切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2019, Vol. 13 ›› Issue (05) : 589 -595. doi: 10.3877/cma.j.issn.1674-134X.2019.05.012

所属专题: 文献

综述

关节假体多重感染对金葡菌致病特性的影响
余进龙1, 杨闯1, 朱崇尊1, 沈灏1,()   
  1. 1. 200030 上海交通大学附属第六人民医院骨科
  • 收稿日期:2018-12-09 出版日期:2019-10-01
  • 通信作者: 沈灏
  • 基金资助:
    国家自然科学基金(81772364;81472108)

Impact of polymicrobial periprothetic joint infection on staphylococcus aureus pathogenesis

Jinlong Yu1, Chuang Yang1, Chongzun Zhu1, Hao Shen1,()   

  1. 1. Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200030, China
  • Received:2018-12-09 Published:2019-10-01
  • Corresponding author: Hao Shen
  • About author:
    Corresponding author: Shen Hao, Email:
引用本文:

余进龙, 杨闯, 朱崇尊, 沈灏. 关节假体多重感染对金葡菌致病特性的影响[J]. 中华关节外科杂志(电子版), 2019, 13(05): 589-595.

Jinlong Yu, Chuang Yang, Chongzun Zhu, Hao Shen. Impact of polymicrobial periprothetic joint infection on staphylococcus aureus pathogenesis[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2019, 13(05): 589-595.

假体周围感染是关节置换术后严重的并发症,其中最常见的是金黄色葡萄球菌感染。然而,金葡菌经常与其他微生物在假体周围感染灶共存,迄今已有多篇文献报道金葡菌与其他微生物之间存在相互作用,包括凝固酶阴性葡萄球菌、铜绿假单胞菌以及白色念珠菌等。这些相互作用涉及影响生物膜形成能力、增加耐药性、改变毒力因子表达水平等。本文拟对关节假体多重感染对金葡菌致病特性的影响作简要综述。

Periprosthetic joint infection (PJI) is a devastating complication after arthroplasty and the predominant pathogen is staphylococcus aureus (S.aureus). However, it is undeniable that S. aureus often coexists with other microorganism around the infection sites. It has been reported that S. aureus may interact with other microbes such as coagulase negative staphylococci, pseudomonas aeruginosa, candida albicans, leading to an alternation of biofilm forming ability, antibiotic resistance and virulence expression pattern. This review summarized the impact of polymicrobial PJI on S. aureus pathogenesis.

[1]
Parvizi J, Pawasarat IM, Azzam KA, et al. Periprosthetic joint infection: the economic impact of methicillin-resistant infections[J]. J Arthroplasty, 2010, 25(6 Suppl): 103-107.
[2]
Kapadia BH, Berg RA, Daley JA, et al. Periprosthetic joint infection[J]. Lancet, 2016, 387(10016): 386-394.
[3]
Peel TN, Cheng AC, Buising KL, et al. Microbiological aetiology, epidemiology, and clinical profile of prosthetic joint infections: are current antibiotic prophylaxis guidelines effective? [J]. Antimicrob Agents Chemother, 2012, 56(5): 2386-2391.
[4]
Fernandes A, Dias M. The microbiological profiles of infected prosthetic implants with an emphasis on the organisms which form biofilms[J]. J Clin Diagn Res, 2013, 7(2): 219-223.
[5]
Janz V, Wassilew GI, Kribus M, et al. Improved identification of polymicrobial infection in total knee arthroplasty through sonicate fluid cultures[J]. Arch Orthop Trauma Surg, 2015, 135(10): 1453-1457.
[6]
袁俊,冯建民.人工关节置换术后假体周围感染的病原学诊断研究进展[J/CD].中华关节外科杂志(电子版),2016,10(4):432-435.
[7]
Lora-Tamayo J, Murillo O, Iribarren JA, et al. A large multicenter study of methicillin-susceptible and methicillin-resistant staphylococcus aureus prosthetic joint infections managed with implant retention[J]. Clin Infect Dis, 2013, 56(2): 182-194.
[8]
Tornero E, Senneville E, Euba G, et al. Characteristics of prosthetic joint infections due to Enterococcus sp and predictors of failure: a multi-national study[J]. Clin Microbiol Infect, 2014, 20(11): 1219-1224.
[9]
Rendueles O, Travier L, Latour-Lambert PA, et al. Screening of escherichia coli species biodiversity reveals new Biofilm-Associated antiadhesion polysaccharides[J]. MBio, 2011, 2(3): e00011-e00043.
[10]
Yu SC, Zhu XS, Zhou J, et al. Biofilm inhibition and pathogenicity attenuation in bacteria by Proteus mirabilis[J/OL]. R Soc Open Sci, 2018, 5(4): 170702 doi: 10.1098/rsos.170702.
[11]
Barros J, Grenho L, Fontenente S, et al. Staphylococcus aureus and Escherichia coli dual-species biofilms on nanohydroxyapatite loaded with CHX or ZnO nanoparticles[J]. J Biomed Mater Res A, 2017, 105(2): 491-497.
[12]
Liu WZ, Roder HL, Madsen JS, et al. Interspecific bacterial interactions are reflected in multispecies biofilm spatial organization [J]. Front Microbiol, 2016, 7: 1366. doi: 10.3389/fmicb.2016.01366.
[13]
Arndt WF, Ritts RE. Synergism between staphylococci and proteus in mixed infection [J]. Proc Soc Exp Biol Med, 1961, 108: 166-169.
[14]
Arndt WF, Young EJ, Ritts RE. Staphylococcal enhancement of susceptibility to bacterial infection in the mouse[J]. J Infect Dis, 1963, 112(3): 255-263.
[15]
Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci[J]. Clin Microbiol Rev, 2014, 27(4): 870-926.
[16]
Frank DN, Feazel LM, Bessesen MT, et al. The human nasal microbiota and staphylococcus aureus carriage[J/OL]. PLoS One, 2010, 5(5): e10598. doi: 10.1371/journal.pone.0010598.
[17]
Iwase T, Uehara Y, Shinji H, et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization[J]. Nature, 2010, 465(7296): 346-349.
[18]
Sugimoto S, Iwamoto T, Takada K, et al. Staphylococcus epidermidis Esp degrades specific proteins associated with staphylococcus aureus biofilm formation and host-pathogen interaction[J]. J Bacteriol, 2013, 195(8): 1645-1655.
[19]
Swift S, Throup JP, Williams P, et al. Quorum sensing:a population-density component in the determination of bacterial phenotype[J]. Trends Biochem Sci, 1996, 21(6): 214-219.
[20]
Le KY, Otto M. Quorum-sensing regulation in staphylococci-an overview [J]. Front Microbiol, 2015, 6: 1174. doi: 10.3389/fmicb.2015.01174.
[21]
Otto M, Süssmuth R, Vuong C, et al. Inhibition of virulence factor expression in staphylococcus aureus by the staphylococcus epidermidis agr pheromone and derivatives[J]. FEBS Lett, 1999, 450(3): 257-262.
[22]
Otto M, Echner H, Voelter W, et al. Pheromone cross-inhibition between staphylococcus aureus and staphylococcus epidermidis[J]. Infect Immun, 2001, 69(3): 1957-1960.
[23]
Paharik AE, Parlet CP, Chung N, et al. Coagulase-negative staphylococcal strain prevents staphylococcus aureus colonization and skin infection by blocking quorum sensing[J]. Cell Host Microbe, 2017, 22(6): 746-756.
[24]
Ji GY, Pei WH, Zhang LS, et al. Staphylococcus intermedius produces a functional agr autoinducing peptide containing a cyclic lactone[J]. J Bacteriol, 2005, 187(9): 3139-3150.
[25]
Zipperer A, Konnerth MC, Laux C, et al. Human commensals producing a novel antibiotic impair pathogen colonization[J]. Nature, 2016, 535(7613): 511-516.
[26]
Harrison F. Microbial ecology of the cystic fibrosis lung[J]. Microbiology, 2007, 153(4): 917-923.
[27]
Gjødsbøl K, Christensen JJ, Karlsmark T, et al. Multiple bacterial species reside in chronic wounds:a longitudinal study[J]. Int Wound J, 2006, 3(3): 225-231.
[28]
James GA, Swogger E, Wolcott R, et al. Biofilms in chronic wounds[J]. Wound Repair Regen, 2008, 16(1): 37-44.
[29]
Hotterbeekx A, Kumar-Singh S, Goossens HA. In vivo and in vitro interactions between pseudomonas aeruginosa and staphylococcus spp [J/OL]. Front Cell Infect Microbiol, 2017, 7: 106. doi: 10.3389/fcimb.2017.00106.
[30]
Lightbown JW, Jackson FL. Inhibition of cytochrome systems of heart muscle and certain bacteria by the antagonists of dihydrostreptomycin: 2-alkyl-4-hydroxyquinoline N-oxides[J]. Biochem J, 1956, 63(1): 130-137.
[31]
Machan ZA, Taylor GW, Pitt TL, et al. 2-heptyl-4-hydroxyquinoline N-oxide,an antistaphylococcal agent produced by pseudomonas aeruginosa[J]. J Antimicrob Chemother, 1992, 30(5): 615-623.
[32]
Hoffman LR, Déziel E, D’argenio DA, et al. Selection for staphylococcus aureus small-colony variants due to growth in the presence of pseudomonas aeruginosa[J]. Proc Natl Acad Sci USA, 2006, 103(52): 19890-19895.
[33]
Biswas L, Biswas R, Schlag M, et al. Small-colony variant selection as a survival strategy for staphylococcus aureus in the presence of pseudomonas aeruginosa[J]. Appl Environ Microbiol, 2009, 75(21): 6910-6912.
[34]
Neut D, Van Der Mei HC, Bulstra SK. The role of small-colony variants in failure to diagnose and treat biofilm infections in orthopedics [J]. Acta Orthop, 2007, 78(3): 299-308.
[35]
Bergoge-Bérézin E. Resistance and new antibiotic strategies. The problem with staphylococcus[J]. Presse Med, 2000,29(37):2018-2021.
[36]
Park JH, Lee JH, Cho MH, et al. Acceleration of protease effect on staphylococcus aureus biofilm dispersal[J]. FEMS Microbiol Lett, 2012, 335(1): 31-38.
[37]
De Araujo LV, Guimarães CR, Da Silva Marquita RL, et al. Rhamnolipid and surfactin: anti-adhesion/antibiofilm and antimicrobial effects[J]. Food Control, 2016, 63: 171-178.
[38]
Davies DG, Marques CN. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms[J]. J Bacteriol, 2009, 191(5): 1393-1403.
[39]
Mitchell G, Séguin DL, Asselin A, et al. Staphylococcus aureus sigma B-dependent emergence of small-colony variants and biofilm production following exposure to pseudomonas aeruginosa 4-hydroxy-2-heptylquinoline-N-oxide [J/OL]. BMC Microbiol, 2010, 10(1): 33. doi: 10.1186/1471-2180-10-33
[40]
Fugère A, Seguin DL, Mitchell GA, et al. Interspecific small molecule interactions between clinical isolates of pseudomonas aeruginosa and staphylococcus aureus from adult cystic fibrosis patients [J/OL]. PLoS One, 2014, 9(1): e86705. doi: 10.1371/journal.pone.0086705.
[41]
Alves PM, Al-Badi E, Withycombe C, et al. Interaction between staphylococcus aureus and pseudomonas aeruginosa is beneficial for colonisation and pathogenicity in a mixed biofilm [J/OL]. Pathog Dis, 2018, 76(1): fty003. doi: 10.1093/femspd/fty003.
[42]
Gomes M, Nitschke M. Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria[J]. Food Control, 2012, 25(2): 441-447.
[43]
Beenken KE, Blevins JS, Smeltzer MS. Mutation of sarA in staphylococcus aureus limits biofilm formation[J]. Infect Immun, 2003, 71(7): 4206-4211.
[44]
Entenza JM, Moreillon P, Senn MM, et al. Role of sigmaB in the expression of staphylococcus aureus cell wall adhesins ClfA and FnbA and contribution to infectivity in a rat model of experimental endocarditis[J]. Infect Immun, 2005, 73(2): 990-998.
[45]
Bischoff M, Dunman P, Kormanec J, et al. Microarray-based analysis of the staphylococcus aureus sigmaB regulon[J]. J Bacteriol, 2004, 186(13): 4085-4099.
[46]
Mashburn LM, Jett AM, Akins DR, et al. Staphylococcus aureus serves as an iron source for pseudomonas aeruginosa during in vivo coculture[J]. J Bacteriol, 2005, 187(2): 554-566.
[47]
Pastar I, Nusbaum AG, Gil J, et al. Interactions of methicillin resistant staphylococcus aureus USA300 and pseudomonas aeruginosa in polymicrobial wound infection [J/OL]. PLoS One, 2013, 8(2): e56846. doi: 10.1371/journal.pone.0056846
[48]
Lindsay AK, Hogan DA. Candida albicans: molecular interactions with pseudomonas aeruginosa and staphylococcus aureus [J]. Fungal Biol Rev, 2014, 28(4): 85-96.
[49]
Klotz SA, Chasin BS, Powell B, et al. Polymicrobial bloodstream infections involving Candida species:analysis of patients and review of the literature[J]. Diagn Microbiol Infect Dis, 2007, 59(4): 401-406.
[50]
Fehrmann C, Jurk K, Bertling A, et al. Role for the fibrinogen-binding proteins coagulase and Efb in the staphylococcus aureus-candida interaction[J]. Int J Med Microbiol, 2013, 303(5): 230-238.
[51]
Lee LY, Höök M, Haviland D, et al. Inhibition of complement activation by a secreted staphylococcus aureus protein[J]. J Infect Dis, 2004, 190(3): 571-579.
[52]
Kaminishi H, Miyaguchi H, Tamaki T, et al. Degradation of humoral host defense by candida albicans proteinase [J]. Infect Immun, 1995, 63(3): 984-988.
[53]
Zago CE, Silva S, Sanitá PV, et al. Dynamics of biofilm formation and the interaction between candida albicans and methicillin-susceptible (MSSA) and -resistant staphylococcus aureus (MRSA) [J/OL]. PLoS One, 2015, 10(4): e0123206. doi: 10.1371/journal.pone.0123206
[54]
Harriott MM, Noverr MC. Candida albicans and staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance[J]. Antimicrob Agents Chemother, 2009, 53(9): 3914-3922.
[55]
Harriott MM, Noverr MC. Ability of candida albicans mutants to induce staphylococcus aureus vancomycin resistance during polymicrobial biofilm formation[J]. Antimicrob Agents Chemother, 2010, 54(9): 3746-3755.
[56]
Adam B, Baillie GS, Douglas LJ. Mixed species biofilms of candida albicans and staphylococcus epidermidis[J]. J Med Microbiol, 2002, 51(4): 344-349.
[57]
Peters BM, Ovchinnikova ES, Krom BP, et al. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p[J]. Microbiology, 2012, 158(12): 2975-2986.
[58]
Schlecht LM, Peters BM, Krom BP, et al. Systemic staphylococcus aureus infection mediated by candida albicans hyphal invasion of mucosal tissue[J]. Microbiology, 2015, 161(1): 168-181.
[59]
Allison DL. Vancomycin tolerance and host responses in staphylococcus aureus-candida albicans dual-species biofilm infections. Maryland, USA: University of Maryland, 2017.
[60]
Inoue Y, Togashi N, Hamashima H. Farnesol-induced disruption of the staphylococcus aureus cytoplasmic membrane[J]. Biol Pharm Bull, 2016, 39(5): 653-656.
[61]
Unnanuntana A, Bonsignore L, Shirtliff ME, et al. The effects of farnesol on staphylococcus aureus biofilms and osteoblasts. An in vitro study[J]. J Bone Joint Surg Am, 2009, 91(11): 2683-2692.
[62]
Regev-Yochay G, Dagan R, Raz M, et al. Association between carriage of streptococcus pneumoniae and staphylococcus aureus in children[J]. JAMA, 2004, 292(6): 716-720.
[63]
Bogaert D, Van Belkum A, Sluijter M, et al. Colonisation by streptococcus pneumoniae and staphylococcus aureus in healthy children[J]. Lancet, 2004, 363(9424): 1871-1872.
[64]
Reiss-Mandel A, Regev-Yochay G. Staphylococcus aureus and streptococcus pneumoniae interaction and response to pneumococcal vaccination: myth or reality?[J]. Hum Vaccin Immunother, 2016, 12(2): 351-357.
[65]
Regev-Yochay G, Trzciński K, Thompson CM, et al. Interference between streptococcus pneumoniae and staphylococcus aureus: in vitro hydrogen peroxide-mediated killing by streptococcus pneumoniae[J]. J Bacteriol, 2006, 188(13): 4996-5001.
[66]
Mcnally LM, Jeena PM, Gajee K, et al. Lack of association between the nasopharyngeal carriage of streptococcus pneumoniae and staphylococcus aureus in HIV-1-infected South African children[J]. J Infect Dis, 2006, 194(3): 385-390.
[67]
Lijek RS, Luque SL, Liu Q, et al. Protection from the acquisition of staphylococcus aureus nasal carriage by cross-reactive antibody to a pneumococcal dehydrogenase[J]. Proc Natl Acad Sci USA, 2012, 109(34): 13823-13828.
[68]
Leclercq R, Derlot E, Duval J, et al. Plasmid-mediated resistance to vancomycin and teicoplanin in enterococcus faecium[J]. N Engl J Med, 1988, 319(3): 157-161.
[69]
Weigel LM, Tenover FC. Genetic analysis of a high-level vancomycin-resistant isolate of staphylococcus aureus[J]. Science, 2003, 302(5650): 1569-1571.
[70]
Muscholl-Silberhorn A, Samberger E, Wirth R. Why does staphylococcus aureus secrete an enterococcus faecalis-specific pheromone?[J]. FEMS Microbiol Lett, 1997,157(2): 261-266.
[71]
Périchon B, Courvalin P. VanA-type vancomycin-resistant staphylococcus aureus[J]. Antimicrob Agents Chemother, 2009, 53(11): 4580-4587.
[72]
Tan TL, Kheir MM, Tan DD, et al. Polymicrobial periprosthetic joint infections: outcome of treatment and identification of risk factors [J]. J Bone Joint Surg Am, 2016, 98(24): 2082-2088.
[73]
Boyle KK, Kuo FC, Horcajada JP, et al. General assembly, treatment, antimicrobials: proceedings of international consensus on orthopedic infections [J]. J Arthroplasty, 2019, 34(2, S): S225-S237.
[74]
Wimmer MD, Friedrich MJ, Randau TM, et al. Polymicrobial infections reduce the cure rate in prosthetic joint infections: outcome analysis with two-stage exchange and follow-up≥two years [J]. Int Orthop, 2016, 40(7): 1367-1373.
[75]
Marculescu CE, Cantey JR. Polymicrobial prosthetic joint infections: risk factors and outcome[J]. Clin Orthop Relat Res, 2008, 466(6): 1397-1404.
[76]
Nair N, Biswas R, Göetz F, et al. Impact of staphylococcus aureus on pathogenesis in polymicrobial infections[J]. Infect Immun, 2014, 82(6): 2162-2169.
[1] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[2] 谭俊, 詹丽娟, 吴凌霄, 蔡可晗, 江旭, 陈涛, 许建中. 保留部分假体的翻修术治疗慢性髋关节假体周围感染[J]. 中华关节外科杂志(电子版), 2023, 17(03): 318-325.
[3] 温志嘉, 钟浩博, 郑少伟, 黎旭, 王胤, 曾国威, 王圣杰, 孙春汉. 人工关节置换术后假体周围真菌感染研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(01): 60-64.
[4] 唐一仑, 杨佩, 宋金辉, 王伟, 张晨, 王坤正. 无症状性菌尿与无感染患者假体周围感染风险比较[J]. 中华关节外科杂志(电子版), 2022, 16(02): 174-180.
[5] 郝林杰, 张育民, 文鹏飞, 宋伟, 王军, 马涛. 宏基因二代测序在假体周围感染病原菌检测中的应用[J]. 中华关节外科杂志(电子版), 2021, 15(02): 185-191.
[6] 殷晗, 王大伟, 李伟, 苑振峰, 徐明涛, 王凯, 哈承志, 许笃亮. 基因二代测序技术在假体周围感染诊断中的价值[J]. 中华关节外科杂志(电子版), 2020, 14(06): 657-664.
[7] 蒋峰, 余进龙, 张飞洋, 杜佳飞, 沈灏. 髓源性抑制细胞在假体关节感染中的研究进展[J]. 中华关节外科杂志(电子版), 2020, 14(05): 592-596.
[8] 朱崇尊, 余进龙, 郭阁永, 蒋峰, 张飞洋, 王坚镪, 汤瑾, 沈灏. 红色荧光金葡菌假体感染临床株的构建[J]. 中华关节外科杂志(电子版), 2020, 14(02): 159-166.
[9] 吴奇桥, 黄子达, 杨滨, 李文波, 张文明. 原位免疫荧光杂交技术诊断人工关节假体周围感染[J]. 中华关节外科杂志(电子版), 2020, 14(01): 73-77.
[10] 林志炯, 曾焘, 高大伟, 胡柏均, 张会良. 可吸收载药型硫酸钙治疗关节置换术后早期感染[J]. 中华关节外科杂志(电子版), 2019, 13(04): 498-502.
[11] 杨闯, 朱崇尊, 何人可, 郭阁永, 汤瑾, 沈灏. 大肠杆菌-类中性粒细胞-金属片共培养模型的构建[J]. 中华关节外科杂志(电子版), 2019, 13(01): 64-72.
[12] 李舰, 张卫国, 蒋林, 柳昊, 周忠, 徐钧. 人工膝关节翻修术治疗初次置换术后假体周围感染的早期临床疗效[J]. 中华关节外科杂志(电子版), 2018, 12(02): 284-289.
[13] 肖甜甜, 高淑强, 巨容, 李华英. 新生儿化脓性腮腺炎临床分析及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(03): 335-340.
[14] 伍婷, 陈娇, 刘丹, 代小惠, 罗红. 儿童感染性心内膜炎临床与超声心动图特点[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(06): 676-680.
[15] 杨飞, 王国栋, 赵晓伟. 关节置换术后假体周围感染诊断的研究进展[J]. 中华诊断学电子杂志, 2018, 06(02): 139-143.
阅读次数
全文


摘要