切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2018, Vol. 12 ›› Issue (06) : 830 -834. doi: 10.3877/cma.j.issn.1674-134X.2018.06.016

所属专题: 文献

综述

蛋白组学在骨关节炎中的研究进展
冯瑞宾1, 罗世兴1,(), 赵劲民2, 张美瑜3   
  1. 1. 536000 北海,广西医科大学第九附属医院关节脊柱骨科
    2. 530021 南宁,广西医科大学第一附属医院创伤骨科
    3. 530021 南宁,广西医科大学研究生院
  • 收稿日期:2018-02-07 出版日期:2018-12-01
  • 通信作者: 罗世兴
  • 基金资助:
    国家自然科学基金项目(81460345)

Research progress of osteoarthritic proteomics

Ruibin Feng1, Shixing Luo1,(), Jingmin Zhao2, Meiyu Zhang3   

  1. 1. Department of Orthopaedics Joint Spinal, the Ninth Affiliated Hospital of Guangxi Medical University, Beihai 536000, China
    2. Department of Orthopaedics and Traumatology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
    3. Department of Graduate School, Guangxi Medical University, Nanning 530021, China
  • Received:2018-02-07 Published:2018-12-01
  • Corresponding author: Shixing Luo
  • About author:
    Corresponding author: Luo Shixing, Email:
引用本文:

冯瑞宾, 罗世兴, 赵劲民, 张美瑜. 蛋白组学在骨关节炎中的研究进展[J]. 中华关节外科杂志(电子版), 2018, 12(06): 830-834.

Ruibin Feng, Shixing Luo, Jingmin Zhao, Meiyu Zhang. Research progress of osteoarthritic proteomics[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2018, 12(06): 830-834.

骨关节炎(OA)是运动系统中一种常见疾病,在世界范围内都有着较高的致残率。OA病程较长,在其演变过程中发生了一系列的病理生理改变,包括关节软骨的退化、新骨的形成以及滑膜增生等,疼痛是患者最常见的症状,随着疾病的发展,病变关节的功能逐渐减退,最终导致患者残疾。早期OA引起的损伤是可逆的,但缺乏早期诊断方法以及有效的治疗手段,患者往往都要经历疾病的终末阶段,关节置换是晚期OA患者治疗的唯一有效手段。因此探寻早期OA的诊断手段进而进行早期有效的针对性干预对于改善患者的预后有着重要的临床意义。近年来,蛋白组学在OA中的研究取得了一定的进展,尤其在OA生物学标志物方面;但是,如何将这些研究成果应用于临床有待于进一步研究,本文就蛋白组学在OA中的研究进展作一简要综述。

Osteoarthritis (OA) is a common disease in the motor system and has a high rate of disability worldwide.Due to the long course of OA disease, a series of pathological and physiological changes have occurred during its evolution, including the degeneration of articular cartilage, the formation of new bone and synovial hyperplasia, etc. Pain is the most common symptom of patients. With the development of the disease, the function of the diseased joints gradually decreases, and eventually leads to the disability of patients. The injury caused by early OA is reversible, but without early diagnosis and effective treatment, patients often go through the end stage of the disease. Joint replacement is the only effective treatment for patients with advanced OA.Therefore, it is of great clinical significance to explore the diagnostic means of early OA and carry out early effective targeted intervention to improve the prognosis of patients.In recent years, the study of proteomics in OA has made some progress, especially in the aspect of biological markers of OA. However, how to apply these results to clinical research remains to be further studied. This paper briefly reviewed the research progress of proteomics in OA.

[1]
Martin JA, Buckwalter JA. Aging, articular cartilage chondrocyte senescence and osteoarthritis[J]. Biogerontology, 2002, 3(5): 257-264.
[2]
Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation[J]. Instr Course Lect, 1998, 47: 487-504.
[3]
Blaney DN, Van Caam AP, Van Der Kraan PM. Osteoarthritis year in review 2016:biology[J]. Osteoarthritis Cartilage, 2017, 25(2): 175-180.
[4]
Van Meurs JB. Osteoarthritis year in review 2016:genetics,genomics and epigenetics[J]. Osteoarthritis Cartilage, 2017, 25(2): 181-189.
[5]
Maniar KH, Jones IA, Gopalakrishna RA. Lowering side effects of NSAID usage in osteoarthritis: recent attempts at minimizing dosage[J]. Expert Opin Pharmacother, 2018, 19(2): 93-102.
[6]
Mobasheri A, Bay-Jensen AC, Van Spil WE, et al. Osteoarthritis year in review 2016: biomarkers (biochemical markers)[J]. Osteoarthritis Cartilage, 2017, 25(2): 199-208.
[7]
Mobasheri A. The future of osteoarthritis therapeutics: targeted pharmacological therapy[J/OL]. Curr Rheumatol Rep, 2013, 15(10): 364. doi: 10.1007/s11926-013-0364-9.
[8]
Jain KK. Role of Proteomics in the Development of Personalized Medicine[J/OL]. Adv Protein Chem Struct Biol, 2016, 102: 41-52. doi: 10.2337/db15-0179.
[9]
Bandu R, Mok HJ, Kim KP. Phospholipids as cancer biomarkers:mass spectrometry-based analysis[J]. Mass Spectrom Rev, 2018, 37(2): 107-138.
[10]
Chan PP, Wasinger VC, Leong RW. Current application of proteomics in biomarker discovery for inflammatory bowel disease[J]. World J Gastrointest Pathophysiol, 2016, 7(1): 27-37.
[11]
Chen Y, Liu XH, Wu JJ, et al. Proteomic analysis of cerebrospinal fluid in amyotrophic lateral sclerosis[J]. Exp Ther Med, 2016, 11(6): 2095-2106.
[12]
Di Meo A, Pasic MD, Yousef GM. Proteomics and peptidomics: moving toward precision medicine in urological malignancies[J]. Oncotarget, 2016, 7(32): 52460-52474.
[13]
Zhang JF. Meta-analysis of serum C-reactive protein and cartilage oligomeric matrix protein levels as biomarkers for clinical knee osteoarthritis[J/OL]. BMC Musculoskelet Disord, 2018, 19(1): 22. doi: 10.1186/s12891-018-1932-y.
[14]
Wilkins MR, Sanchez JC, Gooley AA, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it[J/OL]. Biotechnol Genet Eng Rev, 1996, 13: 19-50. doi: 10.1080/02648725.1996.10647923.
[15]
Duarte TT, Spencer CT. Personalized proteomics: the future of precision medicine[J]. Proteomes, 2016, 4(4):29. doi: 10.3390/proteomes4040029.
[16]
Khalilpour A, Kilic T, Khalilpour S, et al. Proteomic-based biomarker discovery for development of next generation diagnostics[J]. Appl Microbiol Biotechnol, 2017, 101(2): 475-491.
[17]
Conaghan PG. Osteoarthritis in 2012:parallel evolution of OA phenotypes and therapies[J]. Nat Rev Rheumatol, 2013, 9(2): 68-70.
[18]
Ruiz-Romero C, Blanco FJ. Proteomics role in the search for improved diagnosis, prognosis and treatment of osteoarthritis[J]. Osteoarthritis Cartilage, 2010, 18(4): 500-509.
[19]
Tonge DP, Pearson MJ, Jones SW. The hallmarks of osteoarthritis and the potential to develop personalised disease-modifying pharmacological therapeutics[J]. Osteoarthritis Cartilage, 2014, 22(5): 609-621.
[20]
Fernandez-Costa C, Calamia V, Fernandez-Puente P, et al. Sequential depletion of human serum for the search of osteoarthritis biomarkers[J/OL]. Proteome Sci, 2012, 10(1): 55. doi: 10.1186/1477-5956-10-55.
[21]
Fernandez-Puente P, Mateos J, Fernandez-Costa C, et al. Identification of a panel of novel serum osteoarthritis biomarkers[J]. J Proteome Res, 2011, 10(11): 5095-5101.
[22]
De Seny D, Fillet M, Meuwis MA, et al. Discovery of new rheumatoid arthritis biomarkers using the surface-enhanced laser desorption/ionization time-of-flight mass spectrometry protein chip approach[J]. Arthritis Rheum, 2005, 52(12): 3801-3812.
[23]
De Seny D, Sharif M, Fillet MA, et al. Discovery and biochemical characterisation of four novel biomarkers for osteoarthritis[J]. Ann Rheum Dis, 2011, 70(6): 1144-1152.
[24]
Takinami Y, Yoshimatsu S, Uchiumt T, et al. Identification of potential prognostic markers for knee osteoarthritis by serum proteomic analysis[J/OL]. Biomark Insights, 2013, 8: 85-95. doi: 10.4137/BMI.S11966.
[25]
Henjes F, Lourido L, Ruiz-Romero CA, et al. Analysis of autoantibody profiles in osteoarthritis using comprehensive protein array concepts[J]. J Proteome Res, 2014, 13(11): 5218-5229.
[26]
Balakrishnan L, Bhattacharjee M, Ahmad SA, et al. Differential proteomic analysis of synovial fluid from rheumatoid arthritis and osteoarthritis patients[J/OL]. Clin Proteomics, 2014, 11(1): 1. doi: 10.1186/1559-0275-11-1.
[27]
Gobezie R, Kho A, Krastins B, et al. High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis[J/OL]. Arthritis Res Ther, 2007, 9(2): R36. doi: 10.1186/ar2172.
[28]
Kamphorst JJ, Van Der Heijden R, Degroot J, et al. Profiling of endogenous peptides in human synovial fluid by NanoLC-MS:method validation and peptide identification[J]. J Proteome Res, 2007, 6(11): 4388-4396.
[29]
Mateos J, Lourido L, Fernández-Puente P, et al. Differential protein profiling of synovial fluid from rheumatoid arthritis and osteoarthritis patients using LC-MALDI TOF/TOF[J]. J Proteomics, 2012, 75(10): 2869-2878.
[30]
Pan XH, Huang LL, Chen JK, et al. Analysis of synovial fluid in knee joint of osteoarthritis: 5 proteome patterns of joint inflammation based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J]. Int Orthop, 2012, 36(1): 57-64.
[31]
Ritter SY, Subbaiah R, Bebek G, et al. Proteomic analysis of synovial fluid from the osteoarthritic knee: comparison with transcriptome analyses of joint tissues[J]. Arthritis Rheum, 2013, 65(4): 981-992.
[32]
Nandal S, Burt T. Integrating pharmacoproteomics into early-phase clinical development: state-of-the-art, challenges, and recommendations[J/OL]. Int J Mol Sci, 2017, 18(2): 488. doi: 10.3390/ijms18020448.
[33]
Calamia V, Ruiz-Romero C, Rocha BA, et al. Pharmacoproteomic study of the effects of chondroitin and glucosamine sulfate on human articular chondrocytes[J]. Arthritis Res Ther, 2010, 12(4): R138. doi: 10.1186/ar3077.
[34]
Calamia V, Fernandez-Puente P, Mateos JA, et al. Pharmacoproteomic study of three different chondroitin sulfate compounds on intracellular and extracellular human chondrocyte proteomes[J/OL]. Mol Cell Proteom, 2012, 11(6): doi: 10.1074/mcp.M111.013417.
[35]
Calamia V, Lourido L, Fernandez-Puente PA, et al. Secretome analysis of chondroitin sulfate-treated chondrocytes reveals anti-angiogenic, anti-inflammatory and anti-catabolic properties[J/OL]. Arthritis Res Ther., 2012, 14(5): R202. doi: 10.1186/ar4040.
[36]
Calamia V, Mateos J, Fernandez-Puente PA, et al. A pharmacoproteomic study confirms the synergistic effect of chondroitin sulfate and glucosamine[J/OL]. Sci Rep, 2014, 4: 5069. doi: 10.1038/srep05069.
[37]
Williams A, Smith JR, Allaway D, et al. Carprofen inhibits the release of matrix metalloproteinases 1, 3, and 13 in the secretome of an explant model of articular cartilage stimulated with interleukin 1 beta[J/OL]. Arthritis Res Ther, 2013, 15(6): R223. doi: 10.1186/ar4424.
[38]
Labranche TP, Bendele AM, Omura BC, et al. Nerve growth factor inhibition with tanezumab influences weight-bearing and subsequent cartilage damage in the rat medial meniscal tear model[J]. Ann Rheum Dis, 2017, 76(1): 295-302.
[39]
Nwosu LN, Mapp PI, Chapman V, et al. Blocking the tropomyosin receptor kinase A (TrkA) receptor inhibits pain behaviour in two rat models of osteoarthritis[J]. Ann Rheum Dis, 2016, 75(6): U393-1246.
[40]
Chambliss AB, Chan DW. Precision medicine: from pharmacogenomics to pharmacoproteomics[J/OL]. Clin Proteomics, 2016, 13: 25. doi: 10.1186/s12014-016-9127-8.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[3] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[4] 刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东. 机器人辅助膝关节单髁置换术的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 715-721.
[5] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[6] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[7] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[8] 赵之栋, 李众利. 骨关节炎早期诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 689-693.
[9] 胡银华, 薛龙. 中国中老年人症状性膝骨关节炎的发病率及危险因素[J]. 中华关节外科杂志(电子版), 2023, 17(04): 470-478.
[10] 利洪艺, 杨浪, 温国洪, 关鸿, 茹江英, 王湘江. 全膝股骨假体矢状面位置与术后膝前痛及功能的关系[J]. 中华关节外科杂志(电子版), 2023, 17(04): 479-484.
[11] 韩春颖, 王婷婷, 李艳艳, 朴金霞. 子宫内膜癌患者淋巴管间隙浸润预测因素研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 403-409.
[12] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[13] 周晓强, 孙超, 虞宵, 金宇杰, 李志强, 张向鑫, 陈广祥. 同一患者同期行全膝和单髁置换术的早期临床疗效[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 275-281.
[14] 马聪, 李雪靖, 郑晓佐, 张晓阳, 段坤峰, 刘国强, 郄素会. 关节腔内注射富血小板血浆与透明质酸钠治疗Ⅰ-Ⅲ期膝骨关节炎的对比研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 282-288.
[15] 张镇斌, 闫兆龙, 王功腾, 张文琦, 王旭凤, 李广兴, 孙华强, 李树锋. 关节镜对胫骨高位截骨术治疗膝骨关节炎的效果研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 218-225.
阅读次数
全文


摘要