切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (01) : 73 -77. doi: 10.3877/cma.j.issn.1674-134X.2020.01.013

所属专题: 文献

综述

原位免疫荧光杂交技术诊断人工关节假体周围感染
吴奇桥1, 黄子达1, 杨滨1, 李文波1, 张文明1,()   
  1. 1. 350001 福州,福建医科大学附属第一医院
  • 收稿日期:2018-05-09 出版日期:2020-02-01
  • 通信作者: 张文明
  • 基金资助:
    福建省自然科学基金对外合作项目(2018I0006、2019I0011); 福建省自然科学基金高校产学合作项目(2018Y4003); 福建省中青年教师教育科研项目(JAT170241); 福建医科大学启航基金项目(2018QH1066); 国家自然基金项目(81772251)

Fluorescence in situ hybridization technology in diagnosing peri-prosthetic joint infection

Qiqiao Wu1, Zida Huang1, Bin Yang1, Wenbo Li1, Wenming Zhang1,()   

  1. 1. The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
  • Received:2018-05-09 Published:2020-02-01
  • Corresponding author: Wenming Zhang
  • About author:
    Corresponding author: Zhang Wenming, Email:
引用本文:

吴奇桥, 黄子达, 杨滨, 李文波, 张文明. 原位免疫荧光杂交技术诊断人工关节假体周围感染[J]. 中华关节外科杂志(电子版), 2020, 14(01): 73-77.

Qiqiao Wu, Zida Huang, Bin Yang, Wenbo Li, Wenming Zhang. Fluorescence in situ hybridization technology in diagnosing peri-prosthetic joint infection[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2020, 14(01): 73-77.

人工关节假体周围感染的诊断一直是关节外科和微生物检验领域的难点,寻找快速,准确的微生物技术对诊断人工关节感染(PJI)至关重要。原位免疫荧光杂交(FISH)技术具有高敏感性与特异性,能够直观观察细菌及其生物膜形态,可检测多重感染及耐药基因,检测时间短,操作便捷等特点,为PJI诊断提供了新的方向。但FISH技术也存在一些缺点,如标本处理方式缺乏统一,自体荧光造成的假阳性率高等。FISH技术能否成为临床微生物的常规工作,仍需进一步研究。

The diagnosis of the peri-prosthetic joint infection(PJI) has always been very difficult. Quick and accurate microbiological diagnosis is very important for the treatment of PJI. Fluorescence in situ hybridization (FISH) technology has high sensitivity and specificity, which can visualize the morphology of bacteria and its biofilms, can detect multiple infections and drug resistance genes, and has the advantages of short detection time, simple procedures and so on, which provides a new direction for PJI diagnosis. However, FISH technology also has some shortcomings, such as the lack of uniform specimen processing methods, high false positive rate caused by autofluorescence. Whether FISH technology can become routine work for clinical microbiology still needs further study.

[1]
Patel R, Alijanipour P, Parvizi J. Advancements in diagnosing periprosthetic joint infections after total hip and knee arthroplasty[J]. Open Orthop J, 2016, 10(Suppl/2,M8): 654-661.
[2]
Parvizi J, Zmistowski B, Berbari EF, et al. New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society[J]. Clin Orthop Relat Res, 2011, 469(11): 2992-2994.
[3]
Della Valle C, Parvizi J, Bauer TW, et al. American academy of orthopaedic surgeons clinical practice guideline on: the diagnosis of periprosthetic joint infections of the hip and knee[J]. J Bone Joint Surg Am, 2011, 93(14): 1355-1357.
[4]
Dill K, Liu RH, Grodzinski P. Microarrays: preparation, microfluidics, detection methods, and biological applications[Z], 2009: 356.
[5]
Kurz CM, V DS, Thielecke H, et al. Towards a cellular multi-parameter analysis platform:fluorescence in situ hybridization(FISH)on microhole-array chips.In:2011[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011: 8408-8411.
[6]
Oliveira K, Procop GW, Wilson D, et al. Rapid identification of Staphylococcus aureus directly from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes[J]. J Clin Microbiol, 2002, 40(1): 247-251.
[7]
Nistico L, Stoodley P. Imaging bacteria and biofilms on hardware and periprosthetic tissue in orthopedic infections chapter 8 imaging bacteria and biofilms on hardware[Z], 2014.
[8]
Stoodley P, Conti SF, Demeo PJ, et al. Characterization of a mixed MRSA/MRSE biofilm in an explanted total ankle arthroplasty[J]. FEMS Immunol Med Microbiol, 62 (2011): 66-74.
[9]
张兵波,常津,杨永,等. PNA探针与DNA探针的系统比较[J].高分子通报,2006, (9): 62-68.
[10]
Fazli M, Bjarnsholt T, Høiby N, et al. PNA-Based fluorescence in situ hybridization for identifi cation of bacteria in clinical samples mustafa[Z], 2014: 1211.
[11]
Stȩpińska M, Olszewska-Sosińska O, Lau-Dworak M,et al. Identification of intracellular bacteria in adenoid and tonsil tissue specimens:the efficiency of culture versus fluorescent in situ hybridization (FISH)[J]. Curr Microbiol, 2014, 68(1):21-29.
[12]
Gescher DM, Kovacevic D, Schmiedel D, et al. Fluorescence in situ hybridisation (FISH) accelerates identification of gram-positive cocci in positive blood cultures[J]. Int J Antimicrob Agents, 2008, 32(Suppl 1): S51-S59.
[13]
Schmiedel D, Kikhney J, Masseck J, et al. Fluorescence in situ hybridization for identification of microorganisms in acute chorioamnionitis[J]. Clin Microbiol Infect, 2014, 20(9): O538-O541.
[14]
Wu Q, Li Y, Wang M, et al. Fluorescence in situ hybridization rapidly detects three different pathogenic bacteria in urinary tract infection samples[J]. J Microbiol Methods, 2010, 83(2): 175-178.
[15]
Bjarnsholt T, Tolker-Nielsen T, Givskov MA, et al. Detection of bacteria by fluorescence in situ hybridization in culture-negative soft tissue filler lesions[J]. Dermatol Surg, 2009, 35(2): 1620-1624.
[16]
Catez F, Rousseau A, Labetoulle M, et al. Detection of the genome and transcripts of a persistent DNA virus in neuronal tissues by fluorescent "in situ" hybridization combined with immunostaining[J/OL]. J Vis Exp , 2014, (83): e51091. doi: 10.3791/51091
[17]
Inácio J, da Luz Martins M. Microscopic detection of yeasts using fluorescence in situ hybridization[J].Methods Mol Biol, 2013, 968:71-82.
[18]
Kliot A, Kontsedalov S, Lebedev G, et al. Fluorescence in situ hybridizations (FISH) for the localization of viruses and endosymbiotic bacteria in plant and insect tissues[J/OL]. J Vis Exp, 2014, 24, (84):e51030. doi:10.3791/51030.
[19]
Fazli M, Bjarnsholt T, Høiby N, et al. PNA-based fluorescence in situ hybridization for identification of bacteria in clinical samples[J]. Methods Mol Biol, 2014, 1211: 261-271.
[20]
González V, Padilla E, Giménez M, et al. Rapid diagnosis of staphylococcus aureus bacteremia using S. aureus PNA FISH[J]. Eur J Clin Microbiol Infect Dis, 2004, 23(5): 396-398.
[21]
潘建超,超声联合荧光原位杂交技术诊断兔膝关节假体感染[D],2015,广州医科大学学位论文:51-52.
[22]
Stoodley P, Nistico L, Johnson S, et al. Direct demonstration of viable staphylococcus aureus biofilms in an infected total joint arthroplasty. A case report[J]. J Bone Joint Surg Am, 2008, 90(8): 1751-1758.
[23]
Tajbakhsh S, Gharibi S, Zandi K, et al. Use of a modified fluorescent in situ hybridization procedure to improve the identification of streptococcus pneumoniae in blood cultures[J]. Acta Microbiol Immunol Hung, 2013, 60(3): 303-311.
[24]
Rocha R, Santos RS, Madureira P, et al. Optimization of peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) for the detection of bacteria: the effect of pH, dextran sulfate and probe concentration[J]. J Biotechnol, 2016, 226(226): 1-7.
[25]
Al-Ahmad A, Wunder A, Auschill TM, et al. The in vivo dynamics of streptococcus spp actinomyces naeslundii, fusobacterium nucleatum and veillonella spp.in dental plaque biofilm as analysed by five-colour multiplex fluorescence in situ hybridization[J]. J Med Microbiol, 2007, 56(5): 681-687.
[26]
Gnida A, Kunda K, Ziembińska A, et al. Detection of sulfonamide resistance genes via in situ PCR-FISH[J]. Pol J Microbiol, 2014, 63(2): 167-173.
[27]
Lippmann T, Braubach P, Ettinger M, et al. Fluorescence in situ hybridization (FISH) for the diagnosis of periprosthetic joint infection in formalin-fixed paraffin-embedded surgical tissues[J/OL]. J Bone Joint Surg Am, 2019, 101(2): e5. doi: 10.2106/JBJS.18.00243.
[28]
Carretto E, Bardaro M, Russello G, et al. Comparison of the staphylococcus quick FISH BC test with the tube coagulase test performed on positive blood cultures for evaluation and application in a clinical routine setting[J]. J Clin Microbiol, 2013, 51: 131-135.
[29]
Makristathis A, Riss S, Hirschl AM. A novel fluorescence in situ hybridization test for rapid pathogen identification in positive blood cultures[J]. Clin Microbiol Infect, 2014, 20(10): O760-O763.
[30]
Oliveira K, Procop GW, Wilson D, et al. Rapid identification of staphylococcus aureus directly from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes[J]. J Clin Microbiol, 2002, 40(1): 247-251.
[31]
Nistico L, Gieseke A, Stoodley P, et al. Fluorescence "in situ" hybridization for the detection of biofilm in the middle ear and upper respiratory tract mucosa[J]. Methods Mol Biol, 2009, 493: 191-213, 42.
[1] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[2] 谭俊, 詹丽娟, 吴凌霄, 蔡可晗, 江旭, 陈涛, 许建中. 保留部分假体的翻修术治疗慢性髋关节假体周围感染[J]. 中华关节外科杂志(电子版), 2023, 17(03): 318-325.
[3] 葛飞霞, 蒋银, 杨丹. 酶联免疫吸附测定法与PCR仪检测在乙型肝炎诊断中的临床应用[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 310-315.
[4] 王博, 白子锐, 李坚. 近红外二区新型血管内皮生长因子受体靶向探针在结直肠癌小鼠模型中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(03): 173-177.
[5] 张钊, 骆成玉, 何平, 张树琦. 吲哚菁绿乳管造影在乳头溢液手术中对溢液乳管定位和病变腺体标记的可行性研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 323-327.
[6] 刘克文, 庞志东. 吲哚菁绿荧光显影在复杂困难肝段肝细胞癌肝切除术的应用研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 319-322.
[7] 刘颂, 胡琼源, 陆晓峰, 管文贤. 吲哚菁绿用于外科术中神经显影的现状与展望[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 226-229.
[8] 孟令展, 李虎, 俞鹏, 于燕宾, 曹李, 翟伟, 高远, 邵艳玲, 严锦, 朱震宇. ICG荧光染色在肝癌腹腔镜解剖性肝切除术中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 557-561.
[9] 周毅, 王一帆, 张传海, 马金良, 余继海, 荚卫东. ICG荧光导航技术在困难腹腔镜肝切除中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 407-411.
[10] 陆乔友, 寸冬云, 虞弘, 郭鹏恒, 田大广. ICG荧光胆道造影在胆囊结石合并胆囊炎患者LC术中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 284-288.
[11] 李博, 胡刚, 邱文龙, 汤坚强, 王锡山. 多功能吲哚菁绿近红外荧光血管成像技术在腹腔镜直肠癌经自然腔道取标本手术(NOSES Ⅳ式)中的应用(附视频)[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 524-528.
[12] 中国医师协会结直肠肿瘤专业委员会, 中国抗癌协会大肠癌专业委员会, 北京整合医学学会结直肠肿瘤分会. 吲哚菁绿近红外荧光血管成像技术应用于腹腔镜结直肠手术中吻合口血供判断中国专家共识(2023版)[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 441-447.
[13] 邱文龙, 刘军广, 胡刚, 李博, 李月刚, 梅世文, 权继传, 庄孟, 迟崇巍, 王锡山, 汤坚强. 基于肠脂垂的近红外荧光血管造影技术在预防腹腔镜超低位直肠癌经括约肌间切除术后吻合口漏中的应用价值[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 288-295.
[14] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[15] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
阅读次数
全文


摘要