切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (02) : 201 -208. doi: 10.3877/cma.j.issn.1674-134X.2024.02.007

临床论著

支持向量机用于膝骨关节炎和韧带损伤的分类研究
罗烨1, 胡梦铃1, 黄小凡1, 林金鹏2, 李竺蔓1, 王少白1,()   
  1. 1. 200438 上海体育大学"运动健身科技"省部共建教育部重点实验室
    2. 510641 广州,华南理工大学材料科学与工程学院
  • 收稿日期:2023-11-07 出版日期:2024-04-01
  • 通信作者: 王少白
  • 基金资助:
    基础加强计划项目(2020-JCJQ-ZD-264)

Support vector machine for classification of osteoarthritis and ligamentous injuries in knee

Ye Luo1, Mengling Hu1, Xiaofan Huang1, Jinpeng Lin2, Zhuman Li1, Shaobai Wang1,()   

  1. 1. Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
    2. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
  • Received:2023-11-07 Published:2024-04-01
  • Corresponding author: Shaobai Wang
引用本文:

罗烨, 胡梦铃, 黄小凡, 林金鹏, 李竺蔓, 王少白. 支持向量机用于膝骨关节炎和韧带损伤的分类研究[J]. 中华关节外科杂志(电子版), 2024, 18(02): 201-208.

Ye Luo, Mengling Hu, Xiaofan Huang, Jinpeng Lin, Zhuman Li, Shaobai Wang. Support vector machine for classification of osteoarthritis and ligamentous injuries in knee[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2024, 18(02): 201-208.

目的

采用机器学习算法中的支持向量机(SVM)对步态图数据集进行特征分类并建立识别模型,探索该模型区分膝骨关节炎或韧带损伤患者与健康人群的分类性能。

方法

本研究从上海体育大学等单位纳入样本135例。其中健康人55例,确诊膝关节损伤患者80例(膝骨关节炎13例、单纯前交叉韧带损伤51例、多发韧带损伤16例),排除合并有其他影响步行的组织、系统损伤患者。采用三维运动捕捉系统采集膝关节运动学数据,构建步态图数据集。通过数据降维等预处理方法后,使用SVM分类器将每例样本特征以高维空间位置和超平面的关系分类建立识别分类模型。采用单因素方差分析比较纳入患者的基本信息并使用准确率和精确度等指标来验证模型分类性能。

结果

除年龄外,纳入样本的基本信息差异无统计学意义(均为P>0.05)。基于SVM所建立的识别分类模型对判断是否为健康人测量准确率为91.4% [95%CI(87.9,94.7)%] ;与健康人群相比,对于分类膝骨关节炎患者的准确率为98.5% [95%CI(93.0,99.1)%],前交叉韧带损伤患者为90.6% [95%CI(81.9,99.4)%] ,多发韧带损伤患者为91.5% [95%CI(83.4,99.6)%] 。

结论

采用机器学习算法对基于便携式运动捕捉设备所建立的健康人群、膝骨关节炎和韧带损伤患者步态图特征数据集进行分类具有较高的准确度,为基于步态分析的临床辅助诊断提供了一种新思路。

Objective

To use support vector machine (SVM) in machine learning algorithms to classify the features of gait map dataset and build a recognition model, and to explore the classification performance of the model in distinguishing between patients with osteoarthritis or ligament injuries of the knee and the healthy population.

Methods

A total of 135 cases of samples were included in this study from Shanghai University of Sports and other units. Among them, 55 cases were healthy people, and 80 cases were patients with confirmed knee injuries (13 cases of osteoarthritis of the knee, 51 cases of simple anterior cruciate ligament injuries, and 16 cases of multiple ligament injuries), and patients with other tissues and systems injuries that affect walking were excluded. A three-dimensional motion capture system was used to collect knee kinematic data and construct the gait map data set. After preprocessing methods such as data dimensionality reduction, an SVM classifier was used to classify the sample features of each case in terms of class- the relationship between high-dimensional spatial position and hyperplane to establish an identification ification model. One-way ANOVA was used to compare the basic information of the included patients and to validate the model classification performance using metrics such as accuracy and precision.

Results

No significant differences were seen in the basic information of the included sample except for age (all P>0.05). The accuracy of the classification model based on SVM for determining whether a person was healthy or not was 91.4% [95% CI (87.9, 94.7)%]; the accuracy for classifying patients with knee osteoarthritis was 98.5% [95% CI (93.0, 99.1)%], patients with anterior cruciate ligament injuries was 90.6% [95% CI (81.9 , 99.4)%] and 91.5% [95% CI (83.4, 99.6)%] for patients with multiple ligament injuries.

Conclusion

The use of machine learning algorithms to classify the gait map feature datasets established based on portable motion capture devices for healthy people, patients with osteoarthritis of the knee and ligament injuries has a high accuracy and provides a new idea for clinical aid diagnosis based on gait analysis.

图1 支持向量机算法示意图
Figure 1 Schematic diagram of the support vector machine
图2 实验所用设备在进行虚拟标定的场景
Figure 2 Scene of experimental equipment performing virtual calibration
图3 机器学习流程框图
Figure 3 Block diagram of machine learning process
图4 特征提取说明与特征运算公式
Figure 4 Illustration of feature extraction and feature operation formulae
图5 KOA(膝骨关节炎)、韧带损伤患者与健康受试者的典型差异注:左图中箭头示KOA患者典型差异为步态周期中屈曲角度减少;中图中箭头示前交叉韧带损伤患者的典型差异为步态周期中的前向位移增加;右图中箭头示多发韧带患者的典型差异为步态周期中的前向和后向位移增加
Figure 5 Typical differences among KOA (knee osteoarthritis), ligament-injured and healthy controlNote: The arrow in the left graph shows the typical difference in patients with KOA as a decrease in flexion angle in the gait cycle; the arrow in the middle graph shows the typical difference in patients with ACL injuries as an increase in anterior translation in the gait cycle; and the arrows in the right graph show the typical difference in patients with multiple ligaments as an increase in both anterior and posterior translations in the gait cycle.
表1 受试者一般情况(±s)
Table 1 General information of subjects
表2 训练集中健康受试者与单类病例分类结果(%)
Table 2 Results of categorization of healthy subjects in the training set and single type of cases
表3 测试集中健康受试者与单类病例分类结果(%)
Table 3 Results of categorization of healthy subjects in the test set with a single type of case
[1]
Hall M, Stevermer CA, Gillette JC. Gait analysis post anterior cruciate ligament reconstruction: knee osteoarthritis perspective[J]. Gait Posture, 2012, 36(1): 56-60.
[2]
Figueiredo J, Santos CP, Moreno JC. Automatic recognition of gait patterns in human motor disorders using machine learning: a review[J]. Med Eng Phys, 2018, 53: 1-12.
[3]
Yang M, Zheng H, Wang H, et al. A machine learning approach to assessing gait patterns for Complex Regional Pain Syndrome[J]. Med Eng Phys, 2012, 34(6): 740-746.
[4]
王文锦,田斐,李柠薇,等. 新型膝关节运动分析系统的研制及临床应用[J/CD]. 中华关节外科杂志(电子版), 2020, 14(1): 78-84.
[5]
中华医学会骨科分会关节外科学组,中国研究型医院学会运动医学专业委员会. 步态图评估膝关节运动功能的专家共识(2020年版)[J/CD]. 中华关节外科杂志(电子版), 2020, 14(6): 651-656.
[6]
张余,黄文汉,曾小龙,等. 从"步态图"学会读懂你的膝[J/CD]. 中华关节外科杂志(电子版), 2020, 14(1): 1-3.
[7]
罗鸿,刘方,李顺华,等. 步态分析应用在前交叉韧带损伤诊断中的意义[J]. 中国组织工程研究2019, 23(31): 4969-4973.
[8]
Park JH, Lee H, Cho JS, et al. Effects of knee osteoarthritis severity on inter-joint coordination and gait variability as measured by hip-knee cyclograms[J/OL]. Sci Rep, 2021, 11(1): 1789. DOI: 10.1038/s41598-020-80237-w.
[9]
van der Kruk E, Reijne MM. Accuracy of human motion capture systems for sport applications; state-of-the-art review[J]. Eur J Sport Sci, 2018, 18(6): 806-819.
[10]
Khera P, Kumar N. Role of machine learning in gait analysis: a review[J]. J Med Eng Technol, 2020, 44(8): 441-467.
[11]
Nakatsuma T. Machine learning principles and applications[M/OL]. //Kaji S, Nakatsuma T, Fukuhara M. (eds) The Economics of Fintech. Singapore: Springer, 2021. https://doi.org/10.1007/978-981-33-4913-1_11
[12]
Zhang Y, Yao Z, Wang S, et al. Motion analysis of Chinese normal knees during gait based on a novel portable system[J]. Gait Posture, 2015, 41(3): 763-768.
[13]
Wang S, Zeng X, Huangfu L, et al. Validation of a portable marker-based motion analysis system[J/OL]. J Orthop Surg Res, 2021, 16(1): 425. DOI: 10.1186/s13018-021-02576-2.
[14]
Kokkotis C, Moustakidis S, Tsatalas T, et al. Leveraging explainable machine learning to identify gait biomechanical parameters associated with anterior cruciate ligament injury[J/OL]. Sci Rep, 2022, 12(1): 6647. DOI: 10.1038/s41598-022-10666-2.
[15]
Kour N, Gupta S, Arora S. A survey of knee osteoarthritis assessment based on gait[J]. Arch Comput Meth Eng, 2021, 28(2): 345-385.
[16]
梅齐昌,相亮亮,孙冬,等. 长距离跑后"足外翻"姿态增加膝关节内侧接触力:基于OpenSim肌骨建模及机器学习预测的研究[J]. 体育科学2019, 39(9): 51-59.
[17]
Handelman GS, Kok HK, Chandra RV, et al. Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods[J]. AJR Am J Roentgenol, 2019, 212(1): 38-43.
[18]
顾琳燕,邱华平,张晟宇,等.正常人群步行足偏角与年龄特征分析[J].生物医学工程学杂志2018, 35(1):45-48
[19]
Deluzio KJ, Astephen JL. Biomechanical features of gait waveform data associated with knee osteoarthritis: an application of principal component analysis[J]. Gait Posture, 2007, 25(1): 86-93.
[20]
Laroche D, Tolambiya A, Morisset C, et al. A classification study of kinematic gait trajectories in hip osteoarthritis[J]. Comput Biol Med, 2014, 55: 42-48.
[21]
Ahn JH, Jeong SH, Kang HW. Risk factors of false-negative magnetic resonance imaging diagnosis for meniscal tear associated with anterior cruciate ligament tear[J]. Arthroscopy, 2016, 32(6): 1147-1154.
[22]
Klöpfer-Krämer I, Brand A, Wackerle H, et al. Gait analysis-Available platforms for outcome assessment[J]. Injury, 2020, 51(Suppl 2): S90-S96.
[23]
Tian F, Huang Q, Zheng Z, et al. Evaluating measurement accuracy and repeatability with a new device that records spatial knee movement[J]. Acta Bioeng Biomech, 2020, 22(3): 55-67.
[1] 李莉, 马梅, 黄欣欣, 杨丹林, 潘勉. 妊娠期糖尿病早孕期相关影响因素及基于早孕期孕妇糖脂相关生化指标与人口学资料的4种机器学习算法构建妊娠期糖尿病预测模型的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(01): 105-113.
[2] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[3] 庞亮月, 林焕彩. 人工智能在龋病诊疗中的应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 162-166.
[4] 杨龙雨禾, 王跃强, 招云亮, 金溪, 卫娜, 杨智明, 张贵福. 人工智能辅助临床决策在泌尿系肿瘤的应用进展[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 178-182.
[5] 黄艺承, 梁海祺, 何其焕, 韦发烨, 杨舒博, 谭舒婷, 翟高强, 程继文. 机器学习模型评估RAS亚家族基因对膀胱癌免疫治疗的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 131-140.
[6] 葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 367-371.
[7] 田亚, 吴美龙, 冯晓彬. 人工智能在肝细胞癌诊疗中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 258-262.
[8] 李帅, 李开南. 人工智能在骨科诊断技术中的研究进展[J]. 中华老年骨科与康复电子杂志, 2024, 10(01): 46-50.
[9] 张坤淇, 张睿, 徐佳, 康庆林. 漂浮膝损伤的诊治进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 252-256.
[10] 卢梦诗, 刘威, 马加威, 嵇丹丹, 贾璇, 詹心萍, 罗亮. 人工智能在急性呼吸窘迫综合征领域的应用进展[J]. 中华重症医学电子杂志, 2024, 10(01): 66-71.
[11] 陈显金, 吴芹芹, 何长春, 张庆华. 利用多模态医学数据和机器学习构建脑出血预后预测模型的研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 193-198.
[12] 段福孝, 王鑫宇, 孙爽, 于知宇, 张成. 结直肠癌患者周围神经侵犯预测模型的建立与评价[J]. 中华临床医师杂志(电子版), 2023, 17(11): 1154-1162.
[13] 郭震天, 张宗明, 赵月, 刘立民, 张翀, 刘卓, 齐晖, 田坤. 机器学习算法预测老年急性胆囊炎术后住院时间探索[J]. 中华临床医师杂志(电子版), 2023, 17(09): 955-961.
[14] 熊鑫, 邓勇志. 基于血管内超声的机器学习在冠状动脉病变中的研究进展[J]. 中华诊断学电子杂志, 2023, 11(03): 153-157.
[15] 王俊杰, 尹晓亮, 刘二腾, 陆军, 祁鹏, 胡深, 杨希孟, 陈鲲鹏, 张东, 王大明. 机器学习对预测颈内动脉非急性闭塞患者血管内再通术成功的潜在价值[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 464-470.
阅读次数
全文


摘要