切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (05) : 592 -596. doi: 10.3877/cma.j.issn.1674-134X.2020.05.012

所属专题: 文献

综述

髓源性抑制细胞在假体关节感染中的研究进展
蒋峰1, 余进龙1, 张飞洋1, 杜佳飞1, 沈灏1,()   
  1. 1. 200030 上海交通大学附属第六人民医院骨科
  • 收稿日期:2020-04-07 出版日期:2020-10-01
  • 通信作者: 沈灏
  • 基金资助:
    国家自然科学基金(81772364); 上海市科委西医引导项目(19411962600)

Advances in impact of myeloid-derived suppressor cells on prosthetic joint infections

Feng Jiang1, Jinlong Yu1, Feiyang Zhang1, Jiafei Du1, Hao Shen1,()   

  1. 1. Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200030, China
  • Received:2020-04-07 Published:2020-10-01
  • Corresponding author: Hao Shen
  • About author:
    Corresponding author: Shen Hao, Email:
引用本文:

蒋峰, 余进龙, 张飞洋, 杜佳飞, 沈灏. 髓源性抑制细胞在假体关节感染中的研究进展[J/OL]. 中华关节外科杂志(电子版), 2020, 14(05): 592-596.

Feng Jiang, Jinlong Yu, Feiyang Zhang, Jiafei Du, Hao Shen. Advances in impact of myeloid-derived suppressor cells on prosthetic joint infections[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(05): 592-596.

假体关节感染(PJI)是关节置换手术后一个严重的并发症,金黄色葡萄球菌(金葡菌)是导致PJI最常见的病原菌,生物膜的形成使得金葡菌可以抵御抗生素和宿主免疫系统的攻击,增加了PJI的治疗难度。骨髓源性抑制细胞(MDSCs)可以抑制宿主对金葡菌的免疫反应,在维持金葡生物膜形成及导致PJI慢性化过程中起重要作用。本文拟对骨髓源性抑制细胞在金葡菌所致假体关节感染中的作用及相关研究进展作一综述。

Prosthetic joint infection (PJI) is a serious complication after arthroplasty and staphylococcus aureus(S. aureus) is the most common pathogen of PJI. Biofilm formation allows S. aureus to resist attacks from antibiotics and the host's immune system, which Increases the difficulty of PJI treatment. Myeloid-derived suppressor cells can inhibit the host's immune response to Staphylococcus aureus and play an important role in maintaining the formation of S. aureus biofilms and causing chronic PJI. This review aimed to illustrate the effect of myeloid-derived suppressor cells on staphylococcal aureus induced prosthetic joint infections and advances achieved in this area.

[1]
Barrett L, Atkins B. The clinical presentation of prosthetic joint infection [J/OL]. J Antimicrob Chemother, 2014, 69 (Suppl 1): i25-27. doi:10.1093/jac/dku250.
[2]
Pulido L, Ghanem E, Joshi A, et al. Periprosthetic joint infection: the incidence, timing, and predisposing factors[J]. Clin Orthop Relat Res, 2008, 466(7): 1710-1715.
[3]
Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030[J]. J Bone Joint Surg Am, 2007, 89(4): 780-785.
[4]
Kaplan SL. Recent lessons for the management of bone and joint infections[J]. J Infect, 2014, 68(Suppl 1): S51-S56.
[5]
Bhattacharya M, Wozniak DJ, Stoodley P, et al. Prevention and treatment of staphylococcus aureus biofilms[J]. Expert Rev Anti Infect Ther, 2015, 13(12): 1499-1516.
[6]
Girard LP, Ceri H, Gibb AP, et al. MIC versus MBEC to determine the antibiotic sensitivity of staphylococcus aureus in peritoneal dialysis peritonitis[J]. Perit Dial Int, 2010, 30(6): 652-656.
[7]
Howlin RP, Brayford MJ, Webb JS, et al. Antibiotic-loaded synthetic Calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections[J]. Antimicrob Agents Chemother, 2015, 59(1): 111-120.
[8]
Heim CE, West SC, Ali H, et al. Heterogeneity of Ly6G(+) Ly6C(+) Myeloid-Derived suppressor cell infiltrates during staphylococcus aureus biofilm infection[J]. Infect Immun, 2018, 86(12): e00618-e00684.
[9]
Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol, 2009, 9(3): 162-174.
[10]
Hanke ML, Heim CE, Angle A, et al. Targeting macrophage activation for the prevention and treatment of staphylococcus aureus biofilm infections[J]. J Immunol, 2013, 190(5): 2159-2168.
[11]
Heim CE, Vidlak D, Kielian T. Interleukin-10 production by myeloid-derived suppressor cells contributes to bacterial persistence during staphylococcus aureus orthopedic biofilm infection[J]. J Leukoc Biol, 2015, 98(6): 1003-1013.
[12]
Hanke ML, Angle A, Kielian T. MyD88-dependent signaling influences fibrosis and alternative macrophage activation during Staphylococcus aureus biofilm infection[J/OL]. PLoS One, 2012, 7(8): e42476. doi: 10.1371/journal.pone.0042476.
[13]
Yamada KJ, Heim CE, Aldrich AL, et al. Arginase-1 expression in myeloid cells regulates staphylococcus aureus planktonic but not biofilm infection [J]. Infect Immun, 2018, 86(7): e00206-e00218.
[14]
Heim CE, Vidlak D, Odvody J, et al. Human prosthetic joint infections are associated with myeloid-derived suppressor cells (MDSCs): implications for infection persistence[J]. J Orthop Res, 2018, 36(6): 1605-1613.
[15]
Gries CM, Kielian T. Staphylococcal biofilms and immune polarization during prosthetic joint infection [J]. J Am Acad Orthop Surg, 2017, 25(Suppl 1): S20-S24.
[16]
Gabrilovich DI, Bronte V, Chen SH, et al. The terminology issue for myeloid-derived suppressor cells [J]. Cancer Res, 2007, 67(1): 425-426.
[17]
Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function [J]. Trends Immunol, 2011, 32(1): 19-25.
[18]
Movahedi K, Guilliams M, Van Den Bossche J, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity [J]. Blood, 2008, 111(8): 4233-4244.
[19]
Bronte V, Brandau S, Chen SH, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards [J/OL]. Nat Commun, 2016, 7: 12150. doi:10.1038/ncomms12150.
[20]
Goldmann O, Beineke A, Medina E. Identification of a novel subset of myeloid-derived suppressor cells during chronic staphylococcal infection that resembles immature eosinophils[J]. J Infect Dis, 2017, 216(11): 1444-1451.
[21]
Esher SK, Fidel PL, Noverr MC. Candida/staphylococcal polymicrobial Intra-Abdominal infection: pathogenesis and perspectives for a novel form of trained innate immunity[J/OL]. J Fungi (Basel), 2019, 5(2): 37. doi:10.3390/jof5020037.
[22]
Youn J, Collazo M, Shalova IN, et al. Characterization of the Nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice[J]. J Leukoc Biol, 2012, 91(1): 167-181.
[23]
Ost M, Singh A, Peschel A, et al. Myeloid-derived suppressor cells in bacterial infections[J/OL]. Front Cell Infect Microbiol, 2016, 6: 37. doi:10.3389/fcimb.2016.00037.
[24]
Medina E, Hartl D. Myeloid-Derived suppressor cells in infection: a general overview[J]. J Innate Immun, 2018, 10(5/6): 407-413.
[25]
Dorhoi A, Du Plessis N. Monocytic myeloid-derived suppressor cells in chronic infections[J/OL]. Front Immunol, 2017, 8: 1895. doi:10.3389/fimmu.2017.01895.
[26]
Heim CE, Vidlak D, Scherr TD, et al. Myeloid-derived suppressor cells contribute to staphylococcus aureus orthopedic biofilm infection[J]. J Immunol, 2014, 192(8): 3778-3792.
[27]
Heim CE, Vidlak D, Scherr TD, et al. IL-12 promotes myeloid-derived suppressor cell recruitment and bacterial persistence during staphylococcus aureus orthopedic implant infection[J]. J Immunol, 2015, 194(8): 3861-3872.
[28]
Tebartz C, Horst SA, Sparwasser T, et al. A major role for myeloid-derived suppressor cells and a minor role for regulatory T cells in immunosuppression during staphylococcus aureus infection[J]. J Immunol, 2015, 194(3): 1100-1111.
[29]
Kusmartsev S, Nefedova Y, Yoder D, et al. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species[J]. J Immunol, 2004, 172(2): 989-999.
[30]
Mazzoni A, Bronte V, Visintin A, et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism[J]. J Immunol, 2002, 168(2): 689-695.
[31]
Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived Hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients[J]. Cancer Res, 2001, 61(12): 4756-4760.
[32]
Brown AF, Murphy AG, Lalor SJ, et al. Memory Th1 cells are protective in invasive staphylococcus aureus infection[J/OL]. PLoS Pathog, 2015, 11(11): e1005226. doi:10.1371/journal.ppat.1005226.
[33]
Lin L, Ibrahim AS, Xu X, et al. Th1-Th17 cells mediate protective adaptive immunity against staphylococcus aureus and Candida albicans infection in mice[J/OL]. PLoS Pathog, 2009, 5(12): e1000703. doi:10.1371/journal.ppat.1000703.
[34]
Fletcher M, Ramirez ME, Sierra RA, et al. l-Arginine depletion blunts antitumor t-cell responses by inducing myeloid-derived suppressor cells[J]. Cancer Res, 2015, 75(2): 275-283.
[35]
Pinton L, Solito S, Damuzzo V, et al. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression[J]. Oncotarget, 2016, 7(2): 1168-1184.
[36]
Makarenkova VP, Bansal V, Matta BM, et al. CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress[J]. J Immunol, 2006, 176(4): 2085-2094.
[37]
Rodriguez PC, Quiceno DG, Ochoa AC. L-arginine availability regulates T-lymphocyte cell-cycle progression[J]. Blood, 2007, 109(4): 1568-1573.
[38]
Rodriguez PC, Zea AH, Desalvo J, et al. L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes[J]. J Immunol, 2003, 171(3): 1232-1239.
[39]
Zhu X, Pribis JP, Rodriguez PC, et al. The central role of arginine catabolism in T-cell dysfunction and increased susceptibility to infection after physical injury[J]. Ann Surg, 2014, 259(1): 171-178.
[40]
Rodriguez PC, Quiceno DG, Zabaleta J, et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses[J]. Cancer Res, 2004, 64(16): 5839-5849.
[41]
Zabaleta J, Mcgee DJ, Zea AH, et al. Helicobacter pylori arginase inhibits T cell proliferation and reduces the expression of the TCR zeta-chain (CD3zeta)[J]. J Immunol, 2004, 173(1): 586-593.
[42]
Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends Immunol, 2004, 25(12): 677-686.
[43]
Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization [J]. Front Biosci, 2008, 13:453-461.
[44]
Delavary BM, Van Der Veer WM, Van Egmond M, et al. Macrophages in skin injury and repair[J]. Immunobiology, 2011, 216(7): 753-762.
[45]
Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions[J]. Immunity, 2010, 32(5): 593-604.
[46]
Mantovani A, Schioppa T, Porta C, et al. Role of tumor-associated macrophages in tumor progression and invasion[J]. Cancer Metastasis Rev, 2006, 25(3): 315-322.
[47]
Ho VW, Sly LM. Derivation and characterization of murine alternatively activated (M2) macrophages[J]. Methods Mol Biol, 2009, 531: 173-185.
[48]
Jetten N, Verbruggen S, Gijbels MJ, et al. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo[J]. Angiogenesis, 2014, 17(1): 109-118.
[49]
Huber S, Hoffmann R, Muskens F, et al. Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-L2[J]. Blood, 2010, 116(17): 3311-3320.
[50]
Thurlow LR, Hanke ML, Fritz T, et al. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo[J]. J Immunol, 2011, 186(11): 6585-6596.
[51]
Peng KT, Hsieh CC, Huang TY, et al. Staphylococcus aureus biofilm elicits the expansion, activation and polarization of myeloid-derived suppressor cells in vivo and in vitro[J/OL]. PLoS One, 2017, 12(8): e0183271. doi:10.1371/journal.pone.0183271.
[52]
Prabhakara R, Harro JM, Leid JG, et al. Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin-resistant Staphylococcus aureus[J]. Infect Immun, 2011, 79(12): 5010-5018.
[53]
Gordon S. Alternative activation of macrophages[J]. Nat Rev Immunol, 2003, 3(1): 23-35.
[54]
Zhou D, Huang C, Lin Z, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways[J]. Cell Signal, 2014, 26(2): 192-197.
[55]
Zhang BC, Li Z, Xu W, et al. Luteolin alleviates NLRP3 inflammasome activation and directs macrophage polarization in lipopolysaccharide-stimulated RAW264.7 cells[J]. Am J Transl Res, 2018, 10(1): 265-273.
[56]
Curiel TJ. Tregs and rethinking cancer immunotherapy[J]. J Clin Invest, 2007, 117(5): 1167-1174.
[57]
Knochelmann HM, Dwyer CJ, Bailey SR, et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity[J]. Cell Mol Immunol, 2018, 15(5): 458-469.
[58]
de Araújo EF, Feriotti C, Galdino NA, et al. The IDO-AhR axis controls Th17/Treg immunity in a pulmonary model of fungal infection[J/OL]. Front Immunol, 2017, 8: 880. doi:10.3389/fimmu.2017.00880.
[59]
Bézie S, Anegon I, Guillonneau C. Advances on CD8+ Treg cells and their potential in transplantation[J]. Transplantation, 2018, 102(9): 1467-1478.
[60]
Liu Q, Jing W, Wang W. Bifidobacterium lactis ameliorates the risk of food allergy in Chinese children by affecting relative percentage of Treg and Th17 cells[J/OL]. Can J Infect Dis Med Microbiol, 2018,2018: 4561038. doi:10.1155/2018/4561038.
[61]
Arpaia N, Green JA, Moltedo B, et al. A distinct function of regulatory T cells in tissue protection[J]. Cell, 2015, 162(5): 1078-1089.
[62]
Shevach EM. From vanilla to 28 flavors: multiple varieties of T regulatory cells[J]. Immunity, 2006, 25(2): 195-201.
[63]
Hsu P, Santner-Nanan B, Hu M, et al. IL-10 potentiates differentiation of human induced regulatory T cells via STAT3 and Foxo1[J]. J Immunol, 2015, 195(8): 3665-3674.
[64]
Pal S, Nandi M, Dey D, et al. Myeloid-derived suppressor cells induce regulatory T cells in chronically HBV infected patients with high levels of hepatitis B surface antigen and persist after antiviral therapy[J]. Aliment Pharmacol Ther, 2019, 49(10): 1346-1359.
[1] 农云洁, 黄小桂, 黄裕兰, 农恒荣. 超声在多重肺部感染诊断中的临床应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 872-876.
[2] 李小飞, 刘洪莉, 石丘玲, 田静, 李莉, 漆洪波, 罗欣. 自然分娩产妇低强度聚焦超声子宫复旧治疗防治产后出血的前瞻性随机对照研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 534-539.
[3] 刘欢, 邢皓, 常正奇, 张记. 机械敏感性离子通道蛋白Piezo1在感染相关疾病中的研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 263-269.
[4] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[5] 许月芳, 刘旺, 曾妙甜, 郭宇姝. 多粘菌素B和多粘菌素E治疗外科多重耐药菌感染临床疗效及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 700-703.
[6] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[7] 皮尔地瓦斯·麦麦提玉素甫, 李慧灵, 艾克拜尔·艾力, 李赞林, 王志, 克力木·阿不都热依木. 生物补片修补巨大复发性腹壁切口疝临床疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 624-628.
[8] 顾熙, 徐子宇, 周澍, 张吴楼, 张业鹏, 林昊, 刘宗航, 嵇振岭, 郑立锋. 腹股沟疝腹膜前间隙无张力修补术后补片感染10 例报道[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 665-669.
[9] 臧宇, 姚胜, 朱新勇, 戎世捧, 田智超. 低温等离子射频消融治疗腹壁疝术后补片感染的临床效果[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 687-692.
[10] 杨闯, 马雪. 腹壁疝术后感染的危险因素分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 693-696.
[11] 胡菊英, 李银华, 洪兰, 王宏勇, 丁先军, 李承美, 谭心海. 儿童感染大叶性肺炎与支气管肺炎临床特征分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 813-816.
[12] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[13] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
[14] 贾玲玲, 滕飞, 常键, 黄福, 刘剑萍. 心肺康复在各种疾病中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 859-862.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?