切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2021, Vol. 15 ›› Issue (02) : 185 -191. doi: 10.3877/cma.j.issn.1674-134X.2021.02.009

所属专题: 文献

临床论著

宏基因二代测序在假体周围感染病原菌检测中的应用
郝林杰1, 张育民1, 文鹏飞1, 宋伟1, 王军1, 马涛1,()   
  1. 1. 710000 西安交通大学附属红会医院髋关节科
  • 收稿日期:2020-03-10 出版日期:2021-04-01
  • 通信作者: 马涛
  • 基金资助:
    西安市卫生健康委员会科研项目(2021ms08)

Application of metagenomic next-generation sequencing in pathogen detection of periprosthetic joint infection

Linjie Hao1, Yumin Zhang1, Pengfei Wen1, Wei Song1, Jun Wang1, Tao Ma1,()   

  1. 1. Department of Hip Jiont, Hong-Hui Hospital, Xi’an Jiaotong University, Xi’an 710000, China
  • Received:2020-03-10 Published:2021-04-01
  • Corresponding author: Tao Ma
引用本文:

郝林杰, 张育民, 文鹏飞, 宋伟, 王军, 马涛. 宏基因二代测序在假体周围感染病原菌检测中的应用[J]. 中华关节外科杂志(电子版), 2021, 15(02): 185-191.

Linjie Hao, Yumin Zhang, Pengfei Wen, Wei Song, Jun Wang, Tao Ma. Application of metagenomic next-generation sequencing in pathogen detection of periprosthetic joint infection[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2021, 15(02): 185-191.

目的

探讨宏基因二代测序技术在关节置换术后假体周围感染病原菌检测中的应用价值。

方法

回顾性分析2018年1月至2019年10月西安市红会医院收治的诊断为关节置换术后假体周围感染患者临床资料,排除2周内应用抗生素患者及由于送检标本质量不合格导致mNGS检测失败者,最终纳入研究者34例,所有患者均取术中样本送细菌培养及宏基因二代测序检测,分别记录细菌培养及宏基因二代测序结果,记录阳性例数,比较阳性率及检测所需时间,记录两种检测方法的菌种类别,采用配对卡方检验或配对t检验进行统计学分析。

结果

总计34例假体周围感染患者中,男14例,女20例,平均年龄(67.9±11.7)岁;膝关节感染23例,髋关节感染11例。细菌培养阳性者20例,阳性率58.8%,宏基因二代测序检测阳性者30例,阳性率88.2%,差异有统计学意义(χ2=7.556,P<0.05)。从微生物标本送检至报告结果,细菌培养所需时间平均为(5.2±2.1)d,宏基因二代测序检测所需时间平均为(1.6±0.6)d,差异有统计学意义(t =9.678,P<0.05)。两种方法所测病原微生物均以革兰阳性菌为主,最常见的3种病原体是金黄色葡萄球菌、表皮葡萄球菌和大肠埃希菌。

结论

采用宏基因二代测序检测方法细菌检出率明显高于细菌培养,所需时间明显短于细菌培养,在人工关节置换术后假体周围感染患者病原菌检测中更有优势。

Objective

To explore the value of metagenomic next-generation sequencing in pathogen detection of periprosthetic joint infection.

Methods

From January 2018 to October 2019, the data of patients who were diagnosed as periprosthetic joint infection in Hong-Hui Hospital of Xi’an Jiaotong University were analyzed retrospectively. The patients who received antibiotics within two weeks before sampling and failed to do mNGS detection due to substandard samples were excluded, and 34 patients were eventually included. All the patients were detected using the metagenomicnext-generation sequencing and bacterial culture simultaneously with recording the positive numbers anddetectiontime, as well as identifying bacterial species. The detection rates of metagenomic next-generation sequencing and bacterial culture in PJI patients were calculated and statistically analyzed by paired chi-square test.The detection time was analyzed by student's t test.

Results

Among the 34 patients with periprosthetic joint infection, there were 14 males and 20 females and involving 23 knees and 11 hips with an average age of (67.9±11.7) years. The positive rate of bacterial culture was 58.8%, whereas the positive rate of metagenomic next-generation sequencing was 88.2% and the difference was statistically significant (χ2=7.556, P < 0.05). The detection time of bacterial culture was (5.2±2.1) d, whereas the detection time of metagenomic next-generation sequencing was (1.6±0.6) d and the difference was statistically significant (t =9.678, P <0.05). Gram-positive bacteria was the main pathogen for periprosthetic joint infection and the most common bacteria were staphylococcus aureus, staphylococcus epidermidis and escherichia coli for both two methods.

Conclusion

Compared with bacterial culture, the metagenomic next-generation sequencing technology has a higher positive rate and shorter detection time, which might be greater valuable in prosthetic joint infection after joint replacement.

图1 mNGS检测流程图
图2 细菌培养病原微生物检测结果
图3 mNGS(宏基因二代测序)病原微生物检测结果
表1 两种检测方法在PJI患者不同部位阳性结果比较[例(%)]
表2 两种检测方法不同性别样本阳性结果比较[例(%)]
表3 两种检测方法下不同样本类型阳性结果比较[例(%)]
图4 细菌培养阳性及阴性组mNGS(宏基因二代测序)检测结果
[1]
Koh CK, Zeng I, Ravi S, et al. Periprosthetic joint infection is the main cause of failure for modern knee arthroplasty: an analysis of 11,134 knees[J]. Clin Orthop Relat Res, 2017, 475(9): 2194-2201.
[2]
Helwig P, Morlock J, Oberst M, et al. Periprosthetic joint infection--effect on quality of life[J]. Int Orthop, 2014, 38(5): 1077-1081.
[3]
Pulido L, Ghanem E, Joshi A, et al. Periprosthetic joint infection: the incidence, timing, and predisposing factors[J]. Clin Orthop Relat Res, 2008, 466(7): 1710-1715.
[4]
Cram P, Lu X, Kates SL, et al. Total knee arthroplasty volume, utilization, and outcomes among medicare beneficiaries, 1991-2010[J]. JAMA, 2012, 308(12): 1227-1236.
[5]
Yuan K, Li WD, Qiang Y, et al. Comparison of procalcitonin and C-reactive protein for the diagnosis of periprosthetic joint infection before revision total hip arthroplasty[J]. Surg Infect (Larchmt), 2015, 16(2): 146-150.
[6]
Rosas S, Ong AC, Buller LT, et al. Season of the year influences infection rates following total hip arthroplasty[J]. World J Orthop, 2017, 8(12): 895-901.
[7]
Di Benedetto P, Di Benedetto ED, Salviato D, et al. Acute periprosthetic knee infection: is there still a role for DAIR?[J]. Acta Biomed, 2017, 88(2S): 84-91.
[8]
Del Pozo JL, Patel R. Clinical practice. Infection associated with prosthetic joints[J]. N Engl J Med, 2009, 361(8): 787-794.
[9]
李睿,陈继营.人工关节置换术后假体周围感染诊断方法的研究进展[J].中华骨科杂志,2016,36(19):1254-1262.
[10]
Nana A, Nelson SB, Mclaren A, et al. What's new in musculoskeletal infection: update on biofilms[J]. J Bone Joint Surg Am, 2016, 98(14): 1226-1234.
[11]
李德经.肺泡灌洗液二代测序对肺部感染性疾病的诊断价值[J/CD].国际感染病学(电子版),2019,8(4):47-49.
[12]
Wilson MR, Naccache SN, Samayoa E, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing[J]. N Engl J Med, 2014, 370(25): 2408-2417.
[13]
李冰,缪青,金文婷,等.宏基因二代测序技术对厌氧菌感染精准化诊断的临床价值[J].中华医院感染学杂志,2019,29(13):1927-1930, 1953.
[14]
Langelier C, Zinter MS, Kalantar K, et al. Metagenomic sequencing detects respiratory pathogens in hematopoietic cellular transplant patients[J]. Am J Respir Crit Care Med, 2018, 197(4): 524-528.
[15]
Greninger AL, Naccache SN, Federman S, et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis[J/OL]. Genome Med, 2015, 7: 99. doi: 10.1186/s13073-015-0220-9.
[16]
Parvizi J, Tan TL, Goswami K, et al. The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria[J]. J Arthroplasty, 2018, 33(5): 1309-1314.
[17]
Triantafyllopoulos G, Poultsides LA, Zhang W, et al. Multiple irrigation and debridements for periprosthetic joint infections: facing a necessity or just prolonging the inevitable?[J]. J Arthroplasty, 2016, 31(1): 219-224.
[18]
Melendez DP, Greenwood-Quaintance KE, Berbari EF, et al. Evaluation of a genus-and group-specific rapid PCR assay panel on synovial fluid for diagnosis of prosthetic knee infection[J]. J Clin Microbiol, 2016, 54(1): 120-126.
[19]
Ascione T, Barrack R, Benito N, et al. General Assembly, diagnosis, pathogen isolation-culture matters: proceedings of international consensus on orthopedic infections[J]. J Arthroplasty, 2019, 34(2S): S197-S206.
[20]
赵潇雄,曲铁兵.双血培养瓶培养法在关节置换术后假体周围感染诊断中的应用[J/CD].中华关节外科杂志(电子版),2017,11(5):491-495.
[21]
袁俊,冯建民,张炅,等.超声裂解液微生物培养与聚合酶链式反应在假体周围感染中的诊断价值比较[J].国际骨科学杂志,2018,39(6):366-372.
[22]
Yan Q, Karau MJ, Greenwood-Quaintance KE, et al. Comparison of diagnostic accuracy of periprosthetic tissue culture in blood culture bottles to that of prosthesis sonication fluid culture for diagnosis of prosthetic joint infection (PJI) by use of Bayesian latent class modeling and IDSA PJI criteria for classification[J/OL]. J Clin Microbiol, 2018, 56(6): e00319-18. doi: 10.1128/JCM.00319-18.
[23]
Sebastian S, Malhotra R, Sreenivas V, et al. Sonication of orthopaedic implants: a valuable technique for diagnosis of prosthetic joint infections[J]. J Microbiol Methods, 2018, 146: 51-54.
[24]
Prieto-Borja L, Auñón á, Blanco A, et al. Evaluation of the use of sonication of retrieved implants for the diagnosis of prosthetic joint infection in a routine setting[J]. Eur J Clin Microbiol Infect Dis, 2018, 37(4): 715-722.
[25]
Goldberg B, Sichtig H, Geyer C, et al. Making the leap from research laboratory to clinic: challenges and opportunities for next-generation sequencing in infectious disease diagnostics[J/OL]. mBio, 2015, 6(6): e01888-15. doi: 10.1128/mBio.01888-15.
[26]
Grumaz S, Stevens P, Grumaz C, et al. Next-generation sequencing diagnostics of bacteremia in septic patients[J/OL]. Genome Med, 2016, 8(1): 73. doi: 10.1186/s13073-016-0326-8.
[27]
徐一宏,徐卫东.二代测序技术在诊断假体周围感染中的应用[J].中国矫形外科杂志,2019,27(13):1171-1175.
[28]
Street TL, Sanderson ND, Atkins BL, et al. Molecular diagnosis of orthopedic-device-related infection directly from sonication fluid by metagenomic sequencing[J]. J Clin Microbiol, 2017, 55(8): 2334-2347.
[29]
Tarabichi M, Shohat N, Goswami K, et al. Diagnosis of periprosthetic joint infection: the potential of next-generation sequencing[J]. J Bone Joint Surg Am, 2018, 100(2): 147-154.
[30]
Tarabichi M, Shohat N, Goswami K, et al. Can next Generation sequencing play a role in detecting pathogens in synovial fluid?[J]. Bone Joint J, 2018, 100B(2): 127-133.
[31]
Mittal Y, Fehring TK, Hanssen A, et al. Two-stage reimplantation for periprosthetic knee infection involving resistant organisms[J]. J Bone Joint Surg Am, 2007, 89(6): 1227-1231.
[32]
Zmistowski B, Tetreault MW, Alijanipour P, et al. Recurrent periprosthetic joint infection: persistent or new infection?[J]. J Arthroplasty, 2013, 28(9): 1486-1489.
[33]
Perlejewski K, Bukowska-Ośko I, Nakamura S, et al. Metagenomic analysis of cerebrospinal fluid from patients with multiple sclerosis[J]. Adv Exp Med Biol, 2016, 935: 89-98.
[34]
Torchia MT, Austin DC, Kunkel ST, et al. Next-generation sequencing vs culture-based methods for diagnosing periprosthetic joint infection after total knee arthroplasty: a cost-effectiveness analysis[J]. J arthroplasty, 2019, 34(7): 1333-1341.
[35]
Martí-Carreras J, Maes P. Human cytomegalovirus genomics and transcriptomics through the lens of next-generation sequencing: revision and future challenges[J]. Virus Genes, 2019, 55(2): 138-164.
[1] 金鑫, 谢卯, 刘芸, 杨操, 杨述华, 许伟华. 个性化股骨导向器辅助初次全髋关节置换的随机对照研究[J]. 中华关节外科杂志(电子版), 2023, 17(06): 780-787.
[2] 邓华梅, 袁札根, 曾德荣, 潘珊珊, 张葆青, 欧爱华, 曹学伟. 全膝关节置换术中气压止血带应用效果与影响因素分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 788-794.
[3] 张思平, 刘伟, 马鹏程. 全膝关节置换术后下肢轻度内翻对线对疗效的影响[J]. 中华关节外科杂志(电子版), 2023, 17(06): 808-817.
[4] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[5] 林文, 王雨萱, 许嘉悦, 王矜群, 王睿娜, 何董源, 樊沛. 人工关节置换登记系统的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 834-841.
[6] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[7] 贺敬龙, 尚宏喜, 郝敏, 谢伟, 高明宏, 孙炜, 刘安庆. 重度类风湿关节炎患者行多关节置换术的临床手术疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 860-864.
[8] 孟繁宇, 周新社, 赵志, 裴立家, 刘犇. 侧位直接前方入路髋关节置换治疗偏瘫肢体股骨颈骨折[J]. 中华关节外科杂志(电子版), 2023, 17(06): 865-870.
[9] 王宏宇. 固定与活动平台假体在全膝关节置换术中的应用价值[J]. 中华关节外科杂志(电子版), 2023, 17(06): 871-876.
[10] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[11] 李辉, 吴奇, 张子琦, 张晗, 王仿, 许鹏. 日间全膝关节置换术早期疗效及标准化流程探索[J]. 中华关节外科杂志(电子版), 2023, 17(06): 889-892.
[12] 陈山林, 魏绮珮, 刘畅. 腕关节假体:路在何方?[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 469-475.
[13] 吴香敏, 吴鹏. 超声引导下收肌管阻滞联合腘动脉与膝关节后囊间隙阻滞在老年患者全膝关节置换术中的应用效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 516-522.
[14] 中华医学会骨科分会关节学组. 中国髋、膝关节置换日间手术围手术期管理专家共识[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 321-332.
[15] 付庆鹏, 邓晓强, 高伟, 姜福民, 范永峰, 吴海贺, 齐岩松, 包呼日查, 徐永胜. 新型股骨测量定位器在全膝关节置换术中的临床应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 980-987.
阅读次数
全文


摘要