切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (03) : 376 -384. doi: 10.3877/cma.j.issn.1674-134X.2023.03.012

综述

组织工程技术在骨软骨缺损中应用的研究进展
陈严城, 符培亮()   
  1. 200003 上海,海军军医大学第二附属医院关节外科
  • 收稿日期:2022-01-05 出版日期:2023-06-01
  • 通信作者: 符培亮
  • 基金资助:
    国家自然基金面上项目(82272472)

Research progress of application of tissue engineering in osteochondral defects

Yancheng Chen, Peiliang Fu()   

  1. Department of Arthroplasty Surgery, The Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
  • Received:2022-01-05 Published:2023-06-01
  • Corresponding author: Peiliang Fu
引用本文:

陈严城, 符培亮. 组织工程技术在骨软骨缺损中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 376-384.

Yancheng Chen, Peiliang Fu. Research progress of application of tissue engineering in osteochondral defects[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(03): 376-384.

尽管再生医学领域在过去几十年已经取得了巨大的成就,但由于骨软骨组织在其组成、结构和功能上的空间复杂性,骨软骨缺损再生仍然是肌肉骨骼系统疾病中一个具有挑战性的问题。为了修复涉及关节透明软骨、钙化软骨和软骨下骨三个不同层的骨软骨组织,传统的临床治疗方法,包括姑息治疗和修复治疗,在疼痛缓解和缺损填充方面都有一定的改善,但是长期临床效果不尽如人意。组织工程技术的发展为再生具有与骨软骨组织相当成分、结构和功能特征的新组织提供了希望。本文首先介绍骨软骨组织的解剖结构和组成,然后从支架、细胞、信号分子(包括外泌体的应用)等方面重点介绍骨软骨组织工程技术的最新进展和科学研究,同时介绍几种最新的骨软骨支架临床产品。最后讨论目前面临的挑战,并提出了未来的方向以及可能的解决方案。

Although the field of regenerative medicine has made great achievements in the past decades, osteochondral defect regeneration remains a challenging problem in musculoskeletal system diseases due to the spatial complexity of osteochondral units in composition, structure and function. In order to repair osteochondral tissue involving articular hyaline cartilage, calcified cartilage and subchondral bone in three different layers, traditional clinical treatment methods, including palliative treatment and repair treatment, have some improvement in pain relief and defect filling, but the long-term clinical effect is not satisfactory. The development of tissue engineering techniques offers hope for the regeneration of new tissues with composition, structure and functional characteristics comparable to osteochondral units. In this paper, the anatomical structure and composition of osteochondral unit were introduced, and the latest progress and scientific research of osteochondral tissue engineering technology were mainly introduced from the aspects of scaffold, cell and signal molecule (including the application of exosome), several new clinical products of osteochondral scaffolds were also introduced.The current challenges were discussed and future directions and possible solutions were proposed.

[1]
Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis[J/OL]. Nat Rev Dis Primers, 2016, 2: 16072.DOI: 10.1038/nrdp.2016.72.
[2]
Briggs AM, Woolf AD, Dreinhöfer K, et al. Reducing the global burden of musculoskeletal conditions[J]. Bull World Health Organ, 2018, 96(5): 366-368.
[3]
Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study[J]. Ann Rheum Dis, 2014, 73(7): 1323-1330.
[4]
Glyn-Jones S, Palmer AJR, Agricola R, et al. Osteoarthritis[J]. Lancet, 2015, 386(9991): 376-387.
[5]
GBD DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2016: asystematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2017, 390(10100): 1260-1344.
[6]
Lopa S, Madry H. Bioinspired scaffolds for osteochondral regeneration[J]. Tissue Eng Part A, 2014, 20(15-16): 2052-2076.
[7]
Kwon H, Brown WE, Lee CA, et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair[J]. Nat Rev Rheumatol, 2019, 15(9): 550-570.
[8]
Langer R, Vacanti JP. Tissue engineering[J]. Science, 1993, 260(5110): 920-926.
[9]
Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage[J]. Nat Rev Rheumatol, 2015, 11(1): 21-34.
[10]
Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering[J]. Nat Rev Mater, 2020, 5(8): 584-603.
[11]
Graceffa V, Vinatier C, Guicheux J, et al. Chasing chimeras - the elusive stable chondrogenic phenotype[J]. Biomaterials, 2019, 192: 199-225.
[12]
Vinatier C, Mrugala D, Jorgensen C, et al. Cartilage engineering: acrucial combination of cells, biomaterials and biofactors[J]. Trends Biotechnol, 2009, 27(5): 307-314.
[13]
李想,符培亮. 自体软骨细胞移植修复膝关节骨软骨缺损:再生与天然软骨无明显差异[J]. 中国组织工程研究2021, 25(25): 4076-4081.
[14]
敖彧农,李忠,张成昌,等. 关节软骨钙化层相关研究进展[J]. 中国矫形外科杂志2019, 27(8): 722-725.
[15]
Arkill KP, Winlove CP. Solute transport in the deep and calcified zones of articular cartilage[J]. Osteoarthritis Cartilage, 2008, 16(6): 708-714.
[16]
Li G, Yin J, Gao J, et al. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes[J/OL]. Arthritis Res Ther, 2013, 15(6): 223. DOI: 10.1186/ar4405.
[17]
李想,符培亮. 骨软骨界面组织梯度变化的研究进展[J/CD]. 中华关节外科杂志(电子版), 2020, 14(6): 722-728.
[18]
Jeuken RM, Roth AK, Peters RJRW, et al. Polymers in cartilage defect repair of the knee: current status and future prospects[J/OL]. Polymers, 2016, 8(6): 219. DOI: 10.3390/polym8060219.
[19]
Alkaya D, Gurcan C, Kilic P, et al. Where is human-based cellular pharmaceutical R&D taking us in cartilage regeneration?[J/OL]. 3 Biotech, 2020, 10(4): 161. DOI: 10.1007/s13205-020-2134-5.
[20]
Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration[J/OL]. Mater Sci Eng C Mater Biol Appl, 2020, 110: 110698. DOI: 10.1016/j.msec.2020.110698.
[21]
Mohammadinejad R, Kumar A, Ranjbar-Mohammadi M, et al. Recent advances in natural gum-based biomaterials for tissue engineering and regenerative medicine: areview[J/OL]. Polymers, 2020, 12(1): 176. DOI: 10.3390/polym12010176.
[22]
Chu S, Maples MM, Bryant SJ. Cell encapsulation spatially alters crosslink density of poly(ethylene glycol) hydrogels formed from free-radical polymerizations[J]. Acta Biomater, 2020, 109: 37-50.
[23]
Yao Q, Cosme JG, Xu T, et al. Three dimensional electrospun PCL/PLAblend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation[J]. Biomaterials, 2017, 115: 115-127.
[24]
Wang P, Zhang W, Yang R, et al. Biomimetic poly(γ-glutamic acid) hydrogels based on iron (III) ligand coordination for cartilage tissue engineering[J]. IntJ Biol Macromol, 2021, 167: 1508-1516.
[25]
Yang T, Tamaddon M, Jiang L, et al. Bilayered scaffold with 3Dprinted stiff subchondral bony compartment to provide constant mechanical support for long-term cartilage regeneration[J]. JOrthop Translat, 2021, 30: 112-121.
[26]
Du Y, Liu H, Yang Q, et al. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits[J]. Biomaterials, 2017, 137: 37-48.
[27]
Qiao Z, Lian M, Han Y, et al. Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration[J/OL]. Biomaterials, 2021, 266: 120385. DOI: 10.1016/j.biomaterials.2020.120385.
[28]
Gao F, Xu Z, Liang Q, et al. Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds[J/OL]. Adv Sci, 2019, 6(15): 1900867. DOI: 10.1002/advs.201900867.
[29]
Lin D, Cai B, Wang L, et al. A viscoelastic PEGylated poly(glycerol sebacate)-based bilayer scaffold for cartilage regeneration in full-thickness osteochondral defect[J/OL]. Biomaterials, 2020, 253: 120095. DOI: 10.1016/j.biomaterials.2020.120095.
[30]
Wang Y, Koole LH, Gao C, et al. The potential utility of hybrid photo-crosslinked hydrogels with non-immunogenic component for cartilage repair[J/OL]. NPJ Regen Med, 2021, 6(1): 54. DOI: 10.1038/s41536-021-00166-8.
[31]
Ribeiro VP, Pina S, Costa JB, et al. Enzymatically cross-linked silk fibroin-based hierarchical scaffolds for osteochondral regeneration[J]. ACS Appl Mater Interfaces, 2019, 11(4): 3781-3799.
[32]
Zhu Y, Kong L, Farhadi F, et al. An injectable continuous stratified structurally and functionally biomimetic construct for enhancing osteochondral regeneration[J]. Biomaterials, 2019, 192: 149-158.
[33]
Gonzalez-Fernandez T, Rathan S, Hobbs C, et al. Pore-forming bioinks to enable spatio-temporally defined gene delivery in bioprinted tissues[J]. JControl Release, 2019, 301: 13-27.
[34]
Jia S, Wang J, Zhang T, et al. Multilayered scaffold with a compact interfacial layer enhances osteochondral defect repair[J]. ACS Appl Mater Interfaces, 2018, 10(24): 20296-20305.
[35]
Hong H, Seo YB, Kim DY, et al. Digital light processing 3Dprinted silk fibroin hydrogel for cartilage tissue engineering[J/OL]. Biomaterials, 2020, 232: 119679. DOI: 10.1016/j.biomaterials.2019.119679.
[36]
Wang G, An Y, Zhang X, et al. Chondrocyte spheroids laden in GelMA/HAMAhybrid hydrogel for tissue-engineered cartilage with enhanced proliferation, better phenotype maintenance, and natural morphological structure[J/OL]. Gels, 2021, 7(4): 247. DOI: 10.3390/gels7040247.
[37]
Dominici M, le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
[38]
Caplan AI, Correa D. The MSC: an injury drugstore[J]. Cell Stem Cell, 2011, 9(1): 11-15.
[39]
Wei X, Yang X, Han ZP, et al. Mesenchymal stem cells: anew trend for cell therapy[J]. Acta Pharmacol Sin, 2013, 34(6): 747-754.
[40]
Kim HS, Mandakhbayar N, Kim HW, et al. Protein-reactive nanofibrils decorated with cartilage-derived decellularized extracellular matrix for osteochondral defects[J/OL]. Biomaterials, 2021, 269: 120214. DOI: 10.1016/j.biomaterials.2020.120214.
[41]
Zhang J, Xin W, Qin Y, et al. "All-in-one" zwitterionic granular hydrogel bioink for stem cell spheroids production and 3D bioprinting[J/OL]. Chem Eng J, 2022, 430: 132713. DOI: 10.1016/j.cej.2021.132713.
[42]
Gan D, Wang Z, Xie C, et al. Mussel-inspired tough hydrogel with in situnanohydroxyapatite mineralization for osteochondral defect repair[J/OL]. Adv Healthc Mater, 2023, 12(2): e2203040. DOI: 10.1002/adhm.202203040.
[43]
Chen T, Bai J, Tian J, et al. A single integrated osteochondral in situcomposite scaffold with a multi-layered functional structure[J]. Colloids Surf B Biointerfaces, 2018, 167: 354-363.
[44]
Deshmukh V, Hu H, Barroga C, et al. A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee[J]. Osteoarthritis Cartilage, 2018, 26(1): 18-27.
[45]
Lietman C, Wu B, Lechner S, et al. Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis[J/OL]. JCI Insight, 2018, 3(3): e96308. DOI: 10.1172/jci.insight.96308.
[46]
Shkhyan R, van Handel B, Bogdanov J, et al. Drug-induced modulation of gp130 signalling prevents articular cartilage degeneration and promotes repair[J]. Ann Rheum Dis, 2018, 77(5): 760-769.
[47]
Liu P, Li M, Yu H, et al. Biphasic CK2.1-coated β-glycerophosphate chitosan/LL37-modified layered double hydroxide chitosan composite scaffolds enhance coordinated hyaline cartilage and subchondral bone regeneration[J/OL]. Chem Eng J, 2021, 418: 129531. DOI: 10.1016/j.cej.2021.129531.
[48]
Yeo RW, Lai RC, Zhang B, et al. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery[J]. Adv Drug Deliv Rev, 2013, 65(3): 336-341.
[49]
Zhang S, Chu WC, Lai RC, et al. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration[J]. Osteoarthritis Cartilage, 2016, 24(12): 2135-2140.
[50]
Zhang S, Chuah SJ, Lai RC, et al. MSCexosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity[J]. Biomaterials, 2018, 156: 16-27.
[51]
Gong M, Yu B, Wang J, et al. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis[J]. Oncotarget, 2017, 8(28): 45200-45212.
[52]
Lee GW, Thangavelu M, Choi MJ, et al. Exosome mediated transfer of miRNA-140 promotes enhanced chondrogenic differentiation of bone marrow stem cells for enhanced cartilage repair and regeneration[J]. J Cell Biochem, 2020, 121(7): 3642-3652.
[53]
Chen P, Zheng L, Wang Y, et al. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration[J]. Theranostics, 2019, 9(9): 2439-2459.
[54]
Kon E, Robinson D, Verdonk P, et al. A novel aragonite-based scaffold for osteochondral regeneration: early experience on human implants and technical developments[J]. Injury, 2016, 47(Suppl 6): S27-S32.
[55]
Getgood A, Henson F, Skelton C, et al. The augmentation of a collagen/glycosaminoglycan biphasic osteochondral scaffold with platelet-rich plasma and concentrated bone marrow aspirate for osteochondral defect repair in sheep: apilot study[J]. Cartilage, 2012, 3(4): 351-363.
[56]
D'Ambrosi R, Valli F, de Luca P, et al. MaioRegen osteochondral substitute for the treatment of knee defects: a systematic review of the literature[J/OL]. J Clin Med, 2019, 8(6): 783. DOI: 10.3390/jcm8060783.
[57]
Wang D, Nawabi DH, Krych AJ, et al. Synthetic biphasic scaffolds versus microfracture for articular cartilage defects of the knee: a retrospective comparative study[J]. Cartilage, 2021, 13(1_suppl): 1002S-1013S.
[58]
Azam A, Forster M, Robertson A. Clinical and radiological outcome for Trufit Plug in the treatment of chondral and osteochondral lesions at a minimum of 2 years[J]. J Orthop, 2018, 15(1): 47-51.
[59]
Farr J, Gracitelli GC, Shah N, et al. High failure rate of a decellularized osteochondral allograft for the treatment of cartilage lesions[J]. Am J Sports Med, 2016, 44(8): 2015-2022.
[60]
Brix M, Kaipel M, Kellner R, et al. Successful osteoconduction but limited cartilage tissue quality following osteochondral repair by a cell-free multilayered nano-composite scaffold at the knee[J]. Int Orthop, 2016, 40(3): 625-632.
[61]
Hindle P, Hendry JL, Keating JF, et al. Autologous osteochondral mosaicplasty or TruFit plugs for cartilage repair[J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22(6): 1235-1240.
[62]
Williams RJ, Gamradt SC. Articular cartilage repair using a resorbable matrix scaffold[J]. Instr Course Lect, 2008, 57: 563-571.
[63]
Bekkers JE, Bartels LW, Vincken KL, et al. Articular cartilage evaluation after TruFit plug implantation analyzed by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC)[J]. Am J Sports Med, 2013, 41(6): 1290-1295.
[64]
Gelber PE, Batista J, Millan-Billi A, et al. Magnetic resonance evaluation of TruFit® plugs for the treatment of osteochondral lesions of the knee shows the poor characteristics of the repair tissue[J]. Knee, 2014, 21(4): 827-832.
[65]
Joshi N, Reverte-Vinaixa M, Díaz-Ferreiro EW, et al. Synthetic resorbable scaffolds for the treatment of isolated patellofemoral cartilage defects in young patients: magnetic resonance imaging and clinical evaluation[J]. Am J Sports Med, 2012, 40(6): 1289-1295.
[66]
Kon E, Delcogliano M, Filardo G, et al. Novel nano-composite multilayered biomaterial for osteochondral regeneration: apilot clinical trial[J]. Am J Sports Med, 2011, 39(6): 1180-1190.
[67]
Tampieri A, Sandri M, Landi E, et al. Design of graded biomimetic osteochondral composite scaffolds[J]. Biomaterials, 2008, 29(26): 3539-3546.
[68]
Kon E, Filardo G, Brittberg M, et al. A multilayer biomaterial for osteochondral regeneration shows superiority vs microfractures for the treatment of osteochondral lesions in a multicentre randomized trial at 2 years[J]. Knee Surg Sports Traumatol Arthrosc, 2018, 26(9): 2704-2715.
[69]
Getgood AM, Kew SJ, Brooks R, et al. Evaluation of early-stage osteochondral defect repair using a biphasic scaffold based on a collagen-glycosaminoglycan biopolymer in a caprine model[J]. Knee, 2012, 19(4): 422-430.
[70]
Hopper N, Wardale J, Brooks R, et al. Peripheral blood mononuclear cells enhance cartilage repair in in vivoosteochondral defect model[J/OL]. PLoS One, 2015, 10(8): e0133937. DOI: 10.1371/journal.pone.0133937.
[71]
Kon E, Drobnic M, Davidson PA, et al. Chronic posttraumatic cartilage lesion of the knee treated with an acellular osteochondral-regenerating implant: case history with rehabilitation guidelines[J]. J Sport Rehabil, 2014, 23(3): 270-275.
[72]
Kon E, Filardo G, Shani J, et al. Osteochondral regeneration with a novel aragonite-hyaluronate biphasic scaffold: up to 12-month follow-up study in a goat model[J/OL]. J Orthop Surg Res, 2015, 10: 81. DOI: 10.1186/s13018-015-0211-y.
[73]
Kon E, Filardo G, Robinson D, et al. Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model[J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22(6): 1452-1464.
[74]
Chubinskaya S, di Matteo B, Lovato L, et al. Agili-C implant promotes the regenerative capacity of articular cartilage defects in an ex vivomodel[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(6): 1953-1964.
[75]
Xuan H, Hu H, Geng C, et al. Biofunctionalized chondrogenic shape-memory ternary scaffolds for efficient cell-free cartilage regeneration[J]. Acta Biomater, 2020, 105: 97-110.
[76]
Jiang S, Tian G, Yang Z, et al. Enhancement of acellular cartilage matrix scaffold by Wharton’s jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration[J]. Bioact Mater, 2021, 6(9): 2711-2728.
[77]
Rennerfeldt DA, Van Vliet KJ. Concise review: when colonies are not clones: evidence and implications of intracolony heterogeneity in mesenchymal stem cells[J]. Stem Cells, 2016, 34(5): 1135-1141.
[78]
Marędziak M, Marycz K, Tomaszewski KA, et al. The influence of aging on the regenerative potential of human adipose derived mesenchymal stem cells[J/OL]. Stem Cells Int, 2016, 2016: 2152435. DOI: 10.1155/2016/2152435.
[79]
Elkhenany H, Amelse L, Caldwell M, et al. Impact of the source and serial passaging of goat mesenchymal stem cells on osteogenic differentiation potential: implications for bone tissue engineering[J/OL]. J Anim Sci Biotechnol, 2016, 7: 16. DOI: 10.1186/s40104-016-0074-z.
[80]
Zhou F, Hong Y, Zhang X, et al. Tough hydrogel with enhanced tissue integration and in situforming capability for osteochondral defect repair[J]. Appl Mater Today, 2018, 13: 32-44.
[81]
Wang DA, Varghese S, Sharma B, et al. Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration[J]. Nat Mater, 2007, 6(5): 385-392.
[82]
Lim KS, Abinzano F, Bernal PN, et al. One-step photoactivation of a dual-functionalized bioink as cell carrier and cartilage-binding glue for chondral regeneration[J/OL]. Adv Healthc Mater, 2020, 9(15): e1901792. DOI: 10.1002/adhm.201901792.
[83]
Yodmuang S, Guo H, Brial C, et al. Effect of interface mechanical discontinuities on scaffold-cartilage integration[J]. J Orthop Res, 2019, 37(4): 845-854.
[84]
Khan IM, Gilbert SJ, Singhrao SK, et al. Cartilage integration: evaluation of the reasons for failure of integration during cartilage repair. A review[J]. Eur Cell Mater, 2008, 16: 26-39.
[85]
Malda J, Groll J, van Weeren PR. Rethinking articular cartilage regeneration based on a 250-year-old statement[J]. Nat Rev Rheumatol, 2019, 15(10): 571-572.
[86]
Sun Z, Feeney E, Guan Y, et al. Boundary mode lubrication of articular cartilage with a biomimetic diblock copolymer[J]. Proc Natl Acad Sci USA, 2019, 116(25): 12437-12441.
[87]
Liu J, Li L, Suo H, et al. 3D printing of biomimetic multi-layered GelMA/nHAscaffold for osteochondral defect repair[J/OL]. Mater Des, 2019, 171: 107708. DOI: 10.1016/j.matdes.2019.107708.
[88]
Bittner SM, Smith BT, Diaz-Gomez L, et al. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering[J]. Acta Biomater, 2019, 90: 37-48.
[1] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[2] 杨晓龙, 张立智, 刘晓东. 非侵入性加压负载模型在膝骨关节炎研究中的应用[J]. 中华关节外科杂志(电子版), 2023, 17(01): 86-92.
[3] 林潮盛, 熊建义, 朱伟民, 陆伟, 邓桢翰. 射频消融用于关节软骨损伤的治疗研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(05): 592-598.
[4] 马明, 贾更新, 刘小龙, 耿彬, 夏亚一. 间充质干细胞来源细胞外囊泡治疗膝骨关节炎的研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(04): 472-476.
[5] 陈曦, 刘畅, 李萍, 李雨航, 陈彦斌, 王昆. 肩峰下滑囊的解剖结构和功能与临床意义[J]. 中华关节外科杂志(电子版), 2022, 16(03): 337-342.
[6] 王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.
[7] 蒯贤东, 郑国爽, 杨佳慧, 赵德伟. 用于关节软骨缺损修复的壳聚糖复合支架的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 535-539.
[8] 刘梦柔, 刘沛东, 张城铭, 刘阳, 李鹏翠, 杨自权. 基于文献计量学与可视化分析的骨组织工程支架材料的全球研究现状及发展趋势[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 411-420.
[9] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[10] 孙艺琪, 史宏灿. 纳米技术在气管移植物中的应用[J]. 中华移植杂志(电子版), 2022, 16(05): 309-313.
[11] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[12] 林诗雯, 孙慧, 陈娜娜, 朱聪. 共培养促神经化策略在组织工程骨构建中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 293-299.
[13] 张郭, 慈海, 周牧冉, 孙家明, 郭亮. 仿生聚己内酯支架用于乳房组织工程的可行性研究[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 215-223.
[14] 周莹芊, 汪振星, 张一帆, 孙家明, 曹谊林. 模块化与血管化组织工程技术[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 161-166.
[15] 杜凯玥, 袁博伟, 洪晶. 水凝胶在角膜修复中的应用研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 298-304.
阅读次数
全文


摘要