[1] |
Hall M, Stevermer CA, Gillette JC. Gait analysis post anterior cruciate ligament reconstruction: knee osteoarthritis perspective[J]. Gait Posture, 2012, 36(1): 56-60.
|
[2] |
Figueiredo J, Santos CP, Moreno JC. Automatic recognition of gait patterns in human motor disorders using machine learning: a review[J]. Med Eng Phys, 2018, 53: 1-12.
|
[3] |
Yang M, Zheng H, Wang H, et al. A machine learning approach to assessing gait patterns for Complex Regional Pain Syndrome[J]. Med Eng Phys, 2012, 34(6): 740-746.
|
[4] |
王文锦,田斐,李柠薇,等. 新型膝关节运动分析系统的研制及临床应用[J/CD]. 中华关节外科杂志(电子版), 2020, 14(1): 78-84.
|
[5] |
中华医学会骨科分会关节外科学组,中国研究型医院学会运动医学专业委员会. 步态图评估膝关节运动功能的专家共识(2020年版)[J/CD]. 中华关节外科杂志(电子版), 2020, 14(6): 651-656.
|
[6] |
张余,黄文汉,曾小龙,等. 从"步态图"学会读懂你的膝[J/CD]. 中华关节外科杂志(电子版), 2020, 14(1): 1-3.
|
[7] |
罗鸿,刘方,李顺华,等. 步态分析应用在前交叉韧带损伤诊断中的意义[J]. 中国组织工程研究,2019, 23(31): 4969-4973.
|
[8] |
Park JH, Lee H, Cho JS, et al. Effects of knee osteoarthritis severity on inter-joint coordination and gait variability as measured by hip-knee cyclograms[J/OL]. Sci Rep, 2021, 11(1): 1789. DOI: 10.1038/s41598-020-80237-w.
|
[9] |
van der Kruk E, Reijne MM. Accuracy of human motion capture systems for sport applications; state-of-the-art review[J]. Eur J Sport Sci, 2018, 18(6): 806-819.
|
[10] |
Khera P, Kumar N. Role of machine learning in gait analysis: a review[J]. J Med Eng Technol, 2020, 44(8): 441-467.
|
[11] |
|
[12] |
Zhang Y, Yao Z, Wang S, et al. Motion analysis of Chinese normal knees during gait based on a novel portable system[J]. Gait Posture, 2015, 41(3): 763-768.
|
[13] |
Wang S, Zeng X, Huangfu L, et al. Validation of a portable marker-based motion analysis system[J/OL]. J Orthop Surg Res, 2021, 16(1): 425. DOI: 10.1186/s13018-021-02576-2.
|
[14] |
Kokkotis C, Moustakidis S, Tsatalas T, et al. Leveraging explainable machine learning to identify gait biomechanical parameters associated with anterior cruciate ligament injury[J/OL]. Sci Rep, 2022, 12(1): 6647. DOI: 10.1038/s41598-022-10666-2.
|
[15] |
Kour N, Gupta S, Arora S. A survey of knee osteoarthritis assessment based on gait[J]. Arch Comput Meth Eng, 2021, 28(2): 345-385.
|
[16] |
梅齐昌,相亮亮,孙冬,等. 长距离跑后"足外翻"姿态增加膝关节内侧接触力:基于OpenSim肌骨建模及机器学习预测的研究[J]. 体育科学,2019, 39(9): 51-59.
|
[17] |
Handelman GS, Kok HK, Chandra RV, et al. Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods[J]. AJR Am J Roentgenol, 2019, 212(1): 38-43.
|
[18] |
顾琳燕,邱华平,张晟宇,等.正常人群步行足偏角与年龄特征分析[J].生物医学工程学杂志,2018, 35(1):45-48
|
[19] |
Deluzio KJ, Astephen JL. Biomechanical features of gait waveform data associated with knee osteoarthritis: an application of principal component analysis[J]. Gait Posture, 2007, 25(1): 86-93.
|
[20] |
Laroche D, Tolambiya A, Morisset C, et al. A classification study of kinematic gait trajectories in hip osteoarthritis[J]. Comput Biol Med, 2014, 55: 42-48.
|
[21] |
Ahn JH, Jeong SH, Kang HW. Risk factors of false-negative magnetic resonance imaging diagnosis for meniscal tear associated with anterior cruciate ligament tear[J]. Arthroscopy, 2016, 32(6): 1147-1154.
|
[22] |
Klöpfer-Krämer I, Brand A, Wackerle H, et al. Gait analysis-Available platforms for outcome assessment[J]. Injury, 2020, 51(Suppl 2): S90-S96.
|
[23] |
Tian F, Huang Q, Zheng Z, et al. Evaluating measurement accuracy and repeatability with a new device that records spatial knee movement[J]. Acta Bioeng Biomech, 2020, 22(3): 55-67.
|