| [1] |
费腾, 阎作勤. 激素性股骨头坏死发病机制的研究进展[J]. 中华关节外科杂志(电子版), 2011, 5(4): 504-508.
|
| [2] |
Tan B, Li W, Zeng P, et al. Epidemiological study based on China osteonecrosis of the femoral head database[J]. Orthop Surg, 2021, 13(1): 153-160.
|
| [3] |
Lu C, Qi H, Xu H, et al. Global research trends of steroid-induced osteonecrosis of the femoral head: a 30-year bibliometric analysis[J/OL]. Front Endocrinol, 2022, 13: 1027603. DOI: 10.3389/fendo.2022.1027603.
|
| [4] |
覃文涛, 赵良军, 胡阳, 等. 广西1 951例股骨头坏死的流行病学研究[J/OL]. 中华关节外科杂志(电子版), 2021, 15(3): 261-266.
|
| [5] |
中国医师协会骨科医师分会骨循环与骨坏死专业委员会, 中华医学会骨科分会骨显微修复学组, 国际骨循环学会中国区. 中国成人股骨头坏死临床诊疗指南(2020)[J]. 中华骨科杂志, 2020, 40(20): 1365-1376.
|
| [6] |
Li L, Zhao S, Leng Z, et al. Pathological mechanisms and related markers of steroid-induced osteonecrosis of the femoral head[J/OL]. Ann Med, 2024, 56(1): 2416070. DOI: 10.1080/07853890.2024.2416070.
|
| [7] |
孙伟, 高福强, 李子荣. 股骨头坏死临床诊疗技术专家共识(2022年)[J]. 中国修复重建外科杂志, 2022, 36(11): 1319-1326.
|
| [8] |
Wang X, Li J, Man D, et al. Early detection of steroid-induced femoral head necrosis using (99m)Tc-Cys-Annexin V-based apoptosis imaging in a rabbit model[J/OL]. Mol Med, 2020, 26(1): 120. DOI: 10.1186/s10020-020-00248-1.
|
| [9] |
Wald LL, McDaniel PC, Witzel T, et al. Low-cost and portable MRI[J]. Magnetic Resonance Imaging, 2020, 52(3): 686-696.
|
| [10] |
李时斌, 赖渝, 周毅, 等. 激素性股骨头坏死发病机制及相关信号通路的靶点效应[J]. 中国组织工程研究, 2021, 25(6): 935-941.
|
| [11] |
Rong D, Sun H, Li Z, et al. An emerging function of circRNA-miRNAs-mRNA axis in human diseases[J]. Oncotarget, 2017, 8(42): 73271-73281.
|
| [12] |
Sanger HL, Klotz G, Riesner D, etal. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci USA, 1976, 73(11): 3852-3856.
|
| [13] |
Shen H, Liu B, Xu J, et al. Circular RNAs: characteristics, biogenesis, mechanisms and functions in liver cancer[J/OL]. J Hematol Oncol, 2021, 14(1): 134. DOI: 10.1186/s13045-021-01145-8.
|
| [14] |
Wong CH, Lou UK, Li Y, et al. CircFOXK2 promotes growth and metastasis of pancreatic ductal adenocarcinoma by complexing with RNA-binding proteins and sponging miR-942[J]. Cancer Res, 2020, 80(11): 2138-2149.
|
| [15] |
Han K, Wang FW, Cao CH, etal. CircLONP2 enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of microRNA-17[J/OL]. Mol Cancer, 2020, 19(1): 60. DOI: 10.1186/s12943-020-01184-8.
|
| [16] |
Zhong Z, Lv M, Chen J. Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma[J/OL]. Sci Rep, 2016, 6: 30919. DOI: 10.1038/srep30919.
|
| [17] |
Huang A, Zheng H, Wu Z, et al. Circular RNA-protein interactions: functions, mechanisms, and identification[J]. Theranostics, 2020, 10(8): 3503-3517.
|
| [18] |
Sun M, Yang Y. Biological functions and applications of circRNAs-next generation of RNA-based therapy[J/OL]. J Mol Cell Biol, 2023, 15(5): mjad031. DOI: 10.1093/jmcb/mjad031.
|
| [19] |
Szabo L, Salzman J. Detecting circular RNAs: bioinformatic and experimental challenges[J]. Nat Rev Genet, 2016, 17(11): 679-692.
|
| [20] |
Wang Z, Deng H, Jin Y, et al. Circular RNAs: biology and clinical significance of breast cancer[J]. RNA Biol, 2023, 20(1): 859-874.
|
| [21] |
Mohanapriya R, Akshaya RL, Selvamurugan N. A regulatory role of circRNA-miRNA-mRNA network in osteoblast differentiation[J]. Biochimie, 2022, 193: 137-147.
|
| [22] |
Hao Y, Lu C, Zhang B, et al. CircPVT1 up-regulation attenuates steroid-induced osteonecrosis of the femoral head through regulating miR-21-5p-mediated Smad7/TGFβ signalling pathway[J]. J Cell Mol Med, 2021, 25(10): 4608-4622.
|
| [23] |
Hua X, Yu L, Zhu H, et al. Research progress of circRNAs in bone-related diseases[J/OL]. Front Oncol, 2025, 15: 1481322. DOI: 10.3389/fonc.2025.1481322.
|
| [24] |
Gao M, Zhang Z, Sun J, et al. The roles of circRNA-miRNA-mRNA networks in the development and treatment of osteoporosis[J/OL]. Front Endocrinol, 2022, 13: 945310. DOI: 10.3389/fendo.2022.945310.
|
| [25] |
Li Q, Yao H, Wang Y, et al. circPRKAA1 activates a Ku80/Ku70/SREBP-1 axis driving de novo fatty acid synthesis in cancer cells[J/OL]. Cell Rep, 2022, 41(8): 111707. DOI: 10.1016/j.celrep.2022.111707.
|
| [26] |
Chen G, Wang Q, Li Z, et al. Circular RNA CDR1as promotes adipogenic and suppresses osteogenic differentiation of BMSCs in steroid-induced osteonecrosis of the femoral head[J/OL]. Bone, 2020, 133: 115258. DOI: 10.1016/j.bone.2020.115258.
|
| [27] |
Yao T, Wang L, Ding ZF, et al. hsa_circ_0058122 knockdown prevents steroid-induced osteonecrosis of the femoral head by inhibiting human umbilical vein endothelial cells apoptosis via the miR-7974/IGFBP5 axis[J/OL]. J Clin Lab Anal, 2022, 36(4): e24134. DOI: 10.1002/jcla.24134.
|
| [28] |
Zhang J, Cao J, Liu Y, et al. Advances in the pathogenesis of steroid-associated osteonecrosis of the femoral head [J/OL]. Biomolecules, 2024, 14(6): 667. DOI: 10.3390/biom14060667.
|
| [29] |
Peng P, He W, Zhang YX, et al. CircHIPK3 promotes bone microvascular endothelial cell proliferation, migration and angiogenesis by targeting miR-7 and KLF4/VEGF signaling in steroid-induced osteonecrosis of the femoral head [J]. Adv Clin Exp Med, 2023, 32(1): 43-55.
|
| [30] |
Kuang MJ, Xing F, Wang D, et al. CircUSP45 inhibited osteogenesis in glucocorticoid-induced osteonecrosis of femoral head by sponging miR-127-5p through PTEN/AKT signal pathway: Experimental studies[J]. Biochem Biophys Res Commun, 2019, 509(1): 255-261.
|
| [31] |
Moura SR, Fernandes MJ, Santos SG, et al. Circular RNAs: promising targets in osteoporosis[J]. Curr Osteoporos Rep, 2023, 21(3): 289-302.
|
| [32] |
Almalki WH, Almujri SS. The dual roles of circRNAs in Wnt/β-Catenin signaling and cancer progression[J/OL]. Pathol Res Pract, 2024, 255: 155132. DOI: 10.1016/j.prp.2024.155132.
|
| [33] |
Hu F, Peng Y, Fan X, et al. Circular RNAs: implications of signaling pathways and bioinformatics in human cancer[J]. Cancer Biol Med, 2023, 20(2): 104-128.
|
| [34] |
Xue C, Li G, Zheng Q, et al. The functional roles of the circRNA/Wnt axis in cancer [J/OL]. Mol Cancer, 2022, 21(1): 108. DOI: 10.1186/s12943-022-01582-0.
|
| [35] |
Tian Y, Lai T, Li Z, et al. Role of non-coding RNA intertwined with the Wnt/β-catenin signaling pathway in endometrial cancer (Review)[J/OL]. Mol Med Rep, 2023, 28(2). DOI: 10.3892/mmr.2023.13037. DOI: 10.3892/mmr.2023.13037.
|
| [36] |
Qi L, Yan Y, Chen B, et al. Research progress of circRNA as a biomarker of sepsis: a narrative review[J/OL]. Ann Transl Med, 2021, 9(8): 720. DOI: 10.21037/atm-21-1247.
|
| [37] |
Wong R, Zhang Y, Zhao H, et al. Circular RNAs in organ injury: recent development[J/OL]. J Transl Med, 2022, 20(1): 533. DOI: 10.1186/s12967-022-03725-9.
|
| [38] |
Kim KM, Park SJ, Jung S-H, et al. miR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1[J]. J Bone Miner Res, 2012, 27(8): 1669-1679.
|