切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2021, Vol. 15 ›› Issue (02) : 185 -191. doi: 10.3877/cma.j.issn.1674-134X.2021.02.009

所属专题: 文献

临床论著

宏基因二代测序在假体周围感染病原菌检测中的应用
郝林杰1, 张育民1, 文鹏飞1, 宋伟1, 王军1, 马涛1,()   
  1. 1. 710000 西安交通大学附属红会医院髋关节科
  • 收稿日期:2020-03-10 出版日期:2021-04-01
  • 通信作者: 马涛
  • 基金资助:
    西安市卫生健康委员会科研项目(2021ms08)

Application of metagenomic next-generation sequencing in pathogen detection of periprosthetic joint infection

Linjie Hao1, Yumin Zhang1, Pengfei Wen1, Wei Song1, Jun Wang1, Tao Ma1,()   

  1. 1. Department of Hip Jiont, Hong-Hui Hospital, Xi’an Jiaotong University, Xi’an 710000, China
  • Received:2020-03-10 Published:2021-04-01
  • Corresponding author: Tao Ma
引用本文:

郝林杰, 张育民, 文鹏飞, 宋伟, 王军, 马涛. 宏基因二代测序在假体周围感染病原菌检测中的应用[J/OL]. 中华关节外科杂志(电子版), 2021, 15(02): 185-191.

Linjie Hao, Yumin Zhang, Pengfei Wen, Wei Song, Jun Wang, Tao Ma. Application of metagenomic next-generation sequencing in pathogen detection of periprosthetic joint infection[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2021, 15(02): 185-191.

目的

探讨宏基因二代测序技术在关节置换术后假体周围感染病原菌检测中的应用价值。

方法

回顾性分析2018年1月至2019年10月西安市红会医院收治的诊断为关节置换术后假体周围感染患者临床资料,排除2周内应用抗生素患者及由于送检标本质量不合格导致mNGS检测失败者,最终纳入研究者34例,所有患者均取术中样本送细菌培养及宏基因二代测序检测,分别记录细菌培养及宏基因二代测序结果,记录阳性例数,比较阳性率及检测所需时间,记录两种检测方法的菌种类别,采用配对卡方检验或配对t检验进行统计学分析。

结果

总计34例假体周围感染患者中,男14例,女20例,平均年龄(67.9±11.7)岁;膝关节感染23例,髋关节感染11例。细菌培养阳性者20例,阳性率58.8%,宏基因二代测序检测阳性者30例,阳性率88.2%,差异有统计学意义(χ2=7.556,P<0.05)。从微生物标本送检至报告结果,细菌培养所需时间平均为(5.2±2.1)d,宏基因二代测序检测所需时间平均为(1.6±0.6)d,差异有统计学意义(t =9.678,P<0.05)。两种方法所测病原微生物均以革兰阳性菌为主,最常见的3种病原体是金黄色葡萄球菌、表皮葡萄球菌和大肠埃希菌。

结论

采用宏基因二代测序检测方法细菌检出率明显高于细菌培养,所需时间明显短于细菌培养,在人工关节置换术后假体周围感染患者病原菌检测中更有优势。

Objective

To explore the value of metagenomic next-generation sequencing in pathogen detection of periprosthetic joint infection.

Methods

From January 2018 to October 2019, the data of patients who were diagnosed as periprosthetic joint infection in Hong-Hui Hospital of Xi’an Jiaotong University were analyzed retrospectively. The patients who received antibiotics within two weeks before sampling and failed to do mNGS detection due to substandard samples were excluded, and 34 patients were eventually included. All the patients were detected using the metagenomicnext-generation sequencing and bacterial culture simultaneously with recording the positive numbers anddetectiontime, as well as identifying bacterial species. The detection rates of metagenomic next-generation sequencing and bacterial culture in PJI patients were calculated and statistically analyzed by paired chi-square test.The detection time was analyzed by student's t test.

Results

Among the 34 patients with periprosthetic joint infection, there were 14 males and 20 females and involving 23 knees and 11 hips with an average age of (67.9±11.7) years. The positive rate of bacterial culture was 58.8%, whereas the positive rate of metagenomic next-generation sequencing was 88.2% and the difference was statistically significant (χ2=7.556, P < 0.05). The detection time of bacterial culture was (5.2±2.1) d, whereas the detection time of metagenomic next-generation sequencing was (1.6±0.6) d and the difference was statistically significant (t =9.678, P <0.05). Gram-positive bacteria was the main pathogen for periprosthetic joint infection and the most common bacteria were staphylococcus aureus, staphylococcus epidermidis and escherichia coli for both two methods.

Conclusion

Compared with bacterial culture, the metagenomic next-generation sequencing technology has a higher positive rate and shorter detection time, which might be greater valuable in prosthetic joint infection after joint replacement.

图1 mNGS检测流程图
图2 细菌培养病原微生物检测结果
图3 mNGS(宏基因二代测序)病原微生物检测结果
表1 两种检测方法在PJI患者不同部位阳性结果比较[例(%)]
表2 两种检测方法不同性别样本阳性结果比较[例(%)]
表3 两种检测方法下不同样本类型阳性结果比较[例(%)]
图4 细菌培养阳性及阴性组mNGS(宏基因二代测序)检测结果
[1]
Koh CK, Zeng I, Ravi S, et al. Periprosthetic joint infection is the main cause of failure for modern knee arthroplasty: an analysis of 11,134 knees[J]. Clin Orthop Relat Res, 2017, 475(9): 2194-2201.
[2]
Helwig P, Morlock J, Oberst M, et al. Periprosthetic joint infection--effect on quality of life[J]. Int Orthop, 2014, 38(5): 1077-1081.
[3]
Pulido L, Ghanem E, Joshi A, et al. Periprosthetic joint infection: the incidence, timing, and predisposing factors[J]. Clin Orthop Relat Res, 2008, 466(7): 1710-1715.
[4]
Cram P, Lu X, Kates SL, et al. Total knee arthroplasty volume, utilization, and outcomes among medicare beneficiaries, 1991-2010[J]. JAMA, 2012, 308(12): 1227-1236.
[5]
Yuan K, Li WD, Qiang Y, et al. Comparison of procalcitonin and C-reactive protein for the diagnosis of periprosthetic joint infection before revision total hip arthroplasty[J]. Surg Infect (Larchmt), 2015, 16(2): 146-150.
[6]
Rosas S, Ong AC, Buller LT, et al. Season of the year influences infection rates following total hip arthroplasty[J]. World J Orthop, 2017, 8(12): 895-901.
[7]
Di Benedetto P, Di Benedetto ED, Salviato D, et al. Acute periprosthetic knee infection: is there still a role for DAIR?[J]. Acta Biomed, 2017, 88(2S): 84-91.
[8]
Del Pozo JL, Patel R. Clinical practice. Infection associated with prosthetic joints[J]. N Engl J Med, 2009, 361(8): 787-794.
[9]
李睿,陈继营.人工关节置换术后假体周围感染诊断方法的研究进展[J].中华骨科杂志,2016,36(19):1254-1262.
[10]
Nana A, Nelson SB, Mclaren A, et al. What's new in musculoskeletal infection: update on biofilms[J]. J Bone Joint Surg Am, 2016, 98(14): 1226-1234.
[11]
李德经.肺泡灌洗液二代测序对肺部感染性疾病的诊断价值[J/CD].国际感染病学(电子版),2019,8(4):47-49.
[12]
Wilson MR, Naccache SN, Samayoa E, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing[J]. N Engl J Med, 2014, 370(25): 2408-2417.
[13]
李冰,缪青,金文婷,等.宏基因二代测序技术对厌氧菌感染精准化诊断的临床价值[J].中华医院感染学杂志,2019,29(13):1927-1930, 1953.
[14]
Langelier C, Zinter MS, Kalantar K, et al. Metagenomic sequencing detects respiratory pathogens in hematopoietic cellular transplant patients[J]. Am J Respir Crit Care Med, 2018, 197(4): 524-528.
[15]
Greninger AL, Naccache SN, Federman S, et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis[J/OL]. Genome Med, 2015, 7: 99. doi: 10.1186/s13073-015-0220-9.
[16]
Parvizi J, Tan TL, Goswami K, et al. The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria[J]. J Arthroplasty, 2018, 33(5): 1309-1314.
[17]
Triantafyllopoulos G, Poultsides LA, Zhang W, et al. Multiple irrigation and debridements for periprosthetic joint infections: facing a necessity or just prolonging the inevitable?[J]. J Arthroplasty, 2016, 31(1): 219-224.
[18]
Melendez DP, Greenwood-Quaintance KE, Berbari EF, et al. Evaluation of a genus-and group-specific rapid PCR assay panel on synovial fluid for diagnosis of prosthetic knee infection[J]. J Clin Microbiol, 2016, 54(1): 120-126.
[19]
Ascione T, Barrack R, Benito N, et al. General Assembly, diagnosis, pathogen isolation-culture matters: proceedings of international consensus on orthopedic infections[J]. J Arthroplasty, 2019, 34(2S): S197-S206.
[20]
赵潇雄,曲铁兵.双血培养瓶培养法在关节置换术后假体周围感染诊断中的应用[J/CD].中华关节外科杂志(电子版),2017,11(5):491-495.
[21]
袁俊,冯建民,张炅,等.超声裂解液微生物培养与聚合酶链式反应在假体周围感染中的诊断价值比较[J].国际骨科学杂志,2018,39(6):366-372.
[22]
Yan Q, Karau MJ, Greenwood-Quaintance KE, et al. Comparison of diagnostic accuracy of periprosthetic tissue culture in blood culture bottles to that of prosthesis sonication fluid culture for diagnosis of prosthetic joint infection (PJI) by use of Bayesian latent class modeling and IDSA PJI criteria for classification[J/OL]. J Clin Microbiol, 2018, 56(6): e00319-18. doi: 10.1128/JCM.00319-18.
[23]
Sebastian S, Malhotra R, Sreenivas V, et al. Sonication of orthopaedic implants: a valuable technique for diagnosis of prosthetic joint infections[J]. J Microbiol Methods, 2018, 146: 51-54.
[24]
Prieto-Borja L, Auñón á, Blanco A, et al. Evaluation of the use of sonication of retrieved implants for the diagnosis of prosthetic joint infection in a routine setting[J]. Eur J Clin Microbiol Infect Dis, 2018, 37(4): 715-722.
[25]
Goldberg B, Sichtig H, Geyer C, et al. Making the leap from research laboratory to clinic: challenges and opportunities for next-generation sequencing in infectious disease diagnostics[J/OL]. mBio, 2015, 6(6): e01888-15. doi: 10.1128/mBio.01888-15.
[26]
Grumaz S, Stevens P, Grumaz C, et al. Next-generation sequencing diagnostics of bacteremia in septic patients[J/OL]. Genome Med, 2016, 8(1): 73. doi: 10.1186/s13073-016-0326-8.
[27]
徐一宏,徐卫东.二代测序技术在诊断假体周围感染中的应用[J].中国矫形外科杂志,2019,27(13):1171-1175.
[28]
Street TL, Sanderson ND, Atkins BL, et al. Molecular diagnosis of orthopedic-device-related infection directly from sonication fluid by metagenomic sequencing[J]. J Clin Microbiol, 2017, 55(8): 2334-2347.
[29]
Tarabichi M, Shohat N, Goswami K, et al. Diagnosis of periprosthetic joint infection: the potential of next-generation sequencing[J]. J Bone Joint Surg Am, 2018, 100(2): 147-154.
[30]
Tarabichi M, Shohat N, Goswami K, et al. Can next Generation sequencing play a role in detecting pathogens in synovial fluid?[J]. Bone Joint J, 2018, 100B(2): 127-133.
[31]
Mittal Y, Fehring TK, Hanssen A, et al. Two-stage reimplantation for periprosthetic knee infection involving resistant organisms[J]. J Bone Joint Surg Am, 2007, 89(6): 1227-1231.
[32]
Zmistowski B, Tetreault MW, Alijanipour P, et al. Recurrent periprosthetic joint infection: persistent or new infection?[J]. J Arthroplasty, 2013, 28(9): 1486-1489.
[33]
Perlejewski K, Bukowska-Ośko I, Nakamura S, et al. Metagenomic analysis of cerebrospinal fluid from patients with multiple sclerosis[J]. Adv Exp Med Biol, 2016, 935: 89-98.
[34]
Torchia MT, Austin DC, Kunkel ST, et al. Next-generation sequencing vs culture-based methods for diagnosing periprosthetic joint infection after total knee arthroplasty: a cost-effectiveness analysis[J]. J arthroplasty, 2019, 34(7): 1333-1341.
[35]
Martí-Carreras J, Maes P. Human cytomegalovirus genomics and transcriptomics through the lens of next-generation sequencing: revision and future challenges[J]. Virus Genes, 2019, 55(2): 138-164.
[1] 李焕玺, 何淳诺, 田志敏, 周胜虎, 吴昊越, 张浩强. 全膝关节置换术后股骨远端假体周围骨折治疗现状[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 630-637.
[2] 王相迎, 杨长生, 曲铁兵. 固定平台单髁置换假体合适位置的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 638-645.
[3] 苏介茂, 齐岩松, 王永祥, 魏宝刚, 马秉贤, 张鹏飞, 魏兴华, 徐永胜. 关节镜手术在早中期膝骨关节炎治疗的应用进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 646-652.
[4] 郭艳波, 马亮, 李刚, 阎伟, 骆帝, 岳亮, 吴伟山. 全膝关节置换术后胫股关节脱位的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 658-671.
[5] 陈翠萍, 李佩君, 杜景榕, 谢青梅, 许一宁, 卓姝妤, 李晓芳. 互联网联合上门护理在老年全髋关节置换术后的应用效果[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 676-681.
[6] 陈晓玲, 钟永洌, 刘巧梨, 李娜, 张志奇, 廖威明, 黄桂武. 超高龄髋膝关节术后谵妄及心血管并发症风险预测[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 575-584.
[7] 马桥桥, 张传开, 郭开今, 蒋涛, 王子豪, 刘勇, 郝亮. 可降解止血粉减少初次全膝关节置换术失血量的研究[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 585-589.
[8] 丁莹莹, 宋恺, 金姬延, 田华. 机器人辅助膝髋关节置换术后精细化临床护理[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 553-557.
[9] 孔德铭, 刘铮, 李睿, 钱文伟, 王飞, 蔡道章, 柴伟. 人工智能辅助全髋关节置换三维术前规划准确性评价[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 431-438.
[10] 赵飞鸿, 陈颖杰, 林静芳, 郑晓春, 廖燕凌. 超声引导下周围神经阻滞对髋膝关节置换术后恢复的影响[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 457-468.
[11] 任俊筱, 浦路桥, 王志豪, 施洪鑫, 刘爱峰, 齐保闯, 徐永清, 李川. 机器人辅助全膝关节置换术的临床疗效对照研究[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 469-476.
[12] 谢江燕, 王亚菲, 贺芳. 妊娠合并血栓性血小板减少性紫癜2例并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 556-563.
[13] 林英, 何洪, 杨琦, 姚兴伟, 马婧涵, 杨玉婷, 刘月红, 贾悦, 李长安. 联合宏基因组二代测序诊断普雷沃氏菌致肺脓肿1例并文献复习[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 625-629.
[14] 茹江英, 廖启宇, 温国洪, 潘思华, 刘栋, 张皓琛, 牛云飞. 直接前方入路和后外侧入路半髋关节置换治疗老年痴呆股骨颈骨折的疗效比较[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 287-293.
[15] 王松雷, 张贻良, 孟浩, 宋威, 白林晨, 袁心, 张辉. 股骨前髁预截骨髓外定位技术在全膝关节置换术中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 811-819.
阅读次数
全文


摘要