[1] |
Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis[J/OL]. Nat Rev Dis Primers, 2016, 2: 16072.DOI: 10.1038/nrdp.2016.72.
|
[2] |
Briggs AM, Woolf AD, Dreinhöfer K, et al. Reducing the global burden of musculoskeletal conditions[J]. Bull World Health Organ, 2018, 96(5): 366-368.
|
[3] |
Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study[J]. Ann Rheum Dis, 2014, 73(7): 1323-1330.
|
[4] |
Glyn-Jones S, Palmer AJR, Agricola R, et al. Osteoarthritis[J]. Lancet, 2015, 386(9991): 376-387.
|
[5] |
GBD DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2016: asystematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2017, 390(10100): 1260-1344.
|
[6] |
Lopa S, Madry H. Bioinspired scaffolds for osteochondral regeneration[J]. Tissue Eng Part A, 2014, 20(15-16): 2052-2076.
|
[7] |
Kwon H, Brown WE, Lee CA, et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair[J]. Nat Rev Rheumatol, 2019, 15(9): 550-570.
|
[8] |
Langer R, Vacanti JP. Tissue engineering[J]. Science, 1993, 260(5110): 920-926.
|
[9] |
Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage[J]. Nat Rev Rheumatol, 2015, 11(1): 21-34.
|
[10] |
Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering[J]. Nat Rev Mater, 2020, 5(8): 584-603.
|
[11] |
Graceffa V, Vinatier C, Guicheux J, et al. Chasing chimeras - the elusive stable chondrogenic phenotype[J]. Biomaterials, 2019, 192: 199-225.
|
[12] |
Vinatier C, Mrugala D, Jorgensen C, et al. Cartilage engineering: acrucial combination of cells, biomaterials and biofactors[J]. Trends Biotechnol, 2009, 27(5): 307-314.
|
[13] |
李想,符培亮. 自体软骨细胞移植修复膝关节骨软骨缺损:再生与天然软骨无明显差异[J]. 中国组织工程研究,2021, 25(25): 4076-4081.
|
[14] |
敖彧农,李忠,张成昌,等. 关节软骨钙化层相关研究进展[J]. 中国矫形外科杂志,2019, 27(8): 722-725.
|
[15] |
Arkill KP, Winlove CP. Solute transport in the deep and calcified zones of articular cartilage[J]. Osteoarthritis Cartilage, 2008, 16(6): 708-714.
|
[16] |
Li G, Yin J, Gao J, et al. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes[J/OL]. Arthritis Res Ther, 2013, 15(6): 223. DOI: 10.1186/ar4405.
|
[17] |
李想,符培亮. 骨软骨界面组织梯度变化的研究进展[J/CD]. 中华关节外科杂志(电子版), 2020, 14(6): 722-728.
|
[18] |
Jeuken RM, Roth AK, Peters RJRW, et al. Polymers in cartilage defect repair of the knee: current status and future prospects[J/OL]. Polymers, 2016, 8(6): 219. DOI: 10.3390/polym8060219.
|
[19] |
Alkaya D, Gurcan C, Kilic P, et al. Where is human-based cellular pharmaceutical R&D taking us in cartilage regeneration?[J/OL]. 3 Biotech, 2020, 10(4): 161. DOI: 10.1007/s13205-020-2134-5.
|
[20] |
Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration[J/OL]. Mater Sci Eng C Mater Biol Appl, 2020, 110: 110698. DOI: 10.1016/j.msec.2020.110698.
|
[21] |
Mohammadinejad R, Kumar A, Ranjbar-Mohammadi M, et al. Recent advances in natural gum-based biomaterials for tissue engineering and regenerative medicine: areview[J/OL]. Polymers, 2020, 12(1): 176. DOI: 10.3390/polym12010176.
|
[22] |
Chu S, Maples MM, Bryant SJ. Cell encapsulation spatially alters crosslink density of poly(ethylene glycol) hydrogels formed from free-radical polymerizations[J]. Acta Biomater, 2020, 109: 37-50.
|
[23] |
Yao Q, Cosme JG, Xu T, et al. Three dimensional electrospun PCL/PLAblend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation[J]. Biomaterials, 2017, 115: 115-127.
|
[24] |
Wang P, Zhang W, Yang R, et al. Biomimetic poly(γ-glutamic acid) hydrogels based on iron (III) ligand coordination for cartilage tissue engineering[J]. IntJ Biol Macromol, 2021, 167: 1508-1516.
|
[25] |
Yang T, Tamaddon M, Jiang L, et al. Bilayered scaffold with 3Dprinted stiff subchondral bony compartment to provide constant mechanical support for long-term cartilage regeneration[J]. JOrthop Translat, 2021, 30: 112-121.
|
[26] |
Du Y, Liu H, Yang Q, et al. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits[J]. Biomaterials, 2017, 137: 37-48.
|
[27] |
Qiao Z, Lian M, Han Y, et al. Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration[J/OL]. Biomaterials, 2021, 266: 120385. DOI: 10.1016/j.biomaterials.2020.120385.
|
[28] |
Gao F, Xu Z, Liang Q, et al. Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds[J/OL]. Adv Sci, 2019, 6(15): 1900867. DOI: 10.1002/advs.201900867.
|
[29] |
Lin D, Cai B, Wang L, et al. A viscoelastic PEGylated poly(glycerol sebacate)-based bilayer scaffold for cartilage regeneration in full-thickness osteochondral defect[J/OL]. Biomaterials, 2020, 253: 120095. DOI: 10.1016/j.biomaterials.2020.120095.
|
[30] |
Wang Y, Koole LH, Gao C, et al. The potential utility of hybrid photo-crosslinked hydrogels with non-immunogenic component for cartilage repair[J/OL]. NPJ Regen Med, 2021, 6(1): 54. DOI: 10.1038/s41536-021-00166-8.
|
[31] |
Ribeiro VP, Pina S, Costa JB, et al. Enzymatically cross-linked silk fibroin-based hierarchical scaffolds for osteochondral regeneration[J]. ACS Appl Mater Interfaces, 2019, 11(4): 3781-3799.
|
[32] |
Zhu Y, Kong L, Farhadi F, et al. An injectable continuous stratified structurally and functionally biomimetic construct for enhancing osteochondral regeneration[J]. Biomaterials, 2019, 192: 149-158.
|
[33] |
Gonzalez-Fernandez T, Rathan S, Hobbs C, et al. Pore-forming bioinks to enable spatio-temporally defined gene delivery in bioprinted tissues[J]. JControl Release, 2019, 301: 13-27.
|
[34] |
Jia S, Wang J, Zhang T, et al. Multilayered scaffold with a compact interfacial layer enhances osteochondral defect repair[J]. ACS Appl Mater Interfaces, 2018, 10(24): 20296-20305.
|
[35] |
Hong H, Seo YB, Kim DY, et al. Digital light processing 3Dprinted silk fibroin hydrogel for cartilage tissue engineering[J/OL]. Biomaterials, 2020, 232: 119679. DOI: 10.1016/j.biomaterials.2019.119679.
|
[36] |
Wang G, An Y, Zhang X, et al. Chondrocyte spheroids laden in GelMA/HAMAhybrid hydrogel for tissue-engineered cartilage with enhanced proliferation, better phenotype maintenance, and natural morphological structure[J/OL]. Gels, 2021, 7(4): 247. DOI: 10.3390/gels7040247.
|
[37] |
Dominici M, le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
|
[38] |
Caplan AI, Correa D. The MSC: an injury drugstore[J]. Cell Stem Cell, 2011, 9(1): 11-15.
|
[39] |
Wei X, Yang X, Han ZP, et al. Mesenchymal stem cells: anew trend for cell therapy[J]. Acta Pharmacol Sin, 2013, 34(6): 747-754.
|
[40] |
Kim HS, Mandakhbayar N, Kim HW, et al. Protein-reactive nanofibrils decorated with cartilage-derived decellularized extracellular matrix for osteochondral defects[J/OL]. Biomaterials, 2021, 269: 120214. DOI: 10.1016/j.biomaterials.2020.120214.
|
[41] |
Zhang J, Xin W, Qin Y, et al. "All-in-one" zwitterionic granular hydrogel bioink for stem cell spheroids production and 3D bioprinting[J/OL]. Chem Eng J, 2022, 430: 132713. DOI: 10.1016/j.cej.2021.132713.
|
[42] |
Gan D, Wang Z, Xie C, et al. Mussel-inspired tough hydrogel with in situnanohydroxyapatite mineralization for osteochondral defect repair[J/OL]. Adv Healthc Mater, 2023, 12(2): e2203040. DOI: 10.1002/adhm.202203040.
|
[43] |
Chen T, Bai J, Tian J, et al. A single integrated osteochondral in situcomposite scaffold with a multi-layered functional structure[J]. Colloids Surf B Biointerfaces, 2018, 167: 354-363.
|
[44] |
Deshmukh V, Hu H, Barroga C, et al. A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee[J]. Osteoarthritis Cartilage, 2018, 26(1): 18-27.
|
[45] |
Lietman C, Wu B, Lechner S, et al. Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis[J/OL]. JCI Insight, 2018, 3(3): e96308. DOI: 10.1172/jci.insight.96308.
|
[46] |
Shkhyan R, van Handel B, Bogdanov J, et al. Drug-induced modulation of gp130 signalling prevents articular cartilage degeneration and promotes repair[J]. Ann Rheum Dis, 2018, 77(5): 760-769.
|
[47] |
Liu P, Li M, Yu H, et al. Biphasic CK 2.1-coated β-glycerophosphate chitosan/LL37-modified layered double hydroxide chitosan composite scaffolds enhance coordinated hyaline cartilage and subchondral bone regeneration[J/OL]. Chem Eng J, 2021, 418: 129531. DOI: 10.1016/j.cej.2021.129531.
|
[48] |
Yeo RW, Lai RC, Zhang B, et al. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery[J]. Adv Drug Deliv Rev, 2013, 65(3): 336-341.
|
[49] |
Zhang S, Chu WC, Lai RC, et al. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration[J]. Osteoarthritis Cartilage, 2016, 24(12): 2135-2140.
|
[50] |
Zhang S, Chuah SJ, Lai RC, et al. MSCexosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity[J]. Biomaterials, 2018, 156: 16-27.
|
[51] |
Gong M, Yu B, Wang J, et al. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis[J]. Oncotarget, 2017, 8(28): 45200-45212.
|
[52] |
Lee GW, Thangavelu M, Choi MJ, et al. Exosome mediated transfer of miRNA-140 promotes enhanced chondrogenic differentiation of bone marrow stem cells for enhanced cartilage repair and regeneration[J]. J Cell Biochem, 2020, 121(7): 3642-3652.
|
[53] |
Chen P, Zheng L, Wang Y, et al. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration[J]. Theranostics, 2019, 9(9): 2439-2459.
|
[54] |
Kon E, Robinson D, Verdonk P, et al. A novel aragonite-based scaffold for osteochondral regeneration: early experience on human implants and technical developments[J]. Injury, 2016, 47(Suppl 6): S27-S32.
|
[55] |
Getgood A, Henson F, Skelton C, et al. The augmentation of a collagen/glycosaminoglycan biphasic osteochondral scaffold with platelet-rich plasma and concentrated bone marrow aspirate for osteochondral defect repair in sheep: apilot study[J]. Cartilage, 2012, 3(4): 351-363.
|
[56] |
D'Ambrosi R, Valli F, de Luca P, et al. MaioRegen osteochondral substitute for the treatment of knee defects: a systematic review of the literature[J/OL]. J Clin Med, 2019, 8(6): 783. DOI: 10.3390/jcm8060783.
|
[57] |
Wang D, Nawabi DH, Krych AJ, et al. Synthetic biphasic scaffolds versus microfracture for articular cartilage defects of the knee: a retrospective comparative study[J]. Cartilage, 2021, 13(1_suppl): 1002S-1013S.
|
[58] |
Azam A, Forster M, Robertson A. Clinical and radiological outcome for Trufit Plug in the treatment of chondral and osteochondral lesions at a minimum of 2 years[J]. J Orthop, 2018, 15(1): 47-51.
|
[59] |
Farr J, Gracitelli GC, Shah N, et al. High failure rate of a decellularized osteochondral allograft for the treatment of cartilage lesions[J]. Am J Sports Med, 2016, 44(8): 2015-2022.
|
[60] |
Brix M, Kaipel M, Kellner R, et al. Successful osteoconduction but limited cartilage tissue quality following osteochondral repair by a cell-free multilayered nano-composite scaffold at the knee[J]. Int Orthop, 2016, 40(3): 625-632.
|
[61] |
Hindle P, Hendry JL, Keating JF, et al. Autologous osteochondral mosaicplasty or TruFit plugs for cartilage repair[J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22(6): 1235-1240.
|
[62] |
Williams RJ, Gamradt SC. Articular cartilage repair using a resorbable matrix scaffold[J]. Instr Course Lect, 2008, 57: 563-571.
|
[63] |
Bekkers JE, Bartels LW, Vincken KL, et al. Articular cartilage evaluation after TruFit plug implantation analyzed by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC)[J]. Am J Sports Med, 2013, 41(6): 1290-1295.
|
[64] |
Gelber PE, Batista J, Millan-Billi A, et al. Magnetic resonance evaluation of TruFit® plugs for the treatment of osteochondral lesions of the knee shows the poor characteristics of the repair tissue[J]. Knee, 2014, 21(4): 827-832.
|
[65] |
Joshi N, Reverte-Vinaixa M, Díaz-Ferreiro EW, et al. Synthetic resorbable scaffolds for the treatment of isolated patellofemoral cartilage defects in young patients: magnetic resonance imaging and clinical evaluation[J]. Am J Sports Med, 2012, 40(6): 1289-1295.
|
[66] |
Kon E, Delcogliano M, Filardo G, et al. Novel nano-composite multilayered biomaterial for osteochondral regeneration: apilot clinical trial[J]. Am J Sports Med, 2011, 39(6): 1180-1190.
|
[67] |
Tampieri A, Sandri M, Landi E, et al. Design of graded biomimetic osteochondral composite scaffolds[J]. Biomaterials, 2008, 29(26): 3539-3546.
|
[68] |
Kon E, Filardo G, Brittberg M, et al. A multilayer biomaterial for osteochondral regeneration shows superiority vs microfractures for the treatment of osteochondral lesions in a multicentre randomized trial at 2 years[J]. Knee Surg Sports Traumatol Arthrosc, 2018, 26(9): 2704-2715.
|
[69] |
Getgood AM, Kew SJ, Brooks R, et al. Evaluation of early-stage osteochondral defect repair using a biphasic scaffold based on a collagen-glycosaminoglycan biopolymer in a caprine model[J]. Knee, 2012, 19(4): 422-430.
|
[70] |
Hopper N, Wardale J, Brooks R, et al. Peripheral blood mononuclear cells enhance cartilage repair in in vivoosteochondral defect model[J/OL]. PLoS One, 2015, 10(8): e0133937. DOI: 10.1371/journal.pone.0133937.
|
[71] |
Kon E, Drobnic M, Davidson PA, et al. Chronic posttraumatic cartilage lesion of the knee treated with an acellular osteochondral-regenerating implant: case history with rehabilitation guidelines[J]. J Sport Rehabil, 2014, 23(3): 270-275.
|
[72] |
Kon E, Filardo G, Shani J, et al. Osteochondral regeneration with a novel aragonite-hyaluronate biphasic scaffold: up to 12-month follow-up study in a goat model[J/OL]. J Orthop Surg Res, 2015, 10: 81. DOI: 10.1186/s13018-015-0211-y.
|
[73] |
Kon E, Filardo G, Robinson D, et al. Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model[J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22(6): 1452-1464.
|
[74] |
Chubinskaya S, di Matteo B, Lovato L, et al. Agili-C implant promotes the regenerative capacity of articular cartilage defects in an ex vivomodel[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(6): 1953-1964.
|
[75] |
Xuan H, Hu H, Geng C, et al. Biofunctionalized chondrogenic shape-memory ternary scaffolds for efficient cell-free cartilage regeneration[J]. Acta Biomater, 2020, 105: 97-110.
|
[76] |
Jiang S, Tian G, Yang Z, et al. Enhancement of acellular cartilage matrix scaffold by Wharton’s jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration[J]. Bioact Mater, 2021, 6(9): 2711-2728.
|
[77] |
Rennerfeldt DA, Van Vliet KJ. Concise review: when colonies are not clones: evidence and implications of intracolony heterogeneity in mesenchymal stem cells[J]. Stem Cells, 2016, 34(5): 1135-1141.
|
[78] |
Marędziak M, Marycz K, Tomaszewski KA, et al. The influence of aging on the regenerative potential of human adipose derived mesenchymal stem cells[J/OL]. Stem Cells Int, 2016, 2016: 2152435. DOI: 10.1155/2016/2152435.
|
[79] |
Elkhenany H, Amelse L, Caldwell M, et al. Impact of the source and serial passaging of goat mesenchymal stem cells on osteogenic differentiation potential: implications for bone tissue engineering[J/OL]. J Anim Sci Biotechnol, 2016, 7: 16. DOI: 10.1186/s40104-016-0074-z.
|
[80] |
Zhou F, Hong Y, Zhang X, et al. Tough hydrogel with enhanced tissue integration and in situforming capability for osteochondral defect repair[J]. Appl Mater Today, 2018, 13: 32-44.
|
[81] |
Wang DA, Varghese S, Sharma B, et al. Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration[J]. Nat Mater, 2007, 6(5): 385-392.
|
[82] |
Lim KS, Abinzano F, Bernal PN, et al. One-step photoactivation of a dual-functionalized bioink as cell carrier and cartilage-binding glue for chondral regeneration[J/OL]. Adv Healthc Mater, 2020, 9(15): e1901792. DOI: 10.1002/adhm.201901792.
|
[83] |
Yodmuang S, Guo H, Brial C, et al. Effect of interface mechanical discontinuities on scaffold-cartilage integration[J]. J Orthop Res, 2019, 37(4): 845-854.
|
[84] |
Khan IM, Gilbert SJ, Singhrao SK, et al. Cartilage integration: evaluation of the reasons for failure of integration during cartilage repair. A review[J]. Eur Cell Mater, 2008, 16: 26-39.
|
[85] |
Malda J, Groll J, van Weeren PR. Rethinking articular cartilage regeneration based on a 250-year-old statement[J]. Nat Rev Rheumatol, 2019, 15(10): 571-572.
|
[86] |
Sun Z, Feeney E, Guan Y, et al. Boundary mode lubrication of articular cartilage with a biomimetic diblock copolymer[J]. Proc Natl Acad Sci USA, 2019, 116(25): 12437-12441.
|
[87] |
Liu J, Li L, Suo H, et al. 3D printing of biomimetic multi-layered GelMA/nHAscaffold for osteochondral defect repair[J/OL]. Mater Des, 2019, 171: 107708. DOI: 10.1016/j.matdes.2019.107708.
|
[88] |
Bittner SM, Smith BT, Diaz-Gomez L, et al. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering[J]. Acta Biomater, 2019, 90: 37-48.
|