切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2018, Vol. 12 ›› Issue (06) : 830 -834. doi: 10.3877/cma.j.issn.1674-134X.2018.06.016

所属专题: 文献

综述

蛋白组学在骨关节炎中的研究进展
冯瑞宾1, 罗世兴1,(), 赵劲民2, 张美瑜3   
  1. 1. 536000 北海,广西医科大学第九附属医院关节脊柱骨科
    2. 530021 南宁,广西医科大学第一附属医院创伤骨科
    3. 530021 南宁,广西医科大学研究生院
  • 收稿日期:2018-02-07 出版日期:2018-12-01
  • 通信作者: 罗世兴
  • 基金资助:
    国家自然科学基金项目(81460345)

Research progress of osteoarthritic proteomics

Ruibin Feng1, Shixing Luo1,(), Jingmin Zhao2, Meiyu Zhang3   

  1. 1. Department of Orthopaedics Joint Spinal, the Ninth Affiliated Hospital of Guangxi Medical University, Beihai 536000, China
    2. Department of Orthopaedics and Traumatology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
    3. Department of Graduate School, Guangxi Medical University, Nanning 530021, China
  • Received:2018-02-07 Published:2018-12-01
  • Corresponding author: Shixing Luo
  • About author:
    Corresponding author: Luo Shixing, Email:
引用本文:

冯瑞宾, 罗世兴, 赵劲民, 张美瑜. 蛋白组学在骨关节炎中的研究进展[J/OL]. 中华关节外科杂志(电子版), 2018, 12(06): 830-834.

Ruibin Feng, Shixing Luo, Jingmin Zhao, Meiyu Zhang. Research progress of osteoarthritic proteomics[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2018, 12(06): 830-834.

骨关节炎(OA)是运动系统中一种常见疾病,在世界范围内都有着较高的致残率。OA病程较长,在其演变过程中发生了一系列的病理生理改变,包括关节软骨的退化、新骨的形成以及滑膜增生等,疼痛是患者最常见的症状,随着疾病的发展,病变关节的功能逐渐减退,最终导致患者残疾。早期OA引起的损伤是可逆的,但缺乏早期诊断方法以及有效的治疗手段,患者往往都要经历疾病的终末阶段,关节置换是晚期OA患者治疗的唯一有效手段。因此探寻早期OA的诊断手段进而进行早期有效的针对性干预对于改善患者的预后有着重要的临床意义。近年来,蛋白组学在OA中的研究取得了一定的进展,尤其在OA生物学标志物方面;但是,如何将这些研究成果应用于临床有待于进一步研究,本文就蛋白组学在OA中的研究进展作一简要综述。

Osteoarthritis (OA) is a common disease in the motor system and has a high rate of disability worldwide.Due to the long course of OA disease, a series of pathological and physiological changes have occurred during its evolution, including the degeneration of articular cartilage, the formation of new bone and synovial hyperplasia, etc. Pain is the most common symptom of patients. With the development of the disease, the function of the diseased joints gradually decreases, and eventually leads to the disability of patients. The injury caused by early OA is reversible, but without early diagnosis and effective treatment, patients often go through the end stage of the disease. Joint replacement is the only effective treatment for patients with advanced OA.Therefore, it is of great clinical significance to explore the diagnostic means of early OA and carry out early effective targeted intervention to improve the prognosis of patients.In recent years, the study of proteomics in OA has made some progress, especially in the aspect of biological markers of OA. However, how to apply these results to clinical research remains to be further studied. This paper briefly reviewed the research progress of proteomics in OA.

[1]
Martin JA, Buckwalter JA. Aging, articular cartilage chondrocyte senescence and osteoarthritis[J]. Biogerontology, 2002, 3(5): 257-264.
[2]
Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation[J]. Instr Course Lect, 1998, 47: 487-504.
[3]
Blaney DN, Van Caam AP, Van Der Kraan PM. Osteoarthritis year in review 2016:biology[J]. Osteoarthritis Cartilage, 2017, 25(2): 175-180.
[4]
Van Meurs JB. Osteoarthritis year in review 2016:genetics,genomics and epigenetics[J]. Osteoarthritis Cartilage, 2017, 25(2): 181-189.
[5]
Maniar KH, Jones IA, Gopalakrishna RA. Lowering side effects of NSAID usage in osteoarthritis: recent attempts at minimizing dosage[J]. Expert Opin Pharmacother, 2018, 19(2): 93-102.
[6]
Mobasheri A, Bay-Jensen AC, Van Spil WE, et al. Osteoarthritis year in review 2016: biomarkers (biochemical markers)[J]. Osteoarthritis Cartilage, 2017, 25(2): 199-208.
[7]
Mobasheri A. The future of osteoarthritis therapeutics: targeted pharmacological therapy[J/OL]. Curr Rheumatol Rep, 2013, 15(10): 364. doi: 10.1007/s11926-013-0364-9.
[8]
Jain KK. Role of Proteomics in the Development of Personalized Medicine[J/OL]. Adv Protein Chem Struct Biol, 2016, 102: 41-52. doi: 10.2337/db15-0179.
[9]
Bandu R, Mok HJ, Kim KP. Phospholipids as cancer biomarkers:mass spectrometry-based analysis[J]. Mass Spectrom Rev, 2018, 37(2): 107-138.
[10]
Chan PP, Wasinger VC, Leong RW. Current application of proteomics in biomarker discovery for inflammatory bowel disease[J]. World J Gastrointest Pathophysiol, 2016, 7(1): 27-37.
[11]
Chen Y, Liu XH, Wu JJ, et al. Proteomic analysis of cerebrospinal fluid in amyotrophic lateral sclerosis[J]. Exp Ther Med, 2016, 11(6): 2095-2106.
[12]
Di Meo A, Pasic MD, Yousef GM. Proteomics and peptidomics: moving toward precision medicine in urological malignancies[J]. Oncotarget, 2016, 7(32): 52460-52474.
[13]
Zhang JF. Meta-analysis of serum C-reactive protein and cartilage oligomeric matrix protein levels as biomarkers for clinical knee osteoarthritis[J/OL]. BMC Musculoskelet Disord, 2018, 19(1): 22. doi: 10.1186/s12891-018-1932-y.
[14]
Wilkins MR, Sanchez JC, Gooley AA, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it[J/OL]. Biotechnol Genet Eng Rev, 1996, 13: 19-50. doi: 10.1080/02648725.1996.10647923.
[15]
Duarte TT, Spencer CT. Personalized proteomics: the future of precision medicine[J]. Proteomes, 2016, 4(4):29. doi: 10.3390/proteomes4040029.
[16]
Khalilpour A, Kilic T, Khalilpour S, et al. Proteomic-based biomarker discovery for development of next generation diagnostics[J]. Appl Microbiol Biotechnol, 2017, 101(2): 475-491.
[17]
Conaghan PG. Osteoarthritis in 2012:parallel evolution of OA phenotypes and therapies[J]. Nat Rev Rheumatol, 2013, 9(2): 68-70.
[18]
Ruiz-Romero C, Blanco FJ. Proteomics role in the search for improved diagnosis, prognosis and treatment of osteoarthritis[J]. Osteoarthritis Cartilage, 2010, 18(4): 500-509.
[19]
Tonge DP, Pearson MJ, Jones SW. The hallmarks of osteoarthritis and the potential to develop personalised disease-modifying pharmacological therapeutics[J]. Osteoarthritis Cartilage, 2014, 22(5): 609-621.
[20]
Fernandez-Costa C, Calamia V, Fernandez-Puente P, et al. Sequential depletion of human serum for the search of osteoarthritis biomarkers[J/OL]. Proteome Sci, 2012, 10(1): 55. doi: 10.1186/1477-5956-10-55.
[21]
Fernandez-Puente P, Mateos J, Fernandez-Costa C, et al. Identification of a panel of novel serum osteoarthritis biomarkers[J]. J Proteome Res, 2011, 10(11): 5095-5101.
[22]
De Seny D, Fillet M, Meuwis MA, et al. Discovery of new rheumatoid arthritis biomarkers using the surface-enhanced laser desorption/ionization time-of-flight mass spectrometry protein chip approach[J]. Arthritis Rheum, 2005, 52(12): 3801-3812.
[23]
De Seny D, Sharif M, Fillet MA, et al. Discovery and biochemical characterisation of four novel biomarkers for osteoarthritis[J]. Ann Rheum Dis, 2011, 70(6): 1144-1152.
[24]
Takinami Y, Yoshimatsu S, Uchiumt T, et al. Identification of potential prognostic markers for knee osteoarthritis by serum proteomic analysis[J/OL]. Biomark Insights, 2013, 8: 85-95. doi: 10.4137/BMI.S11966.
[25]
Henjes F, Lourido L, Ruiz-Romero CA, et al. Analysis of autoantibody profiles in osteoarthritis using comprehensive protein array concepts[J]. J Proteome Res, 2014, 13(11): 5218-5229.
[26]
Balakrishnan L, Bhattacharjee M, Ahmad SA, et al. Differential proteomic analysis of synovial fluid from rheumatoid arthritis and osteoarthritis patients[J/OL]. Clin Proteomics, 2014, 11(1): 1. doi: 10.1186/1559-0275-11-1.
[27]
Gobezie R, Kho A, Krastins B, et al. High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis[J/OL]. Arthritis Res Ther, 2007, 9(2): R36. doi: 10.1186/ar2172.
[28]
Kamphorst JJ, Van Der Heijden R, Degroot J, et al. Profiling of endogenous peptides in human synovial fluid by NanoLC-MS:method validation and peptide identification[J]. J Proteome Res, 2007, 6(11): 4388-4396.
[29]
Mateos J, Lourido L, Fernández-Puente P, et al. Differential protein profiling of synovial fluid from rheumatoid arthritis and osteoarthritis patients using LC-MALDI TOF/TOF[J]. J Proteomics, 2012, 75(10): 2869-2878.
[30]
Pan XH, Huang LL, Chen JK, et al. Analysis of synovial fluid in knee joint of osteoarthritis: 5 proteome patterns of joint inflammation based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J]. Int Orthop, 2012, 36(1): 57-64.
[31]
Ritter SY, Subbaiah R, Bebek G, et al. Proteomic analysis of synovial fluid from the osteoarthritic knee: comparison with transcriptome analyses of joint tissues[J]. Arthritis Rheum, 2013, 65(4): 981-992.
[32]
Nandal S, Burt T. Integrating pharmacoproteomics into early-phase clinical development: state-of-the-art, challenges, and recommendations[J/OL]. Int J Mol Sci, 2017, 18(2): 488. doi: 10.3390/ijms18020448.
[33]
Calamia V, Ruiz-Romero C, Rocha BA, et al. Pharmacoproteomic study of the effects of chondroitin and glucosamine sulfate on human articular chondrocytes[J]. Arthritis Res Ther, 2010, 12(4): R138. doi: 10.1186/ar3077.
[34]
Calamia V, Fernandez-Puente P, Mateos JA, et al. Pharmacoproteomic study of three different chondroitin sulfate compounds on intracellular and extracellular human chondrocyte proteomes[J/OL]. Mol Cell Proteom, 2012, 11(6): doi: 10.1074/mcp.M111.013417.
[35]
Calamia V, Lourido L, Fernandez-Puente PA, et al. Secretome analysis of chondroitin sulfate-treated chondrocytes reveals anti-angiogenic, anti-inflammatory and anti-catabolic properties[J/OL]. Arthritis Res Ther., 2012, 14(5): R202. doi: 10.1186/ar4040.
[36]
Calamia V, Mateos J, Fernandez-Puente PA, et al. A pharmacoproteomic study confirms the synergistic effect of chondroitin sulfate and glucosamine[J/OL]. Sci Rep, 2014, 4: 5069. doi: 10.1038/srep05069.
[37]
Williams A, Smith JR, Allaway D, et al. Carprofen inhibits the release of matrix metalloproteinases 1, 3, and 13 in the secretome of an explant model of articular cartilage stimulated with interleukin 1 beta[J/OL]. Arthritis Res Ther, 2013, 15(6): R223. doi: 10.1186/ar4424.
[38]
Labranche TP, Bendele AM, Omura BC, et al. Nerve growth factor inhibition with tanezumab influences weight-bearing and subsequent cartilage damage in the rat medial meniscal tear model[J]. Ann Rheum Dis, 2017, 76(1): 295-302.
[39]
Nwosu LN, Mapp PI, Chapman V, et al. Blocking the tropomyosin receptor kinase A (TrkA) receptor inhibits pain behaviour in two rat models of osteoarthritis[J]. Ann Rheum Dis, 2016, 75(6): U393-1246.
[40]
Chambliss AB, Chan DW. Precision medicine: from pharmacogenomics to pharmacoproteomics[J/OL]. Clin Proteomics, 2016, 13: 25. doi: 10.1186/s12014-016-9127-8.
[1] 刘鹏, 罗天, 许珂媛, 邓红美, 李瑄, 唐翠萍. 八段锦对膝关节炎疗效的初步步态分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 590-595.
[2] 苏介茂, 齐岩松, 王永祥, 魏宝刚, 马秉贤, 张鹏飞, 魏兴华, 徐永胜. 关节镜手术在早中期膝骨关节炎治疗的应用进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 646-652.
[3] 谢佳乐, 李琦, 芦升升, 姜劲松. 内侧膝骨关节炎伴胫股关节冠状半脱位的手术治疗[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 653-657.
[4] 许银峰, 盛璞义, 余世明, 张阳春. 偏心性髋臼旋转截骨术治疗发育性髋关节发育不良[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 568-574.
[5] 李志文, 李远志, 李华, 方志远. 糖皮质激素治疗膝骨关节炎疗效的网状Meta分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 484-496.
[6] 庄若语, 杭明辉, 李文华, 张霆, 侯炜. 膝骨关节炎半定量磁共振评分研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 545-552.
[7] 王冰, 孙海宁, 于秀淳, 周珂, 翟凯, 苗族康. 膝骨关节炎的活动衬垫型单髁置换疗效与假体生存率[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 337-345.
[8] 张江礼, 刘金辉, 潘西庆, 刘光源, 范虓. 全膝关节置换应用智能辅助手术导航系统治疗膝骨关节炎[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 346-351.
[9] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[10] 陈松, 黄玲巧, 余清卿, 魏志鑫, 付琰. 单细胞RNA测序技术在骨关节炎软骨中的研究应用[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 363-371.
[11] 费一鸣, 刘卓, 张丽娟. 组学分析在早产分子机制中的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 504-510.
[12] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[13] 周涵, 武胡雯, 张培深, 邓晗彬, 范闻轩, 李嘉诚, 程少文. 蛋白质组学在慢性难愈合创面研究中的应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 536-540.
[14] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[15] 高广涵, 张耀南, 石磊, 王林, 王飞, 郑子天, 王鸿禹, 郭民政, 薛庆云. 膝骨关节炎患者前交叉韧带功能影像学影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 301-307.
阅读次数
全文


摘要