index provide a rigorous basis for comparing the kinematic and kinetic profiles of the lower extremity during walking[J]. J Biomech, 2017, 58: 11-20.
|
[27] |
Elfring R, de la Fuente M, Radermacher K. Assessment of optical localizer accuracy for computer aided surgery systems[J]. Comput Aided Surg, 2010, 15(1-3):1-12.
|
[28] |
Riley PO, Paolini G, Della Croce U, et al. A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects[J]. Gait Posture, 2007, 26(1): 17-24.
|
[29] |
Md A. Gait analysis: normal and pathological function[J]. JAMA, 2010, 304(8):907-907.
|
[30] |
Levine D. Whittle's gait analysis, 5th edition[M]. Edinburgh,New York,Elsevier, 2012: 87-110.
|
[31] |
Hughes PE, Hsu JC, Matava MJ. Hip anatomy and biomechanics in the athlete[J]. Sports Med Arthrosc, 2002, 10(2): 103-114.
|
[32] |
Liu J, Lewton KL, Colletti PM, et al. Hip adduction during running: influence of sex, hip abductor strength and activation, and pelvis and femur morphology[J]. Med Sci Sports Exerc, 2021, 53(11): 2346-2353.
|
[33] |
Cho SH, Park JM, Kwon OY. Gender differences in three dimensional gait analysis data from 98 healthy Korean adults[J]. Clin Biomech (Bristol, Avon), 2004, 19(2): 145-152.
|
[34] |
Rowe E, Beauchamp MK, Astephen WJ. Age and sex differences in normative gait patterns[J]. Gait Posture, 2021, 88: 109-115.
|
[35] |
Rahimi A, Arab AM, Nourbakhsh MR, et al. Lower limb kinematics in individuals with chronic low back pain during walking[J/OL]. J Electromyogr Kinesiol, 2020, 51(1): 102404.DOI: 10.1016/j.jelekin.2020.102404.
|
[36] |
Mcpherson AL, Dowling B, Tubbs TG, et al. Sagittal plane kinematic differences between dominant and non-dominant legs in unilateral and bilateral jump landings[J]. Phys Ther Sport, 2016, 22: 54-60.
|
[37] |
Johnston RC, Smidt GL. Measurement of hip-joint motion during walking. Evaluation of an electrogoniometric method[J]. J Bone Joint Surg Am, 1969, 51(6): 1082-1094.
|
[38] |
Weinhandl JT, Irmischer BS, Sievert ZA, et al. Influence of sex and limb dominance on lower extremity joint mechanics during unilateral land-and-cut manoeuvres[J]. J Sports Sci, 2017, 35(2): 166-174.
|
[39] |
Brown TN, Palmieri-Smith RM, Mclean SG. Sex and limb differences in hip and knee kinematics and kinetics during anticipated and unanticipated jump landings: implications for anterior cruciate ligament injury[J]. Br J Sports Med, 2009, 43(13): 1049-1056.
|
[40] |
Kernozek TW, Torry MR, Van Hoof H, et al. Gender differences in frontal and sagittal plane biomechanics during drop landings[J]. Med Sci Sports Exerc, 2005, 37(6): 1003-1012; discussion 1013.
|
[41] |
Imhauser C, Mauro C, Choi D, et al. Abnormal tibiofemoral contact stress and its association with altered kinematics after center-center anterior cruciate ligament reconstruction: an in vitro study[J]. Am J Sports Med, 2013, 41(4): 815-825.
|
[42] |
Andriacchi TP, Mündermann A, Smith RL, et al. A framework for the in vivo pathomechanics of osteoarthritis at the knee[J]. Ann Biomed Eng, 2004, 32(3): 447-457.
|
[43] |
Chaudhari AM, Briant PL, Bevill SL, et al. Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury[J]. Med Sci Sports Exerc, 2008, 40(2): 215-222.
|