切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (05) : 592 -596. doi: 10.3877/cma.j.issn.1674-134X.2020.05.012

所属专题: 文献

综述

髓源性抑制细胞在假体关节感染中的研究进展
蒋峰1, 余进龙1, 张飞洋1, 杜佳飞1, 沈灏1,()   
  1. 1. 200030 上海交通大学附属第六人民医院骨科
  • 收稿日期:2020-04-07 出版日期:2020-10-01
  • 通信作者: 沈灏
  • 基金资助:
    国家自然科学基金(81772364); 上海市科委西医引导项目(19411962600)

Advances in impact of myeloid-derived suppressor cells on prosthetic joint infections

Feng Jiang1, Jinlong Yu1, Feiyang Zhang1, Jiafei Du1, Hao Shen1,()   

  1. 1. Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200030, China
  • Received:2020-04-07 Published:2020-10-01
  • Corresponding author: Hao Shen
  • About author:
    Corresponding author: Shen Hao, Email:
引用本文:

蒋峰, 余进龙, 张飞洋, 杜佳飞, 沈灏. 髓源性抑制细胞在假体关节感染中的研究进展[J]. 中华关节外科杂志(电子版), 2020, 14(05): 592-596.

Feng Jiang, Jinlong Yu, Feiyang Zhang, Jiafei Du, Hao Shen. Advances in impact of myeloid-derived suppressor cells on prosthetic joint infections[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(05): 592-596.

假体关节感染(PJI)是关节置换手术后一个严重的并发症,金黄色葡萄球菌(金葡菌)是导致PJI最常见的病原菌,生物膜的形成使得金葡菌可以抵御抗生素和宿主免疫系统的攻击,增加了PJI的治疗难度。骨髓源性抑制细胞(MDSCs)可以抑制宿主对金葡菌的免疫反应,在维持金葡生物膜形成及导致PJI慢性化过程中起重要作用。本文拟对骨髓源性抑制细胞在金葡菌所致假体关节感染中的作用及相关研究进展作一综述。

Prosthetic joint infection (PJI) is a serious complication after arthroplasty and staphylococcus aureus(S. aureus) is the most common pathogen of PJI. Biofilm formation allows S. aureus to resist attacks from antibiotics and the host's immune system, which Increases the difficulty of PJI treatment. Myeloid-derived suppressor cells can inhibit the host's immune response to Staphylococcus aureus and play an important role in maintaining the formation of S. aureus biofilms and causing chronic PJI. This review aimed to illustrate the effect of myeloid-derived suppressor cells on staphylococcal aureus induced prosthetic joint infections and advances achieved in this area.

[1]
Barrett L, Atkins B. The clinical presentation of prosthetic joint infection [J/OL]. J Antimicrob Chemother, 2014, 69 (Suppl 1): i25-27. doi:10.1093/jac/dku250.
[2]
Pulido L, Ghanem E, Joshi A, et al. Periprosthetic joint infection: the incidence, timing, and predisposing factors[J]. Clin Orthop Relat Res, 2008, 466(7): 1710-1715.
[3]
Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030[J]. J Bone Joint Surg Am, 2007, 89(4): 780-785.
[4]
Kaplan SL. Recent lessons for the management of bone and joint infections[J]. J Infect, 2014, 68(Suppl 1): S51-S56.
[5]
Bhattacharya M, Wozniak DJ, Stoodley P, et al. Prevention and treatment of staphylococcus aureus biofilms[J]. Expert Rev Anti Infect Ther, 2015, 13(12): 1499-1516.
[6]
Girard LP, Ceri H, Gibb AP, et al. MIC versus MBEC to determine the antibiotic sensitivity of staphylococcus aureus in peritoneal dialysis peritonitis[J]. Perit Dial Int, 2010, 30(6): 652-656.
[7]
Howlin RP, Brayford MJ, Webb JS, et al. Antibiotic-loaded synthetic Calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections[J]. Antimicrob Agents Chemother, 2015, 59(1): 111-120.
[8]
Heim CE, West SC, Ali H, et al. Heterogeneity of Ly6G(+) Ly6C(+) Myeloid-Derived suppressor cell infiltrates during staphylococcus aureus biofilm infection[J]. Infect Immun, 2018, 86(12): e00618-e00684.
[9]
Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol, 2009, 9(3): 162-174.
[10]
Hanke ML, Heim CE, Angle A, et al. Targeting macrophage activation for the prevention and treatment of staphylococcus aureus biofilm infections[J]. J Immunol, 2013, 190(5): 2159-2168.
[11]
Heim CE, Vidlak D, Kielian T. Interleukin-10 production by myeloid-derived suppressor cells contributes to bacterial persistence during staphylococcus aureus orthopedic biofilm infection[J]. J Leukoc Biol, 2015, 98(6): 1003-1013.
[12]
Hanke ML, Angle A, Kielian T. MyD88-dependent signaling influences fibrosis and alternative macrophage activation during Staphylococcus aureus biofilm infection[J/OL]. PLoS One, 2012, 7(8): e42476. doi: 10.1371/journal.pone.0042476.
[13]
Yamada KJ, Heim CE, Aldrich AL, et al. Arginase-1 expression in myeloid cells regulates staphylococcus aureus planktonic but not biofilm infection [J]. Infect Immun, 2018, 86(7): e00206-e00218.
[14]
Heim CE, Vidlak D, Odvody J, et al. Human prosthetic joint infections are associated with myeloid-derived suppressor cells (MDSCs): implications for infection persistence[J]. J Orthop Res, 2018, 36(6): 1605-1613.
[15]
Gries CM, Kielian T. Staphylococcal biofilms and immune polarization during prosthetic joint infection [J]. J Am Acad Orthop Surg, 2017, 25(Suppl 1): S20-S24.
[16]
Gabrilovich DI, Bronte V, Chen SH, et al. The terminology issue for myeloid-derived suppressor cells [J]. Cancer Res, 2007, 67(1): 425-426.
[17]
Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function [J]. Trends Immunol, 2011, 32(1): 19-25.
[18]
Movahedi K, Guilliams M, Van Den Bossche J, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity [J]. Blood, 2008, 111(8): 4233-4244.
[19]
Bronte V, Brandau S, Chen SH, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards [J/OL]. Nat Commun, 2016, 7: 12150. doi:10.1038/ncomms12150.
[20]
Goldmann O, Beineke A, Medina E. Identification of a novel subset of myeloid-derived suppressor cells during chronic staphylococcal infection that resembles immature eosinophils[J]. J Infect Dis, 2017, 216(11): 1444-1451.
[21]
Esher SK, Fidel PL, Noverr MC. Candida/staphylococcal polymicrobial Intra-Abdominal infection: pathogenesis and perspectives for a novel form of trained innate immunity[J/OL]. J Fungi (Basel), 2019, 5(2): 37. doi:10.3390/jof5020037.
[22]
Youn J, Collazo M, Shalova IN, et al. Characterization of the Nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice[J]. J Leukoc Biol, 2012, 91(1): 167-181.
[23]
Ost M, Singh A, Peschel A, et al. Myeloid-derived suppressor cells in bacterial infections[J/OL]. Front Cell Infect Microbiol, 2016, 6: 37. doi:10.3389/fcimb.2016.00037.
[24]
Medina E, Hartl D. Myeloid-Derived suppressor cells in infection: a general overview[J]. J Innate Immun, 2018, 10(5/6): 407-413.
[25]
Dorhoi A, Du Plessis N. Monocytic myeloid-derived suppressor cells in chronic infections[J/OL]. Front Immunol, 2017, 8: 1895. doi:10.3389/fimmu.2017.01895.
[26]
Heim CE, Vidlak D, Scherr TD, et al. Myeloid-derived suppressor cells contribute to staphylococcus aureus orthopedic biofilm infection[J]. J Immunol, 2014, 192(8): 3778-3792.
[27]
Heim CE, Vidlak D, Scherr TD, et al. IL-12 promotes myeloid-derived suppressor cell recruitment and bacterial persistence during staphylococcus aureus orthopedic implant infection[J]. J Immunol, 2015, 194(8): 3861-3872.
[28]
Tebartz C, Horst SA, Sparwasser T, et al. A major role for myeloid-derived suppressor cells and a minor role for regulatory T cells in immunosuppression during staphylococcus aureus infection[J]. J Immunol, 2015, 194(3): 1100-1111.
[29]
Kusmartsev S, Nefedova Y, Yoder D, et al. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species[J]. J Immunol, 2004, 172(2): 989-999.
[30]
Mazzoni A, Bronte V, Visintin A, et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism[J]. J Immunol, 2002, 168(2): 689-695.
[31]
Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived Hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients[J]. Cancer Res, 2001, 61(12): 4756-4760.
[32]
Brown AF, Murphy AG, Lalor SJ, et al. Memory Th1 cells are protective in invasive staphylococcus aureus infection[J/OL]. PLoS Pathog, 2015, 11(11): e1005226. doi:10.1371/journal.ppat.1005226.
[33]
Lin L, Ibrahim AS, Xu X, et al. Th1-Th17 cells mediate protective adaptive immunity against staphylococcus aureus and Candida albicans infection in mice[J/OL]. PLoS Pathog, 2009, 5(12): e1000703. doi:10.1371/journal.ppat.1000703.
[34]
Fletcher M, Ramirez ME, Sierra RA, et al. l-Arginine depletion blunts antitumor t-cell responses by inducing myeloid-derived suppressor cells[J]. Cancer Res, 2015, 75(2): 275-283.
[35]
Pinton L, Solito S, Damuzzo V, et al. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression[J]. Oncotarget, 2016, 7(2): 1168-1184.
[36]
Makarenkova VP, Bansal V, Matta BM, et al. CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress[J]. J Immunol, 2006, 176(4): 2085-2094.
[37]
Rodriguez PC, Quiceno DG, Ochoa AC. L-arginine availability regulates T-lymphocyte cell-cycle progression[J]. Blood, 2007, 109(4): 1568-1573.
[38]
Rodriguez PC, Zea AH, Desalvo J, et al. L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes[J]. J Immunol, 2003, 171(3): 1232-1239.
[39]
Zhu X, Pribis JP, Rodriguez PC, et al. The central role of arginine catabolism in T-cell dysfunction and increased susceptibility to infection after physical injury[J]. Ann Surg, 2014, 259(1): 171-178.
[40]
Rodriguez PC, Quiceno DG, Zabaleta J, et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses[J]. Cancer Res, 2004, 64(16): 5839-5849.
[41]
Zabaleta J, Mcgee DJ, Zea AH, et al. Helicobacter pylori arginase inhibits T cell proliferation and reduces the expression of the TCR zeta-chain (CD3zeta)[J]. J Immunol, 2004, 173(1): 586-593.
[42]
Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends Immunol, 2004, 25(12): 677-686.
[43]
Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization [J]. Front Biosci, 2008, 13:453-461.
[44]
Delavary BM, Van Der Veer WM, Van Egmond M, et al. Macrophages in skin injury and repair[J]. Immunobiology, 2011, 216(7): 753-762.
[45]
Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions[J]. Immunity, 2010, 32(5): 593-604.
[46]
Mantovani A, Schioppa T, Porta C, et al. Role of tumor-associated macrophages in tumor progression and invasion[J]. Cancer Metastasis Rev, 2006, 25(3): 315-322.
[47]
Ho VW, Sly LM. Derivation and characterization of murine alternatively activated (M2) macrophages[J]. Methods Mol Biol, 2009, 531: 173-185.
[48]
Jetten N, Verbruggen S, Gijbels MJ, et al. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo[J]. Angiogenesis, 2014, 17(1): 109-118.
[49]
Huber S, Hoffmann R, Muskens F, et al. Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-L2[J]. Blood, 2010, 116(17): 3311-3320.
[50]
Thurlow LR, Hanke ML, Fritz T, et al. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo[J]. J Immunol, 2011, 186(11): 6585-6596.
[51]
Peng KT, Hsieh CC, Huang TY, et al. Staphylococcus aureus biofilm elicits the expansion, activation and polarization of myeloid-derived suppressor cells in vivo and in vitro[J/OL]. PLoS One, 2017, 12(8): e0183271. doi:10.1371/journal.pone.0183271.
[52]
Prabhakara R, Harro JM, Leid JG, et al. Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin-resistant Staphylococcus aureus[J]. Infect Immun, 2011, 79(12): 5010-5018.
[53]
Gordon S. Alternative activation of macrophages[J]. Nat Rev Immunol, 2003, 3(1): 23-35.
[54]
Zhou D, Huang C, Lin Z, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways[J]. Cell Signal, 2014, 26(2): 192-197.
[55]
Zhang BC, Li Z, Xu W, et al. Luteolin alleviates NLRP3 inflammasome activation and directs macrophage polarization in lipopolysaccharide-stimulated RAW264.7 cells[J]. Am J Transl Res, 2018, 10(1): 265-273.
[56]
Curiel TJ. Tregs and rethinking cancer immunotherapy[J]. J Clin Invest, 2007, 117(5): 1167-1174.
[57]
Knochelmann HM, Dwyer CJ, Bailey SR, et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity[J]. Cell Mol Immunol, 2018, 15(5): 458-469.
[58]
de Araújo EF, Feriotti C, Galdino NA, et al. The IDO-AhR axis controls Th17/Treg immunity in a pulmonary model of fungal infection[J/OL]. Front Immunol, 2017, 8: 880. doi:10.3389/fimmu.2017.00880.
[59]
Bézie S, Anegon I, Guillonneau C. Advances on CD8+ Treg cells and their potential in transplantation[J]. Transplantation, 2018, 102(9): 1467-1478.
[60]
Liu Q, Jing W, Wang W. Bifidobacterium lactis ameliorates the risk of food allergy in Chinese children by affecting relative percentage of Treg and Th17 cells[J/OL]. Can J Infect Dis Med Microbiol, 2018,2018: 4561038. doi:10.1155/2018/4561038.
[61]
Arpaia N, Green JA, Moltedo B, et al. A distinct function of regulatory T cells in tissue protection[J]. Cell, 2015, 162(5): 1078-1089.
[62]
Shevach EM. From vanilla to 28 flavors: multiple varieties of T regulatory cells[J]. Immunity, 2006, 25(2): 195-201.
[63]
Hsu P, Santner-Nanan B, Hu M, et al. IL-10 potentiates differentiation of human induced regulatory T cells via STAT3 and Foxo1[J]. J Immunol, 2015, 195(8): 3665-3674.
[64]
Pal S, Nandi M, Dey D, et al. Myeloid-derived suppressor cells induce regulatory T cells in chronically HBV infected patients with high levels of hepatitis B surface antigen and persist after antiviral therapy[J]. Aliment Pharmacol Ther, 2019, 49(10): 1346-1359.
[1] 林文, 王雨萱, 许嘉悦, 王矜群, 王睿娜, 何董源, 樊沛. 人工关节置换登记系统的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 834-841.
[2] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[3] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[4] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[5] 杨瑞洲, 李国栋, 吴向阳. 腹股沟疝术后感染的治疗方法探讨[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 715-719.
[6] 徐金林, 陈征. 抗菌药物临床应用监测对腹股沟疝修补术预防用药及感染的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 720-723.
[7] 李静如, 王江玲, 吴向阳. 简易负压引流在腹股沟疝术后浅部感染中的疗效分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 745-749.
[8] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[9] 赵立力, 王魁向, 张小冲, 李志远. 血沉与C-反应蛋白比值在假体周围感染中的诊断价值分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 351-355.
[10] 卓少宏, 林秀玲, 周翠梅, 熊卫莲, 马兴灶. CD64指数、SAA/CRP、PCT联合检测在小儿消化道感染性疾病鉴别诊断中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 505-509.
[11] 李静静, 翟蕾, 赵海平, 郑波. 多囊肾合并囊肿的多重耐药菌感染一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 920-923.
[12] 李达, 张大涯, 陈润祥, 张晓冬, 黄士美, 陈晨, 曾凡, 陈世锔, 白飞虎. 海南省东方市幽门螺杆菌感染现状的调查与相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 858-864.
[13] 卓徐鹏, 刘颖, 任菁菁. 感染性疾病与老年人低蛋白血症的相关性研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 896-899.
[14] 李琪, 黄钟莹, 袁平, 关振鹏. 基于某三级医院的ICU多重耐药菌医院感染影响因素的分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 777-782.
[15] 杨艳丽, 陈昱, 赵若辰, 杜伟, 马海娟, 许珂, 张莉芸. 系统性红斑狼疮合并血流感染的危险因素及细菌学分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 694-699.
阅读次数
全文


摘要