[1] |
Martin JA, Buckwalter JA. Aging, articular cartilage chondrocyte senescence and osteoarthritis[J]. Biogerontology, 2002, 3(5): 257-264.
|
[2] |
Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation[J]. Instr Course Lect, 1998, 47: 487-504.
|
[3] |
Blaney DN, Van Caam AP, Van Der Kraan PM. Osteoarthritis year in review 2016:biology[J]. Osteoarthritis Cartilage, 2017, 25(2): 175-180.
|
[4] |
Van Meurs JB. Osteoarthritis year in review 2016:genetics,genomics and epigenetics[J]. Osteoarthritis Cartilage, 2017, 25(2): 181-189.
|
[5] |
Maniar KH, Jones IA, Gopalakrishna RA. Lowering side effects of NSAID usage in osteoarthritis: recent attempts at minimizing dosage[J]. Expert Opin Pharmacother, 2018, 19(2): 93-102.
|
[6] |
Mobasheri A, Bay-Jensen AC, Van Spil WE, et al. Osteoarthritis year in review 2016: biomarkers (biochemical markers)[J]. Osteoarthritis Cartilage, 2017, 25(2): 199-208.
|
[7] |
Mobasheri A. The future of osteoarthritis therapeutics: targeted pharmacological therapy[J/OL]. Curr Rheumatol Rep, 2013, 15(10): 364. doi: 10.1007/s11926-013-0364-9.
|
[8] |
Jain KK. Role of Proteomics in the Development of Personalized Medicine[J/OL]. Adv Protein Chem Struct Biol, 2016, 102: 41-52. doi: 10.2337/db15-0179.
|
[9] |
Bandu R, Mok HJ, Kim KP. Phospholipids as cancer biomarkers:mass spectrometry-based analysis[J]. Mass Spectrom Rev, 2018, 37(2): 107-138.
|
[10] |
Chan PP, Wasinger VC, Leong RW. Current application of proteomics in biomarker discovery for inflammatory bowel disease[J]. World J Gastrointest Pathophysiol, 2016, 7(1): 27-37.
|
[11] |
Chen Y, Liu XH, Wu JJ, et al. Proteomic analysis of cerebrospinal fluid in amyotrophic lateral sclerosis[J]. Exp Ther Med, 2016, 11(6): 2095-2106.
|
[12] |
Di Meo A, Pasic MD, Yousef GM. Proteomics and peptidomics: moving toward precision medicine in urological malignancies[J]. Oncotarget, 2016, 7(32): 52460-52474.
|
[13] |
Zhang JF. Meta-analysis of serum C-reactive protein and cartilage oligomeric matrix protein levels as biomarkers for clinical knee osteoarthritis[J/OL]. BMC Musculoskelet Disord, 2018, 19(1): 22. doi: 10.1186/s12891-018-1932-y.
|
[14] |
Wilkins MR, Sanchez JC, Gooley AA, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it[J/OL]. Biotechnol Genet Eng Rev, 1996, 13: 19-50. doi: 10.1080/02648725.1996.10647923.
|
[15] |
Duarte TT, Spencer CT. Personalized proteomics: the future of precision medicine[J]. Proteomes, 2016, 4(4):29. doi: 10.3390/proteomes4040029.
|
[16] |
Khalilpour A, Kilic T, Khalilpour S, et al. Proteomic-based biomarker discovery for development of next generation diagnostics[J]. Appl Microbiol Biotechnol, 2017, 101(2): 475-491.
|
[17] |
Conaghan PG. Osteoarthritis in 2012:parallel evolution of OA phenotypes and therapies[J]. Nat Rev Rheumatol, 2013, 9(2): 68-70.
|
[18] |
Ruiz-Romero C, Blanco FJ. Proteomics role in the search for improved diagnosis, prognosis and treatment of osteoarthritis[J]. Osteoarthritis Cartilage, 2010, 18(4): 500-509.
|
[19] |
Tonge DP, Pearson MJ, Jones SW. The hallmarks of osteoarthritis and the potential to develop personalised disease-modifying pharmacological therapeutics[J]. Osteoarthritis Cartilage, 2014, 22(5): 609-621.
|
[20] |
Fernandez-Costa C, Calamia V, Fernandez-Puente P, et al. Sequential depletion of human serum for the search of osteoarthritis biomarkers[J/OL]. Proteome Sci, 2012, 10(1): 55. doi: 10.1186/1477-5956-10-55.
|
[21] |
Fernandez-Puente P, Mateos J, Fernandez-Costa C, et al. Identification of a panel of novel serum osteoarthritis biomarkers[J]. J Proteome Res, 2011, 10(11): 5095-5101.
|
[22] |
De Seny D, Fillet M, Meuwis MA, et al. Discovery of new rheumatoid arthritis biomarkers using the surface-enhanced laser desorption/ionization time-of-flight mass spectrometry protein chip approach[J]. Arthritis Rheum, 2005, 52(12): 3801-3812.
|
[23] |
De Seny D, Sharif M, Fillet MA, et al. Discovery and biochemical characterisation of four novel biomarkers for osteoarthritis[J]. Ann Rheum Dis, 2011, 70(6): 1144-1152.
|
[24] |
Takinami Y, Yoshimatsu S, Uchiumt T, et al. Identification of potential prognostic markers for knee osteoarthritis by serum proteomic analysis[J/OL]. Biomark Insights, 2013, 8: 85-95. doi: 10.4137/BMI.S11966.
|
[25] |
Henjes F, Lourido L, Ruiz-Romero CA, et al. Analysis of autoantibody profiles in osteoarthritis using comprehensive protein array concepts[J]. J Proteome Res, 2014, 13(11): 5218-5229.
|
[26] |
Balakrishnan L, Bhattacharjee M, Ahmad SA, et al. Differential proteomic analysis of synovial fluid from rheumatoid arthritis and osteoarthritis patients[J/OL]. Clin Proteomics, 2014, 11(1): 1. doi: 10.1186/1559-0275-11-1.
|
[27] |
Gobezie R, Kho A, Krastins B, et al. High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis[J/OL]. Arthritis Res Ther, 2007, 9(2): R36. doi: 10.1186/ar2172.
|
[28] |
Kamphorst JJ, Van Der Heijden R, Degroot J, et al. Profiling of endogenous peptides in human synovial fluid by NanoLC-MS:method validation and peptide identification[J]. J Proteome Res, 2007, 6(11): 4388-4396.
|
[29] |
Mateos J, Lourido L, Fernández-Puente P, et al. Differential protein profiling of synovial fluid from rheumatoid arthritis and osteoarthritis patients using LC-MALDI TOF/TOF[J]. J Proteomics, 2012, 75(10): 2869-2878.
|
[30] |
Pan XH, Huang LL, Chen JK, et al. Analysis of synovial fluid in knee joint of osteoarthritis: 5 proteome patterns of joint inflammation based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J]. Int Orthop, 2012, 36(1): 57-64.
|
[31] |
Ritter SY, Subbaiah R, Bebek G, et al. Proteomic analysis of synovial fluid from the osteoarthritic knee: comparison with transcriptome analyses of joint tissues[J]. Arthritis Rheum, 2013, 65(4): 981-992.
|
[32] |
Nandal S, Burt T. Integrating pharmacoproteomics into early-phase clinical development: state-of-the-art, challenges, and recommendations[J/OL]. Int J Mol Sci, 2017, 18(2): 488. doi: 10.3390/ijms18020448.
|
[33] |
Calamia V, Ruiz-Romero C, Rocha BA, et al. Pharmacoproteomic study of the effects of chondroitin and glucosamine sulfate on human articular chondrocytes[J]. Arthritis Res Ther, 2010, 12(4): R138. doi: 10.1186/ar3077.
|
[34] |
Calamia V, Fernandez-Puente P, Mateos JA, et al. Pharmacoproteomic study of three different chondroitin sulfate compounds on intracellular and extracellular human chondrocyte proteomes[J/OL]. Mol Cell Proteom, 2012, 11(6): doi: 10.1074/mcp.M111.013417.
|
[35] |
Calamia V, Lourido L, Fernandez-Puente PA, et al. Secretome analysis of chondroitin sulfate-treated chondrocytes reveals anti-angiogenic, anti-inflammatory and anti-catabolic properties[J/OL]. Arthritis Res Ther., 2012, 14(5): R202. doi: 10.1186/ar4040.
|
[36] |
Calamia V, Mateos J, Fernandez-Puente PA, et al. A pharmacoproteomic study confirms the synergistic effect of chondroitin sulfate and glucosamine[J/OL]. Sci Rep, 2014, 4: 5069. doi: 10.1038/srep05069.
|
[37] |
Williams A, Smith JR, Allaway D, et al. Carprofen inhibits the release of matrix metalloproteinases 1, 3, and 13 in the secretome of an explant model of articular cartilage stimulated with interleukin 1 beta[J/OL]. Arthritis Res Ther, 2013, 15(6): R223. doi: 10.1186/ar4424.
|
[38] |
Labranche TP, Bendele AM, Omura BC, et al. Nerve growth factor inhibition with tanezumab influences weight-bearing and subsequent cartilage damage in the rat medial meniscal tear model[J]. Ann Rheum Dis, 2017, 76(1): 295-302.
|
[39] |
Nwosu LN, Mapp PI, Chapman V, et al. Blocking the tropomyosin receptor kinase A (TrkA) receptor inhibits pain behaviour in two rat models of osteoarthritis[J]. Ann Rheum Dis, 2016, 75(6): U393-1246.
|
[40] |
Chambliss AB, Chan DW. Precision medicine: from pharmacogenomics to pharmacoproteomics[J/OL]. Clin Proteomics, 2016, 13: 25. doi: 10.1186/s12014-016-9127-8.
|