切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (06) : 657 -664. doi: 10.3877/cma.j.issn.1674-134X.2020.06.002

所属专题: 文献

临床论著

基因二代测序技术在假体周围感染诊断中的价值
殷晗1, 王大伟1,(), 李伟1, 苑振峰1, 徐明涛1, 王凯1, 哈承志1, 许笃亮1   
  1. 1. 252000 聊城市人民医院
  • 收稿日期:2020-03-11 出版日期:2020-12-01
  • 通信作者: 王大伟
  • 基金资助:
    聊城市人民医院青年基金(LYQN201912)

Diagnosis value of next-generation sequencing technology in periprosthetic joint infection

Han Yin1, Dawei Wang1,(), Wei Li1, Zhenfeng Yuan1, Mingtao Xu1, Kai Wang1, Chengzhi Ha1, Duliang Xu1   

  1. 1. Department of joint surgery of the Liaocheng People's Hospital, Liaocheng 252000, China
  • Received:2020-03-11 Published:2020-12-01
  • Corresponding author: Dawei Wang
引用本文:

殷晗, 王大伟, 李伟, 苑振峰, 徐明涛, 王凯, 哈承志, 许笃亮. 基因二代测序技术在假体周围感染诊断中的价值[J/OL]. 中华关节外科杂志(电子版), 2020, 14(06): 657-664.

Han Yin, Dawei Wang, Wei Li, Zhenfeng Yuan, Mingtao Xu, Kai Wang, Chengzhi Ha, Duliang Xu. Diagnosis value of next-generation sequencing technology in periprosthetic joint infection[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(06): 657-664.

目的

通过与细菌培养及血清生物学标志对比,探讨二代测序技术(NGS)对人工关节置换术后假体周围感染(PJI)的诊断价值。

方法

选取2017年7月到2019年12月在聊城市人民医院关节外科因假体周围感染或无菌性松动行关节翻修手术,排除初始关节液无法采集到,通过关节内注射生理盐水获得样本的患者及其他部位存在感染病灶的患者,共纳入患者35人(35例)根据美国肌骨骼感染协会(MSIS)的诊断标准,15例患者纳入感染组,20例患者纳入非感染组。术前两组患者常规检查血沉(ESR)、C反应蛋白(CRP)、降钙素原(PCT)、白介素6(IL-6)及D-二聚体(D-Dimer)。所有患者术前均行关节穿刺,穿刺液检测白细胞计数、白细胞分类、细菌培养及NGS。计算ESR、CRP、PCT、IL-6及D-Dimer的受试者操作特性曲线(ROC)的曲线下面积(AUC)。计算NGS、细菌培养及各项血清学标志物的诊断精确度、敏感性及特异性。

结果

髋关节19例(54.3%),膝关节16例(45.7%)。男性21例(60.0%),女性14例(40.0%),年龄67.0(62.0,74.0)岁。感染组15例患者中NGS结果阳性14例(93.3%),细菌培养结果阳性7例(46.7%)。非感染组NGS结果阴18例(90.0%)。ESR及D二聚体的AUC分别为0.667和0.572(均为P>0.05)。CRP、IL-6及PCT的AUC分别为0.827、0.767及0.808(均为P<0.01)。NGS、细菌培养、CRP、IL-6及PCT的精确度分别为0.91、0.74、0.77、0.74及0.83。NGS与CRP、IL-6、PCT、细菌培养两两比较,总体检测结果差异有统计学意义(P<0.01)。NGS与CRP、IL-6、PCT、细菌培养两两比较,NGS敏感性更高(P<0.05)。NGS与CRP比较特异性更好(P<0.05)。NGS与IL-6、PCT及细菌培养比较,特异性差异无统计学意义(P>0.05)。

结论

NGS比细菌培养及常用的血清学标志物有更高的精确度及敏感性,在PJI的诊断中具有更大的价值。

Objective

To explore the value of next generation sequencing (NGS) in diagnosis of Periprosthetic Joint Infection (PJI) by comparing with bacterial culture and serum biomarker.

Methods

A total of 35 patients (35 cases) who underwent joint revision surgery in department of joint surgery of the Liaocheng People's Hospital from July 2017 to December 2019 were selected. Inclusion criteria: infection or aseptic loosening after prosthesis replacement. Exclusion criteria: the patients whose initial synovial fluid cannot be collected, samples obtained by intra-articular injection of normal saline and patients with infected lesions in other parts. According to the diagnostic criteria of the Muscular Skeletal Infection Society (MSIS), 15 patients were included in the infection group and 20 patients were included in the non-infection group. The patients in both groups routinely received examination of erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), procalcitonin (PCT), interleukin 6 (IL-6), and D-Dimer preoperatively. All the patients were given a joint puncture preoperatively. The synovial fluid was used to detect white blood cell count, white blood cell classification, bacterial culture, and NGS. The area under the curve (AUC) of the receiver operating characteristic curve (ROC) of the ESR, CRP, PCT, IL-6, and D-Dimer was calculated. The diagnostic accuracy, sensitivity, and specificity of NGS, bacterial culture, and various serological markers were also calculated.

Results

Nineteen cases of hip joints (54.3%) and 16 cases of knee joints (45.7%) were included. There were 21 males (60.0%) and 14 females (40.0%), age was 67.0(62.0, 74.0) years. Fourteen cases were positive for NGS (93.3%) and seven cases were positive for bacterial culture (46.7%) in the infection group. NGS results were negative in 18 cases (90.0%) in the non-infected group. The AUCs of ESR and D-Dimer were 0.667 and 0.572, respectively (both P values>0.05). The AUC of CRP, IL-6 and PCT were 0.827, 0.767 and 0.808, respectively (all P<0.01). The accuracy of NGS, bacterial culture, CRP, IL-6 and PCT were 0.91, 0.74, 0.77, 0.74 and 0.83, respectively. When comparing NGS with CRP, IL-6, PCT, and bacterial culture, the difference in overall test results were statistically significant (P<0.01). NGS compared with CRP, IL-6, PCT and bacterial culture, the sensitivity of NGS was higher (P<0.05). Compared with CRP, the specificity of NGS was higher (P<0.05). Compared with IL-6, PCT and bacterial culture, the specificity of NGS was not statistically significant (P>0.05).

Conclusion

NGS has higher accuracy and sensitivity than bacterial culture and commonly used serological markers, and has greater value in diagnosis of PJI.

图1 患者选择流程图
表1 两组患者基本特征
图2 感染组与非感染组检测指标对比。图A为CRP(C反应蛋白)检测结果,两组差异有统计学意义(P=0.001);图B为ESR(血沉)检测结果,两组差异无统计学意义(P>0.05);图C为IL-6(白介素-6)检测结果,两组差异有统计学意义(P=0.007);图D为PCT(降钙素原)检测结果,两组差异有统计学意义(P=0.001);图E为D-dimer(D二聚体)检测结果,两组差异无统计学意义(P>0.05);图F为NGS(二代测序)及细菌培养结果,两种结果在感染组及非感染组的差异有统计学意义(NGS:P<0.001,细菌培养:P=0.011);culture-细菌培养
表2 两组NGS、细菌培养及血清标志物检测结果
图3 CRP(C-反应蛋白)、IL-6(白介素-6)及PCT(降钙素原)的ROC曲线(受试者操作特征曲线)
表4 CRP、ESR、IL-6、PCT及D-dimer的AUCCut off
表5 CRP、IL-6、PCT、NGS及细菌培养的诊断能力
[1]
Delanois RE, Mistry JB, Gwam CU, et al. Current epidemiology of revision total knee arthroplasty in the United States[J]. J Arthroplasty, 2017, 32(9): 2663-2668.
[2]
Gwam CU, Mistry JB, Mohamed NS, et al. Current epidemiology of revision total hip arthroplasty in the United States: National inpatient sample 2009 to 2013[J]. J Arthroplasty, 2017, 32(7): 2088-2092.
[3]
Goswami K, Parvizi J, Maxwell Courtney P. Current recommendations for the diagnosis of acute and chronic PJI for hip and knee-cell counts, alpha-defensin, leukocyte esterase, next-generation sequencing[J]. Curr Rev Musculoskelet Med, 2018, 11(3): 428-438.
[4]
Zmistowski B, Karam JA, Durinka JB, et al. Periprosthetic joint infection increases the risk of one-year mortality[J]. J Bone Joint Surg Am, 2013, 95(24): 2177-2184.
[5]
Tarabichi M, Shohat N, Goswami K, et al. Diagnosis of periprosthetic joint infection: the potential of next-generation sequencing[J]. J Bone Joint Surg Am, 2018, 100(2): 147-154.
[6]
Unter EN, Suero EM, Gehrke T, et al. Serum C-reactive protein relationship in high- versus low-virulence pathogens in the diagnosis of periprosthetic joint infection[J]. J Med Microbiol, 2019, 68(6): 910-917.
[7]
Bonanzinga T, Zahar A, Dütsch M, et al. How reliable is the alpha-defensin immunoassay test for diagnosing periprosthetic joint infection? A prospective study[J]. Clin Orthop Relat Res, 2017, 475(2): 408-415.
[8]
Shahi A, Alvand A, Ghanem E, et al. The leukocyte esterase test for periprosthetic joint infection is not affected by prior antibiotic administration[J]. J Bone Joint Surg Am, 2019, 101(8): 739-744.
[9]
Qu PF, Xu C, Fu J, et al. Does serum interleukin-6 guide the diagnosis of persistent infection in two-stage hip revision for periprosthetic joint infection?[J]. J Orthop Surg Res, 2019, 14(1): 354-360.
[10]
Alvand A, Rezapoor M, Parvizi J. The role of biomarkers for the diagnosis of implant-related infections in orthopaedics and trauma [J]. Adv Exp Med Biol, 2017, 971: 69-79.
[11]
Erdemli B, Özbek EA, Basarir K, et al. Proinflammatory biomarkers' level and functional genetic polymorphisms in periprosthetic joint infection[J]. Acta Orthop Traumatol Turc, 2018, 52(2): 143-147.
[12]
Lee YS, Koo KH, Kim HJ, et al. Synovial fluid biomarkers for the diagnosis of periprosthetic joint infection: a systematic review and meta-analysis[J]. J Bone Joint Surg Am, 2017, 99(24): 2077-2084.
[13]
Omar M, Petri M, Hawi N, et al. Higher sensitivity of swab polymerase chain reaction compared with tissue cultures for diagnosing periprosthetic joint infection[J/OL]. J Orthop Surg (HK), 2018, 26(1):1-5.doi:10.1177/2309499018765296.
[14]
Jun Y, Jianghua L. Diagnosis of periprosthetic joint infection using polymerase chain reaction: an updated systematic review and meta-analysis[J]. Surg Infect (Larchmt), 2018, 19(6): 555-565.
[15]
Salzberg SL, Breitwieser FP, Kumar A, et al. Next-generation sequencing in neuropathologic diagnosis of infections of the nervous system[J]. Neurol Neuroimmunol Neuroinflamm, 2016, 3(4): e251-e260.
[16]
Wilson MR, Naccache SN, Samayoa E, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing[J]. N Engl J Med, 2014, 370(25): 2408-2417.
[17]
Tarabichi M, Shohat N, Goswami K, et al. Can next generation sequencing play a role in detecting pathogens in synovial fluid?[J]. Bone Joint J, 2018, 100B(2): 127-133.
[18]
Parvizi J, Zmistowski B, Berbari EF, et al. New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society[J]. Clin Orthop Relat Res, 2011, 469(11): 2992-2994.
[19]
Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature, 2005, 437(757): 376-380.
[20]
Yoon HK, Cho SH, Lee DY, et al. A review of the literature on culture-negative periprosthetic joint infection: epidemiology, diagnosis and treatment[J]. Knee Surg Relat Res, 2017, 29(3): 155-164.
[21]
Palan J, Nolan C, Sarantos K, et al. Culture-negative periprosthetic joint infections[J]. EFORT Open Rev, 2019, 4(10): 585-594.
[22]
Berbari EF, Marculescu C, Sia I, et al. Culture-negative prosthetic joint infection[J]. Clin Infect Dis, 2007, 45(9): 1113-1119.
[23]
Parikh MS, Antony S. A comprehensive review of the diagnosis and management of prosthetic joint infections in the absence of positive cultures [J]. J Infect Public Health, 2016, 9(5): 545-556.
[24]
Million M, Bellevegue L, Labussiere AS, et al. Culture-negative prosthetic joint arthritis related to Coxiella burnetii[J/OL]. Am J Med, 2014, 127(8): 786.e7-786.e10.doi:10.1016/j.amjmed.2014.03.013.
[25]
Bingham JS, Hassebrock JD, Christensen AL, et al. Screening for periprosthetic joint infections with ESR and CRP: the ideal cutoffs [J]. J Arthroplasty, 2020, 35(5): 1351-1354.
[26]
Yoon JR, Yang SH, Shin YS. Diagnostic accuracy of interleukin-6 and procalcitonin in patients with periprosthetic joint infection: a systematic review and meta-analysis[J]. Int Orthop, 2018, 42(6): 1213-1226.
[27]
Di Cesare PE, Chang E, Preston CF, et al. Serum interleukin-6 as a marker of periprosthetic infection following total hip and knee arthroplasty[J]. J Bone Joint Surg Am, 2005, 87(9): 1921-1927.
[28]
Shaikh MM, Hermans LE, Van Laar JM. Is serum procalcitonin measurement a useful addition to a rheumatologist's repertoire? A review of its diagnostic role in systemic inflammatory diseases and joint infections[J]. Rheumatology (Oxford), 2015, 54(2): 231-240.
[29]
Glehr M, Friesenbichler J, Hofmann GA, et al. Novel biomarkers to detect infection in revision hip and knee arthroplasties[J]. Clin Orthop Relat Res, 2013, 471(8): 2621-2628.
[30]
Wei G, Steve M, Charles YC. Clinical metagenomic next-generation sequencing for pathogen detection [J]. Annu Rev Pathol, 2019, 14(1): 319-338.
[31]
Talundzic E, Ravishankar S, Kelley J, et al. Next-generation sequencing and bioinformatics protocol for malaria drug resistance marker surveillance[J]. Antimicrob Agents Chemother, 2018, 62(4): e02417-e02474.
[32]
Salipante SJ, Hoogestraat DR, Abbott A, et al. Coinfection of fusobacterium nucleatum and actinomyces israelii in mastoiditis diagnosed by next-generation DNA sequencing[J]. J Clin Microbiol, 2014, 52(5): 1789-1792.
[33]
Thoendel M, Jeraldo PR, Greenwood-Quaintance KE, et al. Comparison of microbial DNA enrichment tools for metagenomic whole genome sequencing[J]. J Microbiol Methods, 2016, 127: 141-145.
[34]
Wilson MR, O′donovan BD, Gelfand JM, et al. Chronic meningitis investigated via metagenomic next-generation sequencing[J]. JAMA Neurol, 2018, 75(8): 947-955.
[35]
Bukowska-Os′ko I, Perlejewski K, Nakamura S, et al. Sensitivity of next-generation sequencing metagenomic analysis for detection of RNA and DNA viruses in cerebrospinal fluid: the confounding effect of background contamination[J]. Adv Exp Med Biol, 2016, 944: 53-62.
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 唐金侨, 叶宇佳, 王港, 赵彬, 马艳宁. 医学影像学检查方法在颞下颌关节紊乱病中临床应用研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 406-411.
[3] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[4] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[5] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[6] 王秋生. 胆道良性疾病诊疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 779-782.
[7] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[8] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[9] 郑大雯, 王健东. 胆囊癌辅助诊断研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 769-773.
[10] 王松雷, 张贻良, 孟浩, 宋威, 白林晨, 袁心, 张辉. 股骨前髁预截骨髓外定位技术在全膝关节置换术中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 811-819.
[11] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[12] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[13] 王子阳, 王宏宾, 刘晓旌. 血清标志物对甲胎蛋白阴性肝细胞癌诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 677-681.
[14] 陈慧, 邹祖鹏, 周田田, 张艺丹, 张海萍. 皮肤镜对头皮红斑性皮肤病辅助鉴别诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 692-698.
[15] 胡云鹤, 周玉焯, 付瑞瑛, 于凡, 李爱东. CHS-DRG付费制度下GB1分组住院费用影响因素分析与管理策略探讨[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 568-574.
阅读次数
全文


摘要