[1] |
Barrett L, Atkins B. The clinical presentation of prosthetic joint infection [J/OL]. J Antimicrob Chemother, 2014, 69 (Suppl 1): i25-27. doi: 10.1093/jac/dku250.
|
[2] |
Pulido L, Ghanem E, Joshi A, et al. Periprosthetic joint infection: the incidence, timing, and predisposing factors[J]. Clin Orthop Relat Res, 2008, 466(7): 1710-1715.
|
[3] |
Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030[J]. J Bone Joint Surg Am, 2007, 89(4): 780-785.
|
[4] |
Kaplan SL. Recent lessons for the management of bone and joint infections[J]. J Infect, 2014, 68(Suppl 1): S51-S56.
|
[5] |
Bhattacharya M, Wozniak DJ, Stoodley P, et al. Prevention and treatment of staphylococcus aureus biofilms[J]. Expert Rev Anti Infect Ther, 2015, 13(12): 1499-1516.
|
[6] |
Girard LP, Ceri H, Gibb AP, et al. MIC versus MBEC to determine the antibiotic sensitivity of staphylococcus aureus in peritoneal dialysis peritonitis[J]. Perit Dial Int, 2010, 30(6): 652-656.
|
[7] |
Howlin RP, Brayford MJ, Webb JS, et al. Antibiotic-loaded synthetic Calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections[J]. Antimicrob Agents Chemother, 2015, 59(1): 111-120.
|
[8] |
Heim CE, West SC, Ali H, et al. Heterogeneity of Ly6G(+) Ly6C(+) Myeloid-Derived suppressor cell infiltrates during staphylococcus aureus biofilm infection[J]. Infect Immun, 2018, 86(12): e00618-e00684.
|
[9] |
Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol, 2009, 9(3): 162-174.
|
[10] |
Hanke ML, Heim CE, Angle A, et al. Targeting macrophage activation for the prevention and treatment of staphylococcus aureus biofilm infections[J]. J Immunol, 2013, 190(5): 2159-2168.
|
[11] |
Heim CE, Vidlak D, Kielian T. Interleukin-10 production by myeloid-derived suppressor cells contributes to bacterial persistence during staphylococcus aureus orthopedic biofilm infection[J]. J Leukoc Biol, 2015, 98(6): 1003-1013.
|
[12] |
Hanke ML, Angle A, Kielian T. MyD88-dependent signaling influences fibrosis and alternative macrophage activation during Staphylococcus aureus biofilm infection[J/OL]. PLoS One, 2012, 7(8): e42476. doi: 10.1371/journal.pone.0042476.
|
[13] |
Yamada KJ, Heim CE, Aldrich AL, et al. Arginase-1 expression in myeloid cells regulates staphylococcus aureus planktonic but not biofilm infection [J]. Infect Immun, 2018, 86(7): e00206-e00218.
|
[14] |
Heim CE, Vidlak D, Odvody J, et al. Human prosthetic joint infections are associated with myeloid-derived suppressor cells (MDSCs): implications for infection persistence[J]. J Orthop Res, 2018, 36(6): 1605-1613.
|
[15] |
Gries CM, Kielian T. Staphylococcal biofilms and immune polarization during prosthetic joint infection [J]. J Am Acad Orthop Surg, 2017, 25(Suppl 1): S20-S24.
|
[16] |
Gabrilovich DI, Bronte V, Chen SH, et al. The terminology issue for myeloid-derived suppressor cells [J]. Cancer Res, 2007, 67(1): 425-426.
|
[17] |
Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function [J]. Trends Immunol, 2011, 32(1): 19-25.
|
[18] |
Movahedi K, Guilliams M, Van Den Bossche J, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity [J]. Blood, 2008, 111(8): 4233-4244.
|
[19] |
Bronte V, Brandau S, Chen SH, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards [J/OL]. Nat Commun, 2016, 7: 12150. doi: 10.1038/ncomms12150.
|
[20] |
Goldmann O, Beineke A, Medina E. Identification of a novel subset of myeloid-derived suppressor cells during chronic staphylococcal infection that resembles immature eosinophils[J]. J Infect Dis, 2017, 216(11): 1444-1451.
|
[21] |
Esher SK, Fidel PL, Noverr MC. Candida/staphylococcal polymicrobial Intra-Abdominal infection: pathogenesis and perspectives for a novel form of trained innate immunity[J/OL]. J Fungi (Basel), 2019, 5(2): 37. doi: 10.3390/jof5020037.
|
[22] |
Youn J, Collazo M, Shalova IN, et al. Characterization of the Nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice[J]. J Leukoc Biol, 2012, 91(1): 167-181.
|
[23] |
Ost M, Singh A, Peschel A, et al. Myeloid-derived suppressor cells in bacterial infections[J/OL]. Front Cell Infect Microbiol, 2016, 6: 37. doi: 10.3389/fcimb.2016.00037.
|
[24] |
Medina E, Hartl D. Myeloid-Derived suppressor cells in infection: a general overview[J]. J Innate Immun, 2018, 10(5/6): 407-413.
|
[25] |
Dorhoi A, Du Plessis N. Monocytic myeloid-derived suppressor cells in chronic infections[J/OL]. Front Immunol, 2017, 8: 1895. doi: 10.3389/fimmu.2017.01895.
|
[26] |
Heim CE, Vidlak D, Scherr TD, et al. Myeloid-derived suppressor cells contribute to staphylococcus aureus orthopedic biofilm infection[J]. J Immunol, 2014, 192(8): 3778-3792.
|
[27] |
Heim CE, Vidlak D, Scherr TD, et al. IL-12 promotes myeloid-derived suppressor cell recruitment and bacterial persistence during staphylococcus aureus orthopedic implant infection[J]. J Immunol, 2015, 194(8): 3861-3872.
|
[28] |
Tebartz C, Horst SA, Sparwasser T, et al. A major role for myeloid-derived suppressor cells and a minor role for regulatory T cells in immunosuppression during staphylococcus aureus infection[J]. J Immunol, 2015, 194(3): 1100-1111.
|
[29] |
Kusmartsev S, Nefedova Y, Yoder D, et al. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species[J]. J Immunol, 2004, 172(2): 989-999.
|
[30] |
Mazzoni A, Bronte V, Visintin A, et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism[J]. J Immunol, 2002, 168(2): 689-695.
|
[31] |
Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived Hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients[J]. Cancer Res, 2001, 61(12): 4756-4760.
|
[32] |
Brown AF, Murphy AG, Lalor SJ, et al. Memory Th1 cells are protective in invasive staphylococcus aureus infection[J/OL]. PLoS Pathog, 2015, 11(11): e1005226. doi: 10.1371/journal.ppat.1005226.
|
[33] |
Lin L, Ibrahim AS, Xu X, et al. Th1-Th17 cells mediate protective adaptive immunity against staphylococcus aureus and Candida albicans infection in mice[J/OL]. PLoS Pathog, 2009, 5(12): e1000703. doi: 10.1371/journal.ppat.1000703.
|
[34] |
Fletcher M, Ramirez ME, Sierra RA, et al. l-Arginine depletion blunts antitumor t-cell responses by inducing myeloid-derived suppressor cells[J]. Cancer Res, 2015, 75(2): 275-283.
|
[35] |
Pinton L, Solito S, Damuzzo V, et al. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression[J]. Oncotarget, 2016, 7(2): 1168-1184.
|
[36] |
Makarenkova VP, Bansal V, Matta BM, et al. CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress[J]. J Immunol, 2006, 176(4): 2085-2094.
|
[37] |
Rodriguez PC, Quiceno DG, Ochoa AC. L-arginine availability regulates T-lymphocyte cell-cycle progression[J]. Blood, 2007, 109(4): 1568-1573.
|
[38] |
Rodriguez PC, Zea AH, Desalvo J, et al. L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes[J]. J Immunol, 2003, 171(3): 1232-1239.
|
[39] |
Zhu X, Pribis JP, Rodriguez PC, et al. The central role of arginine catabolism in T-cell dysfunction and increased susceptibility to infection after physical injury[J]. Ann Surg, 2014, 259(1): 171-178.
|
[40] |
Rodriguez PC, Quiceno DG, Zabaleta J, et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses[J]. Cancer Res, 2004, 64(16): 5839-5849.
|
[41] |
Zabaleta J, Mcgee DJ, Zea AH, et al. Helicobacter pylori arginase inhibits T cell proliferation and reduces the expression of the TCR zeta-chain (CD3zeta)[J]. J Immunol, 2004, 173(1): 586-593.
|
[42] |
Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends Immunol, 2004, 25(12): 677-686.
|
[43] |
Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization [J]. Front Biosci, 2008, 13:453-461.
|
[44] |
Delavary BM, Van Der Veer WM, Van Egmond M, et al. Macrophages in skin injury and repair[J]. Immunobiology, 2011, 216(7): 753-762.
|
[45] |
Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions[J]. Immunity, 2010, 32(5): 593-604.
|
[46] |
Mantovani A, Schioppa T, Porta C, et al. Role of tumor-associated macrophages in tumor progression and invasion[J]. Cancer Metastasis Rev, 2006, 25(3): 315-322.
|
[47] |
Ho VW, Sly LM. Derivation and characterization of murine alternatively activated (M2) macrophages[J]. Methods Mol Biol, 2009, 531: 173-185.
|
[48] |
Jetten N, Verbruggen S, Gijbels MJ, et al. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo[J]. Angiogenesis, 2014, 17(1): 109-118.
|
[49] |
Huber S, Hoffmann R, Muskens F, et al. Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-L2[J]. Blood, 2010, 116(17): 3311-3320.
|
[50] |
Thurlow LR, Hanke ML, Fritz T, et al. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo[J]. J Immunol, 2011, 186(11): 6585-6596.
|
[51] |
Peng KT, Hsieh CC, Huang TY, et al. Staphylococcus aureus biofilm elicits the expansion, activation and polarization of myeloid-derived suppressor cells in vivo and in vitro[J/OL]. PLoS One, 2017, 12(8): e0183271. doi: 10.1371/journal.pone.0183271.
|
[52] |
Prabhakara R, Harro JM, Leid JG, et al. Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin-resistant Staphylococcus aureus[J]. Infect Immun, 2011, 79(12): 5010-5018.
|
[53] |
Gordon S. Alternative activation of macrophages[J]. Nat Rev Immunol, 2003, 3(1): 23-35.
|
[54] |
Zhou D, Huang C, Lin Z, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways[J]. Cell Signal, 2014, 26(2): 192-197.
|
[55] |
Zhang BC, Li Z, Xu W, et al. Luteolin alleviates NLRP3 inflammasome activation and directs macrophage polarization in lipopolysaccharide-stimulated RAW264.7 cells[J]. Am J Transl Res, 2018, 10(1): 265-273.
|
[56] |
Curiel TJ. Tregs and rethinking cancer immunotherapy[J]. J Clin Invest, 2007, 117(5): 1167-1174.
|
[57] |
Knochelmann HM, Dwyer CJ, Bailey SR, et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity[J]. Cell Mol Immunol, 2018, 15(5): 458-469.
|
[58] |
de Araújo EF, Feriotti C, Galdino NA, et al. The IDO-AhR axis controls Th17/Treg immunity in a pulmonary model of fungal infection[J/OL]. Front Immunol, 2017, 8: 880. doi: 10.3389/fimmu.2017.00880.
|
[59] |
Bézie S, Anegon I, Guillonneau C. Advances on CD8+ Treg cells and their potential in transplantation[J]. Transplantation, 2018, 102(9): 1467-1478.
|
[60] |
Liu Q, Jing W, Wang W. Bifidobacterium lactis ameliorates the risk of food allergy in Chinese children by affecting relative percentage of Treg and Th17 cells[J/OL]. Can J Infect Dis Med Microbiol, 2018,2018: 4561038. doi: 10.1155/2018/4561038.
|
[61] |
Arpaia N, Green JA, Moltedo B, et al. A distinct function of regulatory T cells in tissue protection[J]. Cell, 2015, 162(5): 1078-1089.
|
[62] |
Shevach EM. From vanilla to 28 flavors: multiple varieties of T regulatory cells[J]. Immunity, 2006, 25(2): 195-201.
|
[63] |
Hsu P, Santner-Nanan B, Hu M, et al. IL-10 potentiates differentiation of human induced regulatory T cells via STAT3 and Foxo1[J]. J Immunol, 2015, 195(8): 3665-3674.
|
[64] |
Pal S, Nandi M, Dey D, et al. Myeloid-derived suppressor cells induce regulatory T cells in chronically HBV infected patients with high levels of hepatitis B surface antigen and persist after antiviral therapy[J]. Aliment Pharmacol Ther, 2019, 49(10): 1346-1359.
|