切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2018, Vol. 12 ›› Issue (06) : 842 -848. doi: 10.3877/cma.j.issn.1674-134X.2018.06.018

所属专题: 文献

综述

生物力学在关节软骨修复中的作用
张姝江1, 王瑛2,(), 陈艺1, 姚咏嫦1, 白波1   
  1. 1. 520120 广州医科大学附属第一医院骨科;广东省骨科矫形技术与植入材料重点实验室
    2. 广东省骨科矫形技术与植入材料重点实验室
  • 收稿日期:2018-11-30 出版日期:2018-12-01
  • 通信作者: 王瑛
  • 基金资助:
    广州市属高校科研项目重点项目(1201610097); 广东省科技厅项目(2014A020212341)

Effects of mechanics in repair of articular cartilage

Shujiang Zhang1, Ying Wang2,(), Yi Chen1, Yongchang Yao1, Bo Bai1   

  1. 1. Department of Orthopedic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 520120, China; Key Laboratory of Orthopedic Technology and Implant Materials of Guangdong Province, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 520120, China
    2. Key Laboratory of Orthopedic Technology and Implant Materials of Guangdong Province, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 520120, China
  • Received:2018-11-30 Published:2018-12-01
  • Corresponding author: Ying Wang
  • About author:
    Corresponding author: Wang Ying, Email:
引用本文:

张姝江, 王瑛, 陈艺, 姚咏嫦, 白波. 生物力学在关节软骨修复中的作用[J]. 中华关节外科杂志(电子版), 2018, 12(06): 842-848.

Shujiang Zhang, Ying Wang, Yi Chen, Yongchang Yao, Bo Bai. Effects of mechanics in repair of articular cartilage[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2018, 12(06): 842-848.

活动关节软骨是无血管的透明软骨,损伤后修复困难。传统的修复方式以手术为主,但修复的软骨组织常常无法满足透明软骨的结构条件。软骨组织工程是修复关节软骨的又一途径,在过去几十年,研究者们除了关注"细胞、支架、生长因子"3要素,也开始关注力学条件对构建组织工程软骨的作用。活动关节有复杂的力学性能,关节软骨、软骨基质和其中的细胞都受到不同强度、频率和不同方向的力学刺激,从而影响其功能和结构。在构建组织工程软骨的过程中,添加了力学刺激对软骨细胞的功能、间充质细胞的分化都有重要作用。何种力学条件最有利于构建具有类似天然透明软骨结构和功能的组织工程软骨是该研究领域的热点。

The cartilage of free joints is hyaline cartilage without blood vessels, thus it is difficult to heal by itself after injury. The traditional treatment is mainly surgery, while the cartilage tissue after surgery can not fulfill the structure of native hyaline cartilage. Tissue engineering of cartilage is an option for researchers. In the past decades, besides the main factors of tissue engineering which are cells, scaffolds and growth factors, the attentions are also arising in the mechanical environment affecting the tissue engineered cartilage. The free joints possess complicated mechanical properties, mechanical stimulations of different amplitudes, frequencies and directions influence the extracellular matrix and cells of cartilage, which lead to changes in cartilage structures and functions. During the process of tissue engineered cartilage construction, mechanical stimulation may be the key condition for the chondrocytes function and differentiation of mesenchymal stromal cells. The hot point of this field is to find the appropriate mechanical condition for tissue engineered cartilage that can simulate the native hyaline cartilage.

[1]
Redman S, Oldfield S, Archer C. Current strategies for articular cartilage repair[J]. Europ Cell Mater, 2005, 9(23/32): 23-32.
[2]
Chiang H, Jiang CC. Repair of articular cartilage defects: review and perspectives[J]. J Formos Med Assoc, 2009, 108(2): 87-101.
[3]
Gooding CR, Bartlett W, Bentley G, et al. A prospective, ranomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: Periosteum covered versus type I/III collagen covered[J]. Knee, 2006, 13(3): 203-210.
[4]
Gomoll AH, Probst C, Farr J, et al. Use of a type I/III bilayer collagen membrane decreases reoperation rates for symptomatic hypertrophy after autologous chondrocyte implantation[J]. Am J Sports Med, 2009, 37(1 Suppl): 20S-23S.
[5]
Bobacz K, Erlacher L, Smolen J, et al. Chondrocyte number and proteoglycan synthesis in the aging and osteoarthritic human articular cartilage[J]. Ann Rheum Dis, 2004, 63(12): 1618-1622.
[6]
Clair BL, Johnson AR, Howard T. Cartilage repair:current and emerging options in treatment[J]. Foot Ankle Spec, 2009, 2(4): 179-188.
[7]
Steadman JR, Briggs KK, Rodrigo JJ, et al. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up[J]. Arthroscopy, 2003, 19(5): 477-484.
[8]
Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage[J]. Nat Rev Rheumatol, 2015, 11(1): 21-34.
[9]
Krishnan SP, Skinner JA, Bartlett W, et al. Who is the ideal candidate for autologous chondrocyte implantation?[J]. J Bone Joint Surg Br, 2006, 88(1):61-64.
[10]
Knutsen G, Drogset JO, Engebretsen L, et al. A randomized trial comparing autologous chondrocyte implantation with microfracture[J]. J Bone Joint Surg, 2007, 89A(10): 2105-2112.
[11]
Cole BJ, Kercher JS, Steadman JR, et al. Microfracture:its history and experience of the developing surgeon[J]. Cartilage, 2010, 1(2): 78-86.
[12]
Tan AR, Hung CT. Concise review: mesenchymal stem cells for functional cartilage tissue engineering: taking Cues from Chondrocyte-Based constructs[J]. Stem Cells Transl Med, 2017, 6(4): 1295-1303.
[13]
Hangody L, Füles P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints[J]. J Bone Joint Surg Am, 2003, 85(suppl 2): 25-32.
[14]
Hangody L, Vásárhelyi G, Hangody LR, et al. Autologous osteochondral grafting--technique and long-term results[J]. Injury, 2008, 39(Suppl 1): S32-S39.
[15]
Valderrabano V, Leumann A, Rasch H, et al. Knee-to-Ankle mosaicplasty for the treatment of osteochondral lesions of the ankle joint[J]. Am J Sports Med, 2009, 37(1): 105S-111S.
[16]
Kock LM, Malda J, Dhert WJ, et al. Flow perfusion interferes with chondrogenic and hypertrophic matrix production by mesenchymal stem cells[J]. J Biomech, 2014, 47(9): 2122-2129.
[17]
Urban JP. The chondrocyte:a cell under pressure[J]. Br J Rheumatol, 1994, 33(10): 901-908.
[18]
Costigan PA, Deluzio KJ, Wyss UP. Knee and hip kinetics during normal stair climbing[J]. Gait Posture, 2002, 16(1): 31-37.
[19]
Adams MA. The mechanical environment of chondrocytes in articular cartilage[J]. Biorheology, 2006, 43(3/4, SI): 537-545.
[20]
Hodge WA, Fijan RS, Carlson KL, et al. Contact pressures in the human hip joint measured in vivo[J]. Proc Natl Acad Sci U S A, 1986, 83(9): 2879-2883.
[21]
Behrens F, Kraft EL, Oegema TR, et al. Biochemical changes in articular cartilage after joint immobilization by casting or external fixation[J]. J Orthop Res, 1989, 7(3): 335-343.
[22]
Saamanen AM, Tammi M, Jurvelin J, et al. Proteoglycan alterations following immobilization and remobilization in the articular cartilage of young canine knee (stifle) joint[J]. J Orthop Res, 1990, 8(6): 863-873.
[23]
Elder SH, Kimura JH, Soslowsky LJ, et al. Effect of compressive loading on chondrocyte differentiation in agarose cultures of chick limb-bud cells[J]. J Orthop Res, 2000, 18(1): 78-86.
[24]
Mahmoodian R, Leasure J, Philip R, et al. Changes in mechanics and composition of human talar cartilage anlagen during fetal development[J]. Osteoarthritis Cartilage, 2011, 19(10): 1199-1209.
[25]
Long F, Linsenmayer TF. Regulation of growth region cartilage proliferation and differentiation by perichondrium[J]. Development, 1998, 125(6): 1067-1073.
[26]
Herberhold C, Faber S, Stammberger T, et al. In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading[J]. J Biomech, 1999, 32(12): 1287-1295.
[27]
Guilak F. Compression-induced changes in the shape and volume of the chondrocyte nucleus[J]. J Biomech, 1995, 28(12): 1529-1541.
[28]
Guilak F. The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage[J]. Biorheology, 2000, 37(1/2): 27-44.
[29]
Verzijl N, Degroot J, Ben Zaken C, et al. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage-A possible mechanism through which age is a risk factor for osteoarthritis[J]. Arthritis Rheum, 2002, 46(1): 114-123.
[30]
Kaab MJ, Ito K, Clark JM, et al. Deformation of articular cartilage collagen structure under static and cyclic loading[J]. J Orthop Res, 1998, 16(6): 743-751.
[31]
Kääb MJ, Ito K, Rahn B, et al. Effect of mechanical load on articular cartilage collagen structure: a scanning electron-microscopic study[J]. Cells Tissues Organs, 2000, 167(2/3): 106-120.
[32]
Taber LA. Biomechanical growth laws for muscle tissue[J]. J Theor Biol, 1998, 193(2): 201-213.
[33]
Takahashi I, Mizoguchi I, Nakamura M, et al. Effects of expansive force on the differentiation of midpalatal suture cartilage in rats[J]. Bone, 1996, 18(4): 341-348.
[34]
Takahashi I, Onodera K, Sasano Y, et al. Effect of stretching on gene expression of beta1 integrin and focal adhesion kinase and on chondrogenesis through cell-extracellular matrix interactions[J]. Eur J Cell Biol, 2003, 82(4): 182-192.
[35]
Arokoski JP, Jurvelin JS, Väätäinen U, et al. Normal and pathological adaptations of articular cartilage to joint loading[J]. Scand J Med Sci Sports, 2000, 10(4): 186-198.
[36]
Griffin TM, Guilak F. The role of mechanical loading in the onset and progression of osteoarthritis[J]. Exerc Sport Sci Rev, 2005, 33(4): 195-200.
[37]
Toyoda T, Seedhom BB, Kirkham J, et al. Upregulation of aggrecan and type II collagen mRNA expression in bovine chondrocytes by the application of hydrostatic pressure[J]. Biorheology, 2003, 40(1/3, SI): 79-85.
[38]
Toyoda T, Seedhom BB, Yao JQ, et al. Hydrostatic pressure modulates proteoglycan metabolism in chondrocytes seeded in agarose[J]. Arthritis Rheum, 2003, 48(10): 2865-2872.
[39]
Hall AC, Urban JP, Gehl KA. The effects of hydrostatic pressure on matrix synthesis in articular cartilage[J]. J Orthop Res, 1991, 9(1): 1-10.
[40]
Trindade MC, Shida J, Ikenoue T, et al. Intermittent hydrostatic pressure inhibits matrix metalloproteinase and pro-inflammatory mediator release from human osteoarthritic chondrocytes in vitro[J]. Osteoarthritis Cartilage, 2004, 12(9): 729-735.
[41]
Islam N, Haqqi TM, Jepsen KJ, et al. Hydrostatic pressure induces apoptosis in human chondrocytes from osteoarthritic cartilage through up-regulation of tumor necrosis factor-alpha,inducible nitric oxide synthase,p53,c-myc,and bax-alpha,and suppression of bcl-2[J]. J Cell Biochem, 2002, 87(3): 266-278.
[42]
Smith RL, Carter DR, Schurman DJ. Pressure and shear differentially alter human articular chondrocyte metabolism: a review [J]. Clin Orthop Relat Res, 2004, (427 Suppl): S89-S95.
[43]
Goldring SR, Goldring MB. The role of cytokines in cartilage matrix degeneration in osteoarthritis[J]. Clin Orthop Relat Res, 2004, (427 Suppl): S27-S36.
[44]
Goldring MB, Goldring SR. Osteoarthritis[J]. J Cell Physiol, 2007, 213(3): 626-634.
[45]
Goldring MB, Berenbaum F. The regulation of chondrocyte function by proinflammatory mediators: prostaglandins and nitric oxide[J]. Clin Orthop Relat Res,2004,(427 Suppl): S37-S46.
[46]
Lucchinetti E, Adams CS, Horton WE, et al. Cartilage viability after repetitive loading:a preliminary report[J]. Osteoarthritis Cartilage, 2002, 10(1): 71-81.
[47]
Madhavan S, Anghelina M, Sjostrom DA, et al. Biomechanical signals suppress TAK1 activation to inhibit NF-kappa B transcriptional activation in fibrochondrocytes[J]. J Immunol, 2007, 179(9): 6246-6254.
[48]
Bernhard JC, Vunjak-Novakovic G. Should we use cells, biomaterials, or tissue engineering for cartilage regeneration?[J/OL]. Stem Cell Res Ther, 2016, 7(1): 56. doi: 10.1186/s13287-016-0314-3.
[49]
Chen Z, Yan FH, Lu Y. The function of mechanical loading on chondrogenesis[J]. Front Biosci, 2016, 21: 1222-1232.
[50]
Giannoni P, Siegrist M, Hunziker EB, et al. The mechanosensitivity of cartilage oligomeric matrix protein (COMP)[J]. Biorheology, 2003, 40(1/3, SI): 101-109.
[51]
Fehrenbacher A, Steck E, Rickert M, et al. Rapid regulation of collagen but not metalloproteinase 1, 3, 13, 14 and tissue inhibitor of metalloproteinase 1,2,3 expression in response to mechanical loading of cartilage explants in vitro[J]. Arch Biochem Biophys, 2003, 410(1): 39-47.
[52]
Fitzgerald JB, Jin M, Dean D, et al. Mechanical compression of cartilage explants induces multiple time-dependent gene expression patterns and involves intracellular Calcium and cyclic AMP[J/OL]. J Biol Chem, 2004, 279(19): 19502-19511. doi:10.1074/jbc.M400437200
[53]
Wong M, Siegrist M, Cao XS. Cyclic compression of articular cartilage explants is associated with progressive consolidation and altered expression pattern of extracellular matrix proteins[J]. Matrix Biol, 1999, 18(4): 391-399.
[54]
Kisiday JD, Jin MS, Dimicco MA, et al. Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds[J]. J Biomech, 2004, 37(5): 595-604.
[55]
Hunter CJ, Mouw JK, Levenston ME. Dynamic compression of chondrocyte-seeded fibrin gels: effects on matrix accumulation and mechanical stiffness[J]. Osteoarthritis Cartilage, 2004, 12(2): 117-130.
[56]
Jin M, Frank EH, Quinn TM, et al. Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants[J]. Arch Biochem Biophys, 2001, 395(1): 41-48.
[57]
Waldman SD, Spiteri CG, Grynpas MD, et al. Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage[J]. Tissue Eng, 2004, 10(9/10): 1323-1331.
[58]
Gardner OF, Musumeci G, Neumann AJ, et al. Asymmetrical seeding of MSCs into fibrin-poly (ester-urethane) scaffolds and its effect on mechanically induced chondrogenesis[J]. J Tissue Eng Regen Med, 2017, 11(10): 2912-2921.
[59]
Remya NS, Nair PD. Mechanoresponsiveness of human umbilical cord mesenchymal stem cells in in vitro chondrogenesisA comparative study with growth factor induction[J]. J Biomed Mater Res A, 2016, 104(10): 2554-2566.
[60]
Marion NW, Mao JJ. Mesenchymal stem cells and tooth engineering[J]. Int J Oral Sci, 2009, 420(1): 6-12.
[61]
Lee CH, Marion NW, Hollister S, et al. Tissue formation and vascularization in anatomically shaped human joint condyle ectopically in vivo[J]. Tissue Eng Part A, 2009, 15(12): 3923-3930.
[62]
Mcgarry JG, Klein-Nulend J, Mullender MG. A comparison of strain and fluid shear stress in stimulating bone cell responses-a computational and experimental study[J/OL]. FASEB J, 2005, 19(3): 482-484. doi:10.1096/fj.04-2210fje.
[63]
Tami AE, Schaffler MB, Tate ML. Probing the tissue to subcellular level structure underlying bone′s molecular sieving function[J]. Biorheology, 2003, 40(6): 577-590.
[64]
Friedl G, Schmidt H, Rehak I, et al. Undifferentiated human mesenchymal stem cells (hMSCs) are highly sensitive to mechanical strain: transcriptionally controlled early osteo-chondrogenic response in vitro[J]. Osteoarthritis Cartilage, 2007, 15(11): 1293-1300.
[65]
Datta N, Pham QP, Sharma U, et al. In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation[J]. Proc Natl Acad Sci U S A, 2006, 103(8): 2488-2493.
[66]
Jungreuthmayer C, Donahue SW, Jaasma MJ, et al. A comparative study of shear stresses in collagen-glycosaminoglycan and Calcium phosphate scaffolds in bone tissue-engineering bioreactors[J]. Tissue Eng Part A, 2009, 15(5): 1141-1149.
[67]
Gemmiti CV, Guldberg RE. Fluid flow increases type II collagen deposition and tensile mechanical properties in bioreactor-grown tissue-engineered cartilage[J]. Tissue Eng, 2006, 12(3): 469-479.
[68]
Huang AH, Baker BM, Ateshian GA, et al. Sliding contact loading enhances the tensile properties of mesenchymal stem cell-seeded hydrogels[J]. Eur Cell Mater, 2012, 24: 29-45.
[69]
Saini S, Wick TM. Concentric cylinder bioreactor for production of tissue engineered cartilage:Effect of seeding density and hydrodynamic loading on construct development[J]. Biotech Prog, 2003, 19(2): 510-521.
[70]
Stojkovska J, Bugarski B, Obradovic B. Evaluation of alginate hydrogels under in vivo-like bioreactor conditions for cartilage tissue engineering[J]. J Mater Sci Mater Med, 2010, 21(10): 2869-2879.
[71]
Vega SL, Kwon MY, Burdick JA. Recent advances in hydrogels for cartilage tissue engineering[J]. Eur Cell Mater, 2017, 33: 59-75.
[72]
Neumann AJ, Alini M, Archer CW. Chondrogenesis of human bone Marrow-Derived mesenchymal stem cells is modulated by complex mechanical stimulation and Adenoviral-Mediated overexpression of bone morphogenetic protein 2[J]. Tissue Eng Part A, 2013, 19(11/12): 1285-1294.
[73]
Chiang H, Hsieh CH, Lin YH, et al. Differences between chondrocytes and bone Marrow-Derived chondrogenic cells[J]. Tissue Eng Part A, 2011, 17(23/24): 2919-2929.
[74]
Schätti O, Grad S, Goldhahn J, et al. A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells[J]. Eur Cell Mater, 2011, 22: 214-225.
[75]
Huang AH, Farrell MJ, Kim M, et al. Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogels[J]. Eur Cell Mater, 2010, 19: 72-85.
[76]
O′conor CJ. Case N, Guilak F. Mechanical regulation of chondrogenesis[J/OL]. Stem Cell Res Ther, 2013, 4(4): 61. doi: 10.1186/scrt211.
[77]
Guo T, Yu L, Lim CG, et al. Effect of dynamic culture and periodic compression on human mesenchymal stem cell proliferation and chondrogenesis[J]. Ann Biomed Eng, 2016, 44(7): 2103-2113.
[78]
Zhang TT, Wen F, Wu YN, et al. Cross-talk between TGF-beta/SMAD and integrin signaling pathways in regulating hypertrophy of mesenchymal stem cell chondrogenesis under deferral dynamic compression[J/OL]. Biomaterials, 2015, 38(38): 72-85.
[79]
Bian L, Zhai DY, Zhang EC, et al. Dynamic compressive loading enhances cartilage matrix synthesis and distribution and suppresses hypertrophy in hMSC-laden hyaluronic acid hydrogels[J]. Tissue Eng Part A, 2012, 18(7/8): 715-724.
[80]
Kock LM, Malda J, Dhert WJ, et al. Flow perfusion interferes with chondrogenic and hypertrophic matrix production by mesenchymal stem cells[J]. J Biomechanics, 2014, 47(9): 2122-2129.
[81]
Puetzer J, Williams J, Gillies A, et al. The effects of cyclic hydrostatic pressure on chondrogenesis and viability of human adipose- and bone marrow-derived mesenchymal stem cells in three-dimensional agarose constructs[J]. Tissue Eng Part A, 2013, 19(1/2): 299-306.
[82]
Chen C, Tambe DT, Deng L, et al. Biomechanical properties and mechanobiology of the articular chondrocyte[J]. Am J Physiol Cell Physiol, 2013, 305(12): C1202-C1208.
[83]
Li Z, Yao SJ, Alini M, et al. Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites is modulated by frequency and amplitude of dynamic compression and shear stress[J]. Tissue Eng Part A, 2009, 16(2): 575-584.
[84]
Gardner OF, Fahy N, Alini M, et al. Joint mimicking mechanical load activates TGFβ1 in fibrin-poly(esterurethane) scaffolds seeded with mesenchymal stem cells[J]. J Tissue Eng Regen Med, 2017, 11(9): 2663-2666.
[85]
Cochis A, Grad S, Stoddart M, et al. Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermoreversible methylcellulose-based hydrogel [J/OL]. Sci Rep, 2017, 7: 45018. doi:10.1038/srep45018.
[86]
Li Z, Kupcsik L, Yao SJ, et al. Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGFβpathway[J]. J Cell Mol Med, 2010, 14(6): 1338-1346.
[1] 郭璐琦, 赵雅琦, 李霁欣, 周兰, 林金鹏, 张子砚, 李俊杰, 王少白. 免荷矫形器对膝骨关节炎的生物力学影响的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 560-565.
[2] 陈严城, 符培亮. 组织工程技术在骨软骨缺损中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 376-384.
[3] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[4] 陈曦, 刘畅, 李萍, 李雨航, 陈彦斌, 王昆. 肩峰下滑囊的解剖结构和功能与临床意义[J]. 中华关节外科杂志(电子版), 2022, 16(03): 337-342.
[5] 王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.
[6] 蒯贤东, 郑国爽, 杨佳慧, 赵德伟. 用于关节软骨缺损修复的壳聚糖复合支架的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 535-539.
[7] 刘梦柔, 刘沛东, 张城铭, 刘阳, 李鹏翠, 杨自权. 基于文献计量学与可视化分析的骨组织工程支架材料的全球研究现状及发展趋势[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 411-420.
[8] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[9] 孙艺琪, 史宏灿. 纳米技术在气管移植物中的应用[J]. 中华移植杂志(电子版), 2022, 16(05): 309-313.
[10] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[11] 冯欢, 杨凤霞, 许静, 黄婧琼, 刘晓青, 陈艳, 褚玲玲. 胸腹部创面愈合的研究现状及进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(06): 840-842.
[12] 林诗雯, 孙慧, 陈娜娜, 朱聪. 共培养促神经化策略在组织工程骨构建中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 293-299.
[13] 张郭, 慈海, 周牧冉, 孙家明, 郭亮. 仿生聚己内酯支架用于乳房组织工程的可行性研究[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 215-223.
[14] 周莹芊, 汪振星, 张一帆, 孙家明, 曹谊林. 模块化与血管化组织工程技术[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 161-166.
[15] 杜凯玥, 袁博伟, 洪晶. 水凝胶在角膜修复中的应用研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 298-304.
阅读次数
全文


摘要