[1] |
Lin Z, Willers C, Xu J , et al. The Chondrocyte: Biology and Clinical Application[J]. Tissue Eng Part A, 2006, 12(7): 1971-1984.
|
[2] |
Lories RJ, Luyten FP. The bone-cartilage unit in osteoarthritis[J]. Nat Rev Rheumatol, 2011, 7(1): 43-49.
|
[3] |
Ding C, Jones G, Wluka AE, et al. What can we learn about osteoarthritis by studying a healthy person against a person with early onset of disease? [J/OL]. Curr Opin Rheumatol, 2010,22(5):520-7. doi: 10.1097/BOR.0b013e32833b90e9.
|
[4] |
Carnes J, Stannus O, Cicuttini FM, et al. Knee cartilage defects in a sample of older adults: natural history, clinical significance and factors influencing change over 2.9 years[J]. Osteoarthr Cartilage, 2012, 20(12): 1541-1547.
|
[5] |
Falah M, Nierenberg G, Soudry M, et al. Treatment of articular cartilage lesions of the knee[J]. Int Orthop, 2010, 34(5): 621-630.
|
[6] |
Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage[J]. Nat Rev Rheumatol, 2015, 11(1): 21-34.
|
[7] |
Peterson L, Vasiliadis HS, Brittberg M, et al. Autologous chondrocyte implantation a long-term follow-up[J/OL]. Am J Sport Med, 2010,38(6):1117-24. doi: 10.1177/0363546509357915.
|
[8] |
Cole BJ, Pascual-Garrido C, Grumet RC. Surgical management of articular cartilage defects in the knee[J/OL]. J Bone Joint Surg Am, 2010,59(7): 181. doi: 10.1016/S0735-1097(15)62028-9
|
[9] |
Ahmed TA, Hincke MT. Mesenchymal stem cell-based tissue engineering strategies for repair of articular cartilage[J]. Histol Histopathol, 2014, 29(6): 669-689.
|
[10] |
Dai WD, Kawazoe N, Lin XT, et al. The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering[J]. Biomaterials, 2010, 31(8): 2141-2152.
|
[11] |
Ahmed N, Dreier R, Göpferich A, et al. Soluble signalling factors derived from differentiated cartilage tissue affect chondrogenic differentiation of rat adult marrow stromal cells[J]. Cell Physiol Biochem, 2007, 20(5):665-678.
|
[12] |
Fischer J, Dickhut A, Rickert M, et al. Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis.[J]. Arthritis Rheum, 2014, 62(9):2696-2706.
|
[13] |
李丽艳,黄金中. 杜江.转化生长因子β1诱导骨髓间充质干细胞向软骨细胞分化[J].中国组织工程研究,2010,14(1):38-41.
|
[14] |
Tsuchiya K, Chen G, Ushida T , et al. The effect of coculture of chondrocytes with mesenchymal stem cells on their cartilaginous phenotype in vitro[J]. Mat Sci Eng C-Mater, 2004, 24(3):391-396.
|
[15] |
Holtzer H, Abbott J, Lash J , et al. The loss of phenotypic traits by differentiaed cells in vitro, I. dedifferentiation of cartilage cells[J]. Proc Natl Acad Sci U S A, 1960, 46(12): 1533-1542.
|
[16] |
Goessler UR, Bugert P, Bieback K, et al. Expression of collagen and fiber-associated proteins in human septal cartilage during in vitro dedifferentiation[J]. Int J Mol Med, 2004, 14(6): 1015-1022.
|
[17] |
徐磊,叶朝阳,周燕,等.体外传代培养兔关节软骨细胞的去分化现象[J].中国组织工程研究,2013,17(20):3626-3634.
|
[18] |
Duan L, Ma B, Liang YJ, et al. Cytokine networking of chondrocyte dedifferentiation in vitro and its implications for cell-based cartilage therapy[J]. Am J Transl Res, 2015, 7(2): 194-208.
|
[19] |
Maribel Mata-Miranda M, Maria Martinez-Martinez CA, Enrique Paredes-Gonzalez LA. Morphological, genetic and phenotypic comparison between human articular chondrocytes and cultured chondrocytes[J]. Histochem Cell Biol, 2016, 146(2): 183-189.
|
[20] |
Qing C, Weiding C, Weimin F. Co-culture of chondrocytes and bone marrow mesenchymal stem cells in vitro enhances the expression of cartilaginous extracellular matrix components[J/OL]. Braz J Med Biol Res, 2011,44(4):303-10. doi: 10.1590/S0100-879X2011007500026.
|
[21] |
Lettry V, Hosoya K, Takagi S, et al. Coculture of equine mesenchymal stem cells and mature equine articular chondrocytes results in improved chondrogenic differentiation of the stem cells[J]. Jpn J Vet Res, 2010, 58(1): 5-15.
|
[22] |
Xu L, Wang Q, Xu F, et al. Mesenchymal stem cells downregulate articular chondrocyte differentiation in noncontact coculture systems: implications in cartilage tissue regeneration[J]. Stem Cells Dev, 2013, 22(11): 1657-1669.
|
[23] |
谢鹏. 张仲文.自体骨髓间充质干细胞和同种异体软骨细胞共培养优化软骨组织工程种子的细胞源[J].中国组织工程研究,2012,16(14):2509-2514.
|
[24] |
关炼雄,段莉,黄江鸿,等.软骨细胞去分化研究进展[J].国际骨科学杂志,2014,35(4):250-253.
|
[25] |
刘瑾春,刘霞,曹谊林.软骨细胞培养中细胞去分化和再分化研究进展[J].中华整形外科杂志,2011,27(4):318-320.
|
[26] |
Gan L, Kandel RA. In vitro cartilage tissue formation by co-culture of primary and passaged chondrocytes[J]. Tissue Eng, 2007, 13(4): 831-842.
|
[27] |
Doege K J, Sasaki M, Kimura T , et al. Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan. Human-specific repeats, and additional alternatively spliced forms[J]. J Biol Chem, 1991, 266(2):894-902.
|
[28] |
Meretoja VV, Dahlin RL, Wright S, et al. Articular chondrocyte redifferentiation in 3D co-cultures with mesenchymal stem cells[J/OL]. Tissue Eng Part C Methods, 2014 ,20(6):514-23. doi: 10.1089/ten.tec.2013.0532.
|
[29] |
Meretoja VV, Dahlin RL, Kasper FK, et al. Enhanced chondrogenesis in co-cultures with articular chondrocytes and mesenchymal stem cells[J/OL]. Biomaterials, 2012,33(27):6362-9. doi: 10.1016/j.biomaterials.2012.05.042.
|
[30] |
Acharya C, Adesida A, Zajac P, et al. Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation[J]. J Cell Physiol, 2012 ,227(1):88-97. doi: 10.1002/jcp.22706.
|
[31] |
张艳,柴岗,刘伟,等.软骨细胞老化特征及机制的研究进展[J].上海第二医科大学学报,2004,24(4):322-325.
|
[32] |
Sailor LZ, Morris EA. Recombinant human bone morphogenetic protein-2 maintains the articular chondrocyte phenotype in long-term culture[J]. J Orthop Res, 1996, 14(6): 937-945.
|
[33] |
Yamamoto Y, Mochida J, Sakai D, et al. Upregulation of the viability of nucleus pulposus cells by bone marrow-derived stromal cells: significance of direct cell-to-cell contact in coculture system[J]. Spine (Phila Pa 1976), 2004, 29(14): 1508-1514.
|
[34] |
孙明林,朱雷,吕丹.Ⅱ型胶原蛋白对兔去分化软骨细胞再分化的作用[J].中国修复重建外科杂志,2010(10):1244-1248.
|
[35] |
Liu X, Sun HY, Yan D, et al. In vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes[J]. Biomaterials, 2010, 31(36): 9406-9414.
|
[36] |
Lee JS, Im GI. Influence of chondrocytes on the chondrogenic differentiation of adipose stem cells[J]. Tissue Eng Part A, 2010, 16(12): 3569-3577.
|
[37] |
Zuo Q, Cui W, Liu F, et al. Co-cultivated mesenchymal stem cells support chondrocytic differentiation of articular chondrocytes[J]. Int Orthop, 2013, 37(4): 747-752.
|
[38] |
White TW, Bruzzone R. Multiple connexin proteins in single intercellular channels: Connexin compatibility and functional Consequences[J]. J Bioenerg Biomembr, 1996, 28(4): 339-350.
|
[39] |
Chen WH, Lai MT, Wu AT, et al. In vitro stage-specific chondrogenesis of mesenchymal stem cells committed to chondrocytes[J]. Arthritis Rheum, 2009, 60(2): 450-459.
|
[40] |
Wu L, Leijten JC, Georgi N, et al. Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation[J]. Tissue Eng Part A, 2011, 17(9/10): 1425-1436.
|
[41] |
Akiyama H, Chaboissier MC, Martin JF, et al. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6[J]. Genes Dev, 2002, 16(21): 2813-2828.
|
[42] |
Schmid TM, Linsenmayer TF. Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues[J]. J Cell Biol, 1985, 100(2): 598-605.
|
[43] |
Wysokinski D, Pawlowska E, Blasiak J. RUNX2: a master bone growth regulator that may be involved in the DNA damage response[J/OL]. DNA Cell Biol, 2015,34(5):305-15. doi: 10.1089/dna.2014.2688.
|
[44] |
杜腾飞,刘国明,郭小美,等.甲状旁腺激素对大鼠牵张成骨过程中ONC、OPN、C-FOS、COL1、VEGF、RUNX2、ALP基因表达的影响[J].山东大学学报(医学版),2015,53(03):32-35.
|
[45] |
Winter A, Breit S, Parsch D, et al. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells[J]. Arthritis Rheum, 2003, 48(2): 418-429.
|
[46] |
Pelttari K, Winter A, Steck E, et al. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice[J]. Arthritis Rheum, 2006, 54(10): 3254-3266.
|
[47] |
Zhang F, Su K, Fang Y, et al. A mixed co-culture of mesenchymal stem cells and transgenic chondrocytes in alginate hydrogel for cartilage tissue engineering[J]. J Tissue Eng Regen Med, 2015, 9(1): 77-84.
|
[48] |
Cooke ME, Allon AA, Cheng T, et al. Structured three-dimensional co-culture of mesenchymal stem cells with chondrocytes promotes chondrogenic differentiation without hypertrophy[J/OL]. Osteoarthr Cartilage, 2011,19(10):1210-8. doi: 10.1016/j.joca.2011.07.005.
|
[49] |
Aung A, Gupta G, Majid G, et al. Osteoarthritic chondrocyte-secreted morphogens induce chondrogenic differentiation of human mesenchymal stem cells[J]. Arthritis Rheum, 2011, 63(1): 148-158.
|
[50] |
Giovannini S, Diazromero J, Aigner T , et al. Micromass co-culture of human articular chondrocytes and human bone marrow mesenchymal stem cells to investigate stable neocartilage tissue formation in vitro.[J]. Eur Cell Mater. 2010,20:245-259.
|
[51] |
Sabatino MA, Santoro R, Gueven SA, et al. Cartilage graft engineering by co-culturing primary human articular chondrocytes with human bone marrow stromal cells[J]. J Tissue Eng Regen Med, 2015, 9(12): 1394-1403.
|
[52] |
Zhao X, Hwang NS, Bichara DA, et al. Chondrogenesis by bone marrow-derived mesenchymal stem cells grown in chondrocyte-conditioned medium for auricular Reconstruction[J]. J Tissue Eng Regen Med, 2017, 11(10): 2763-2773.
|
[53] |
Zhang L, Zheng L, Fan HS, et al. A scaffold-filter model for studying the chondrogenic differentiation of stem cells in vitro[J]. Mater Sci Eng C Mater Biol Appl, 2017, 70(Pt 2): 962-968.
|
[54] |
Islam MA, Hansen AK, Mennan C, et al. Mesenchymal stromal cells from human umbilical cords display poor chondrogenic potential in scaffold-free three dimensional cultures[J]. Eur Cell Mater, 2016, 31:407-24.
|
[55] |
Goldring SR, Dayer JM, Krane SM. Rheumatoid synovial cell hormone responses modulated by cell-cell interactions[J]. Inflammation, 1984, 8(1): 107-121.
|
[56] |
Furumatsu T, Tsuda M, Taniguchi N, et al. Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment[J]. J Biol Chem, 2005, 280(9): 8343-8350.
|
[57] |
Lluís Quintana, Nieden NIZ, Semino CE. Morphogenetic and regulatory mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue engineering[J]. Tissue Eng Part B Rev, 2009, 15(1):29.
|
[58] |
Zhang M, Zhou Q, Liang QQ, et al. IGF-1 regulation of type II collagen and MMP-13 expression in rat endplate chondrocytes via distinct signaling pathways[J/OL]. Osteoarthr Cartilage, 2009 Jan;17(1):100-106. doi: 10.1016/j.joca.2008.05.007.
|
[59] |
Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion[J]. Nature, 2002, 416(6880): 542-545.
|
[60] |
Djouad F, Delorme B, Maurice M, et al. Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes[J]. Arthritis Res Ther, 2007, 9(2): 1-12.
|
[61] |
Guillotin B, Bourget C, Remy-Zolgadri M, et al. Human primary endothelial cells stimulate human osteoprogenitor cell differentiation[J]. Cell Physiol Biochem. 2004,14(4-6):325-332.
|
[62] |
李超然,黄桂林,王帅.间充质干细胞来源外泌体促进损伤组织修复与再生的应用与进展[J].中国组织工程研究,2018,22(1):133-139.
|
[63] |
Zhang J, Liu X, Li H , et al. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway[J/OL]. Stem Cell Res Ther, 2016,7(1):136. doi: 10.1186/s13287-016-0391-3.
|
[64] |
Qi X, Zhang J, Yuan H , et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats[J]. Int J Biol Sci, 2016, 12(7):836-849.
|
[65] |
Furuta T, Miyaki S, Ishitobi H , et al. Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model.[J/OL]. Stem Cells Transl Med, 2016,5(12):1620-1630. doi: 10.5966/sctm.2015-0285
|
[66] |
Tao SC, Yuan T, Zhang YL, et al. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model.[J]. Theranostics, 2017, 7(1):180-195.
|
[67] |
Higuera GA, Hendriks JA, Van Dalum JA, et al. In vivo screening of extracellular matrix components produced under multiple experimental conditions implanted in one animal[J]. Integr Biol, 2013, 5(6): 889-898.
|
[68] |
Lv XJ, Zhou GD, Liu X, et al. Chondrogenesis by co-culture of adipose-derived stromal cells and chondrocytes in vitro[J]. Connect Tissue Res, 2012, 53(6): 492-497.
|
[69] |
Critchley SE, Eswaramoorthy R, Kelly DJ. Low oxygen conditions promote synergistic increases in chondrogenesis during co-culture of human osteoarthritic stem cells and chondrocytes[J/OL]. J Tissue Eng Regen Med. 2018,12(4):1074-1084. doi: 10.1002/term.2608.
|
[70] |
Ito A, Aoyama T, Tajino J, et al. Effects of culturing temperature on extracellular matrix formation and redifferentiation of expanded human chondrocyte [J/OL]. Osteoarthr Cartilage, 2014, 22(S): S170. doi: 10.1016/j.joca.2014.02.318
|
[71] |
He XM, Feng B, Huang CP, et al. Electrospun gelatin/polycaprolactone nanofibrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering[J/OL]. Int J Nanomedicine. 2015,10:2089-2099. doi: 10.2147/IJN.S79461.
|
[72] |
Li D, Zhu L, Liu Y, et al. Stable subcutaneous cartilage regeneration of bone marrow stromal cells directed by chondrocyte sheet[J/OL]. Acta Biomater, 2017,54:321-332. doi: 10.1016/j.actbio.2017.03.031.
|
[73] |
Olivos-Meza A, Martínez CV, Díaz BO, et al. Co-culture of dedifferentiated and primary human chondrocytes obtained from cadaveric donor enhance the histological quality of repair tissue: an in-vivo animal study[J/OL]. Cell Tissue Bank, 2017,18(3):369-381. doi: 10.1007/s10561-017-9635-4.
|