切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2019, Vol. 13 ›› Issue (01) : 64 -72. doi: 10.3877/cma.j.issn.1674-134X.2019.01.013

所属专题: 文献

基础论著

大肠杆菌-类中性粒细胞-金属片共培养模型的构建
杨闯1, 朱崇尊1, 何人可1, 郭阁永1, 汤瑾2, 沈灏1,()   
  1. 1. 200233 上海交通大学附属第六人民医院骨科
    2. 200233 上海交通大学附属第六人民医院检验科
  • 收稿日期:2018-12-06 出版日期:2019-02-01
  • 通信作者: 沈灏
  • 基金资助:
    国家自然科学基金(81772364;81472108)

Establishment of Escherichia coli-neutrophils-metals co-culture model

Chuang Yang1, Chongzun Zhu1, Renke He1, Geyong Guo1, Jin Tang2, Hao Shen1,()   

  1. 1. Department of Orthopaedic Surgery, Shanghai Jiao TongUniversity Affiliated Sixth People’s Hospital, Shanghai 200233, China
    2. Department of Clinical Laboratory, Shanghai Jiao TongUniversity Affiliated Sixth People’s Hospital, Shanghai 200233, China
  • Received:2018-12-06 Published:2019-02-01
  • Corresponding author: Hao Shen
  • About author:
    Corresponding author: Shen Hao, Email:
引用本文:

杨闯, 朱崇尊, 何人可, 郭阁永, 汤瑾, 沈灏. 大肠杆菌-类中性粒细胞-金属片共培养模型的构建[J]. 中华关节外科杂志(电子版), 2019, 13(01): 64-72.

Chuang Yang, Chongzun Zhu, Renke He, Geyong Guo, Jin Tang, Hao Shen. Establishment of Escherichia coli-neutrophils-metals co-culture model[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2019, 13(01): 64-72.

目的

建立稳定发光的类中性粒细胞-大肠杆菌-金属片双荧光三相共培养动态模型,并研究其可行性和应用价值。

方法

抽提pUC57-mCherry质粒,电转入大肠杆菌临床株ST131,构建稳定发光的ST131-mCherry大肠杆菌。通过活体成像(IVIS)系统对构建的ST131-mCherry大肠杆菌进行筛选。通过稀释涂板法比较ST131-mCherry与ST131的生长曲线,通过结晶紫染色比较ST131-mCherry与ST131的生物膜形成能力。将ST131-mCherry与钛片共培养,荧光显像观察不同时间点成膜情况,并通过超声震荡稀释涂板法对钛片表面生物膜计量。采用全反式维甲酸(ARTA)诱导HL60-eGFP细胞分化为类中性粒细胞。使用诱导分化的HL60-eGFP细胞、ST131-mCherry与金属片共培养,构建双荧光三相共培养模型,通过荧光显微镜观察以及稀释涂板计数评价不同金属表面的类中性白细胞抗菌能力。使用独立样本t检验对OD值和活菌数等定量数据进行统计。

结果

经临床株筛选,质粒电转获得红色荧光菌株"ST131-mCherry",在体外连续培养48 h,ST131-mCherry可稳定发光。ST131-mCherry与野生株ST131相比,两者的生长曲线没有统计学差异。在胰蛋白胨大豆肉汤培养基(TSB)中,ST131与ST131-mCherry生物膜结晶紫染色490nm的OD值分别为(1.04±0.06)和(1.04±0.05)(t=0.890, P>0.05);在0.5%葡萄糖胰蛋白胨大豆肉汤培养基(TSBG)中,分别为(1.55±0.06)和(1.49±0.17)(t=0.822, P>0.05);在10%滑液(SF)中,分别为(2.13±0.16)和(2.124±0.13)(t=0.833, P>0.05)。ST131-mCherry可以在钛片表面成膜,其荧光强度随着成膜量的增加而变强。诱导分化的HL60-eGFP细胞、ST131-mCherry与钛片或钽片共培养结果显示,经过60 min的共培养,钽金属体系内的HL60-eGFP细胞能够吞噬更多的ST131-mCherry大肠杆菌,钛片体系和钽片体系内细菌存活率分别为(33±2.5)%和(15.7±1.2)%(t=10.47, P<0.01)。

结论

本研究成功构建了大肠杆菌-类中性粒细胞-金属片双荧光三相动态共培养模型,该模型是1种实用的PJI相关抗菌材料体外研究方法。

Objective

To establish a stable fluorescent neutrophil-Escherichia coli (E.coli)-metals binary fluorescence dynamic model, and to evaluate the practicability and application value of this model.

Methods

pUC57-mCherry plasmid was isolated and transferred to clinical E. coli isolates (ST131) through electroporation, ST131-mCherry was then constructed. ST131-mCherry was screened using in-vivo imaging (IVIS) system. Dilution plate method was utilized to compare the growth curve of ST131-mCherry and ST131, crystal violet staining was used to compare the biofilms in 96-well plates. After the co-culture of ST131-mCherry with titanium, the biofilms at different time points were visualized by fluorescence microscope and quantified by ultrasonic concussion and dilution plate method. All-trans-retinoid acid (ARTA) was used to induce HL60-enhanced green fhcorescent protein (eGFP) to differentiate into neutrophil like cells. Induced differentiated HL60-eGFP, ST131-mCherry and metals were co-cultured to establish the binary fluorescence triple components dynamic model. The antibacterial efficiencies of neutrophil like cells on different metal-surfaces were compared through fluorescent observation and bacterial count. Independent t test was used to evaluate the statistical significance.

Results

Red fluorescence clinical E. coli (ST131-mCherry) was constructed through clinical strains screening and plasmid electroporation. The fluorescence of ST131-mCherry was proved to be stable in the 48 h consecutive culture. There was no significant difference of growth curve between ST131-mCherry and ST131 wild strain. OD value of biofilms stained with crystal violet in tryptic soy broth (TSB) at 490 nm was (1.04±0.06) and (1.04±0.05) (t=0.890, P>0.05) for ST131 and ST131-mCherry respectively, it was (1.55±0.06) and (1.49±0.17) (t=0.822, P>0.05) in 0.5% glucose tryptic soy broth (TSBG), (2.13±0.16) and (2.124±0.13)(t=0.833, P>0.05) in 10% synovial fluid (SF). ST131-mCherry can form biofilms on the surface of titanium, the fluorescent intensity of bacteria was enhanced with the growth of biofilm. The co-culture of differentiated HL60-eGFP, ST131-mCherry and titanium/tantalum revealed that neutrophils could devour more E. coli in the tantalum system after 60 min, bacterial survival rate was (33±2.5)% and (15.7±1.2)% for Ti and Ta system respectively (t=10.47, P<0.01).

Conclusion

E. coli-fluorescent neutrophil-metals binary fluorescence dynamic model is constructed in current study, which is a practical tool to investigate antimicrobial biomaterials in vitro.

图1 筛选成功电转mCherry质粒的ST131大肠杆菌大体照片。图A为野生型ST131大肠杆菌大体照片;图B为IVIS系统拍摄的野生型ST131大肠杆菌图像,无荧光信号;图C为ST131-mCherry荧光大肠杆菌大体照片;图D为IVIS(小动物活体成像系统)拍摄的ST131-mCherry荧光大肠杆菌图像,可见明显荧光信号
图2 TSA(大豆酪蛋白琼脂)板上ST131-mCherry大肠杆菌荧光稳定性检测,示ST131大肠杆菌临床株中稳定表达红色荧光,不会随着细菌传代而发生丢失。图A~D为不同时间点TSA(胰蛋白胨大豆肉汤琼脂)平板上ST131-mCherry大肠杆菌大体照片;图E~H为不同时间点IVIS(小动物活体成像系统)检测TSA平板上ST131-mCherry大肠杆菌的荧光强度;图I为IVIS(小动物活体成像系统)半定量检测TSA(大豆酪蛋白琼脂)平板上ST131-mCherry大肠杆菌的荧光信号强度
图3 ST131-mCherry大肠杆菌与ST131大肠杆菌浮游菌以及生物膜对比。图A为两种细菌的生长曲线对比,可见在不同的时间点两种细菌计数无明显差异;图B为两种细菌在不同培养环境下成膜定量对比,两组之间的成膜量差异均无统计学意义,TSB(3%胰蛋白胨大豆肉汤琼脂培养基)中,P>0.05; 0.5%TSBG(葡萄糖胰蛋白胨大豆肉汤培养基)中,P>0.05;10%SF(滑液)中,P>0.05;图C为两种细菌在不同培养为环境下结晶紫染色照片,可见TSB中细菌成膜最少,而10%SF中细菌成膜最多,同种体外培养环境下,两种细菌成膜量无明显差异
图4 HL60-eGFP细胞的特征检测。图A为荧光显微镜拍摄的HL60细胞图像,未见荧光信号;图B为荧光显微镜拍摄的HL60-eGFP细胞图像,可见明显的荧光信号;图C为HL60细胞以及HL60-eGFP细胞生长曲线,可见不同时间点两种细胞的个数没有明显差异;图D为ARTA (全反式维甲酸)诱导不同时间的HL60-eGFP细胞与ST131-mCherry大肠杆菌共培养后细菌存活率比较,示对照组高于诱导3 d(t=16.82, P<0.01);对照组高于诱导5 d(t=26.45,P<0.01);诱导1 d高于诱导3 d(t=16.29,P<0.01);诱导1 d高于诱导5 d(t=26.04,P<0.01);诱导3 d高于诱导5 d(t=11.33,P<0.01)
图5 钛片表面ST131-mCherry大肠杆菌生物膜的定量定性研究。图A为荧光显微镜观察的不同时间点钛片表面生物膜的代表性荧光图像,可以看出随着时间的延长,生物膜的量逐渐增加,而荧光信号逐渐增强;图B为不同时间点钛片表面生物膜的定量计数,随着时间的延长,生物膜中细菌数量逐渐增加
图6 免疫细胞-细菌-金属片共培养荧光显微镜图像。示0 min时,钛组与钽组细胞、细菌密度大致相同,60 min时,钽体系内明显更多的细菌被细胞吞噬
[1]
Mcpherson EJ, Woodson C, Holtom P, et al. Periprosthetic total hip infection - outcomes using a staging system[J]. Clin Orthop Relat Res, 2002, (403): 8-15.
[2]
Fink B, Grossmann A, Fuerst M, et al. Two-stage cementless revision of infected hip endoprostheses[J]. Clin Orthop Relat Res, 2009, 467(7): 1848-1858.
[3]
Darouiche RO. Treatment of infections associated with surgical implants[J]. N Engl J Med, 2004, 350(14): 1422-1429.
[4]
王津,王俏杰,沈灏,等.采用可活动性间隔物治疗髋关节假体周围感染的转归[J/CD].中华关节外科杂志(电子版),2017,11(4):417-420.
[5]
Stewart PS, William Costerton J. Antibiotic resistance of bacteria in biofilms[J]. Lancet, 2001, 358(9276): 135-138.
[6]
曹力,纪保超.髋膝关节置换术后假体周围感染焦点问题[J/CD].中华关节外科杂志(电子版),2016,10(4):360-363.
[7]
顾昕,吴海山,赵辉,等.人工关节置换术后假体周围感染的生物膜研究进展[J/CD].中华关节外科杂志(电子版),2012,6(6):940-945.
[8]
Zimmerli W, Lew PD, Waldvogel FA. Pathogenesis of foreign body infection. Evidence for a local granulocyte defect[J]. J Clin Invest, 1984, 73(4): 1191-1200.
[9]
Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections[J]. N Engl J Med, 2004, 351(16): 1645-1654.
[10]
Zmistowski B, Fedorka CJ, Sheehan E, et al. Prosthetic joint infection caused by gram-negative organisms[J]. J Arthroplasty, 2011, 26(6 Suppl): 104-108.
[11]
Wimmer MD, Friedrich MJ, Randau TM, et al. Polymicrobial infections reduce the cure rate in prosthetic joint infections: outcome analysis with two-stage exchange and follow-up>= two years[J]. Int Orthop, 2016, 40(7): 1367-1373.
[12]
Qin H, Cao HL, Zhao YC, et al. In vitro and in vivo anti-biofilm effects of Silver nanoparticles immobilized on Titanium[J]. Biomaterials, 2014, 35(33): 9114-9125.
[13]
Baumstummler A, Chollet R, Meder H, et al. Development of a nondestructive fluorescence-based enzymatic staining of microcolonies for enumerating bacterial contamination in filterable products[J]. J Appl Microbiol, 2011, 110(1): 69-79.
[14]
Guo G, Zhou H, Wang Q, et al. Nano-layered Magnesium fluoride reservoirs on biomaterial surfaces strengthen polymorphonuclear leukocyte resistance to bacterial pathogens[J]. Nanoscale, 2017, 9(2): 875-892.
[15]
Wang JX, Li JH, Guo GY, et al. Silver-nanoparticles-modified biomaterial surface resistant to staphylococcus: new insight into the antimicrobial action of Silver[J/OL]. Sci Rep, 2016, 6: 32699. doi:10.1038/srep32699.
[16]
Wang JX, Zhou HJ, Guo GY, et al. Enhanced anti-infective efficacy of ZnO nanoreservoirs through a combination of intrinsic anti-biofilm activity and reinforced innate defense[J]. ACS Appl Mater Interfaces, 2017, 9(39): 33609-33623.
[17]
Schildhauer TA, Peter E, Muhr G, et al. Activation of human leukocytes on Tantalum trabecular metal in comparison to commonly used orthopedic metal implant materials[J]. J Biomed Mater Res A, 2009, 88(2): 332-341.
[18]
Sahni G, Gopinath P, Jeevanandam P. A novel thermal decomposition approach to synthesize hydroxyapatite-silver nanocomposites and their antibacterial action against GFP-expressing antibiotic resistant E. coli[J]. Colloids Surf B Biointerfaces, 2013, 103: 441-447.
[19]
Kawaja MD, Smithson LJ, Elliott J, et al. Nerve growth factor promoter activity revealed in mice expressing enhanced green fluorescent protein[J]. J Comp Neurol, 2011, 519(13): 2522-2545.
[20]
Jasek E, Mirecka J, Litwin JA. Effect of differentiating agents(all-trans retinoic acid and phorbol 12-myristate 13-acetate)on drug sensitivity of HL60 and NB4 cells in vitro[J]. Folia Histochem Cytobiol, 2008, 46(3): 323-330.
[21]
高朝贤,郑浩渠,惠长野,等.红色荧光蛋白变种mCherry的表达,纯化和应用探讨[J].国际生物制品学杂志,2017,40(1):31-35.
[22]
郭阁永,王加兴,谈佳琪,等.稳定生物发光金葡菌临床株假体周围关节感染动物模型的构建[J/CD].中华关节外科杂志(电子版),2016,10(4):399-406.
[23]
Wang J, Li J, Qian S, et al. Antibacterial surface design of Titanium-Based biomaterials for enhanced Bacteria-Killing and Cell-Assisting functions against periprosthetic joint infection[J]. ACS Appl Mater Interfaces, 2016, 8(17): 11162-11178.
[24]
沈灏,王俏杰,蒋垚,等.人工髋关节感染诊治的临床新进展[J/CD].中华关节外科杂志(电子版),2014,8(1):105-108.doi:10.3877/cma.j.issn.1674-134X.2014.01.020.
[25]
Karahan HE, Wiraja C, Xu CJ, et al. Graphene materials in antimicrobial nanomedicine: current status and future perspectives[J/OL]. Adv Healthc Mater, 2018, 7(13, SI): e1701406. doi:10.1002/adhm.201701406.
[26]
杨晓玫,师尚礼.红、黄.绿三种颜色荧光质粒导入大肠杆菌中的稳定性表达[J].甘肃农业大学学报,2018,53(3):193-198.
[27]
Shen Y, Chen Y, Wu J, et al. Engineering of mCherry variants with long Stokes shift, red-shifted fluorescence, and low cytotoxicity[J/OL]. PLoS One, 2017, 12(2): e0171257. doi:10.1371/journal.pone.0171257.
[28]
Xuan WM, Yao AZ, Schultz PG. Genetically encoded fluorescent probe for detecting sirtuins in living cells[J]. J Am Chem Soc, 2017, 139(36): 12350-12353.
[29]
Arciola CR, Campoccia D, Speziale P, et al. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials[J]. Biomaterials, 2012, 33(26): 5967-5982.
[30]
Francolini I, Vuotto C, Piozzi AA. Antifouling and antimicrobial biomaterials: an overview[J]. APMIS, 2017, 125(4, SI): 392-417.
[31]
Janeway CA, Jr., Medzhitov R. Innate immune recognition[J]. Annu Rev Immunol, 2002, 20:197-216.
[32]
Chen M, Wu S, Tsai T, et al. Regulation of neutrophil phagocytosis of Escherichia coli by antipsychotic drugs[J]. Int Immunopharmacol, 2014, 23(2): 550-557.
[33]
Chen ML, Wu S, Tsai TC, et al. The caffeic acid in aqueous extract of Tournefortia sarmentosa enhances neutrophil phagocytosis of Escherichia coli[J]. Immunopharmacol Immunotoxicol, 2014, 36(6): 390-396.
[1] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[2] 葛飞霞, 蒋银, 杨丹. 酶联免疫吸附测定法与PCR仪检测在乙型肝炎诊断中的临床应用[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 310-315.
[3] 娄丽丽, 刘瀚旻. 儿童狼疮性肾炎相关肾小管间质损伤的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 373-378.
[4] 陆美琪, 赵洁, 单菲, 王兴蕾, 姜笃银. 药物相关坏疽性脓皮病的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 447-450.
[5] 张红凯, 崔建春. 从病理角度学习非哺乳期乳腺炎的分类分型及治疗[J]. 中华普通外科学文献(电子版), 2023, 17(04): 251-251.
[6] 孟令展, 李虎, 俞鹏, 于燕宾, 曹李, 翟伟, 高远, 邵艳玲, 严锦, 朱震宇. ICG荧光染色在肝癌腹腔镜解剖性肝切除术中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 557-561.
[7] 周毅, 王一帆, 张传海, 马金良, 余继海, 荚卫东. ICG荧光导航技术在困难腹腔镜肝切除中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 407-411.
[8] 李博, 胡刚, 邱文龙, 汤坚强, 王锡山. 多功能吲哚菁绿近红外荧光血管成像技术在腹腔镜直肠癌经自然腔道取标本手术(NOSES Ⅳ式)中的应用(附视频)[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 524-528.
[9] 中国医师协会结直肠肿瘤专业委员会, 中国抗癌协会大肠癌专业委员会, 北京整合医学学会结直肠肿瘤分会. 吲哚菁绿近红外荧光血管成像技术应用于腹腔镜结直肠手术中吻合口血供判断中国专家共识(2023版)[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 441-447.
[10] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[11] 王庆, 夏婷婷. 未成熟粒细胞计数、C反应蛋白、中性粒细胞/淋巴细胞、降钙素原结合MCTSI评分在急性胆源性胰腺炎中的诊断价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 224-228.
[12] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
[13] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[14] 陈捷, 白易, 刘金波, 刘欢, 赵娜, 赵红薇, 王宏宇. 中老年人群中性粒细胞和高密度脂蛋白比值与下肢动脉疾病的相关性[J]. 中华临床医师杂志(电子版), 2023, 17(04): 402-408.
[15] 连立超, 范子玥, 张昕, 白丽. 尿KIM-1、NGAL、RBP联合检测在慢性乙肝患者早期肾损伤中的预测价值[J]. 中华临床医师杂志(电子版), 2023, 17(04): 414-418.
阅读次数
全文


摘要