切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (06) : 755 -760. doi: 10.3877/cma.j.issn.1674-134X.2025.06.016

综述

环状RNA调控激素性股骨头坏死的机制与研究进展
黄嘉楠1,2, 杨均政1,2, 张华1,2, 陈柏豪1,2, 陈楚仪1,2, 何琪1,2, 陈鹏3,4,()   
  1. 1510499 广州中医药大学第一临床医学院
    2510388 广州中医药大学岭南医学研究中心
    3510405 广州中医药大学第一附属医院骨伤中心
    4510405 广州,广东省中医临床研究院
  • 收稿日期:2025-04-07 出版日期:2025-12-01
  • 通信作者: 陈鹏
  • 基金资助:
    中医证候全国重点实验室; 国家自然科学基金(82374470); 广州中医药大学青年拔尖人才(团队)培育"揭榜挂帅"项目

Mechanism and research progress of circular RNA in regulating steroid-induced osteonecrosis of femoral head

Jianan Huang1,2, Junzheng Yang1,2, Hua Zhang1,2, Baihao Chen1,2, Chuyi Chen1,2, Qi He1,2, Peng Chen3,4,()   

  1. 1The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510499, China
    2Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510388, China
    3The Bone Injury Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
    4Guangdong Provincial Clinical Research Institute for Chinese Medicine, Guangzhou 510405, China
  • Received:2025-04-07 Published:2025-12-01
  • Corresponding author: Peng Chen
引用本文:

黄嘉楠, 杨均政, 张华, 陈柏豪, 陈楚仪, 何琪, 陈鹏. 环状RNA调控激素性股骨头坏死的机制与研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(06): 755-760.

Jianan Huang, Junzheng Yang, Hua Zhang, Baihao Chen, Chuyi Chen, Qi He, Peng Chen. Mechanism and research progress of circular RNA in regulating steroid-induced osteonecrosis of femoral head[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2025, 19(06): 755-760.

激素性股骨头坏死(SONFH)是一种由于长期大剂量使用糖皮质激素引起的股骨头缺血性疾病,具有高发病率和严重的致残风险,其发病机制复杂,尚未完全阐明,而且临床工作中SONFH的早期诊断较为困难。而环状RNA(circRNA)作为一类非编码RNA,在SONFH的发生、发展及诊疗中展现出重要作用。随着研究的深入,人们发现circRNA通过竞争性内源RNA(ceRNA)机制调控基因表达,影响成骨细胞和破骨细胞的分化,进而干预骨代谢平衡。特定circRNA的异常表达在SONFH患者血液或骨组织中被发现,这为其作为潜在的诊断生物标志物提供了依据,也有望成为新的治疗靶点。本文通过总结circRNA在SONFH中的研究进展,重点探讨其表达调控机制、生物学功能及作为诊断标志物和治疗靶点的潜力,为SONFH的早期诊断和治疗提供新的思路。

Steroid-induced osteonecrosis of the femoral head (SONFH) is an ischemic necrotic bone disease caused by long-term use of glucocorticoids, characterized by a high incidence rate and severe disability risk. Its pathogenesis is complex, and early diagnosis remains challenging. Circular RNA (circRNA), a novel class of non-coding RNA, has been shown to play a significant role in the occurrence, progression, and clinical management of SONFH. With ongoing research, circRNAs have been found to regulate gene expression through the competing endogenous RNA (ceRNA) mechanism, affecting the differentiation of osteoblasts and osteoclasts, thereby modulating bone metabolism. Abnormal expression of specific circRNAs has been identified in the blood or bone tissue of SONFH patients, providing a basis for their potential use as diagnostic biomarkers and therapeutic targets. This review summarized the recent research progress on circRNAs in SONFH, focusing on their regulatory mechanisms, biological functions, and potential as diagnostic markers and therapeutic targets, offering new insights into the early diagnosis and treatment of SONFH.

[1]
费腾, 阎作勤. 激素性股骨头坏死发病机制的研究进展[J]. 中华关节外科杂志(电子版), 2011, 5(4): 504-508.
[2]
Tan B, Li W, Zeng P, et al. Epidemiological study based on China osteonecrosis of the femoral head database[J]. Orthop Surg, 2021, 13(1): 153-160.
[3]
Lu C, Qi H, Xu H, et al. Global research trends of steroid-induced osteonecrosis of the femoral head: a 30-year bibliometric analysis[J/OL]. Front Endocrinol, 2022, 13: 1027603. DOI: 10.3389/fendo.2022.1027603.
[4]
覃文涛, 赵良军, 胡阳, 等. 广西1 951例股骨头坏死的流行病学研究[J/OL]. 中华关节外科杂志(电子版), 2021, 15(3): 261-266.
[5]
中国医师协会骨科医师分会骨循环与骨坏死专业委员会, 中华医学会骨科分会骨显微修复学组, 国际骨循环学会中国区. 中国成人股骨头坏死临床诊疗指南(2020)[J]. 中华骨科杂志, 2020, 40(20): 1365-1376.
[6]
Li L, Zhao S, Leng Z, et al. Pathological mechanisms and related markers of steroid-induced osteonecrosis of the femoral head[J/OL]. Ann Med, 2024, 56(1): 2416070. DOI: 10.1080/07853890.2024.2416070.
[7]
孙伟, 高福强, 李子荣. 股骨头坏死临床诊疗技术专家共识(2022年)[J]. 中国修复重建外科杂志, 2022, 36(11): 1319-1326.
[8]
Wang X, Li J, Man D, et al. Early detection of steroid-induced femoral head necrosis using (99m)Tc-Cys-Annexin V-based apoptosis imaging in a rabbit model[J/OL]. Mol Med, 2020, 26(1): 120. DOI: 10.1186/s10020-020-00248-1.
[9]
Wald LL, McDaniel PC, Witzel T, et al. Low-cost and portable MRI[J]. Magnetic Resonance Imaging, 2020, 52(3): 686-696.
[10]
李时斌, 赖渝, 周毅, 等. 激素性股骨头坏死发病机制及相关信号通路的靶点效应[J]. 中国组织工程研究, 2021, 25(6): 935-941.
[11]
Rong D, Sun H, Li Z, et al. An emerging function of circRNA-miRNAs-mRNA axis in human diseases[J]. Oncotarget, 2017, 8(42): 73271-73281.
[12]
Sanger HL, Klotz G, Riesner D, etal. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci USA, 1976, 73(11): 3852-3856.
[13]
Shen H, Liu B, Xu J, et al. Circular RNAs: characteristics, biogenesis, mechanisms and functions in liver cancer[J/OL]. J Hematol Oncol, 2021, 14(1): 134. DOI: 10.1186/s13045-021-01145-8.
[14]
Wong CH, Lou UK, Li Y, et al. CircFOXK2 promotes growth and metastasis of pancreatic ductal adenocarcinoma by complexing with RNA-binding proteins and sponging miR-942[J]. Cancer Res, 2020, 80(11): 2138-2149.
[15]
Han K, Wang FW, Cao CH, etal. CircLONP2 enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of microRNA-17[J/OL]. Mol Cancer, 2020, 19(1): 60. DOI: 10.1186/s12943-020-01184-8.
[16]
Zhong Z, Lv M, Chen J. Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma[J/OL]. Sci Rep, 2016, 6: 30919. DOI: 10.1038/srep30919.
[17]
Huang A, Zheng H, Wu Z, et al. Circular RNA-protein interactions: functions, mechanisms, and identification[J]. Theranostics, 2020, 10(8): 3503-3517.
[18]
Sun M, Yang Y. Biological functions and applications of circRNAs-next generation of RNA-based therapy[J/OL]. J Mol Cell Biol, 2023, 15(5): mjad031. DOI: 10.1093/jmcb/mjad031.
[19]
Szabo L, Salzman J. Detecting circular RNAs: bioinformatic and experimental challenges[J]. Nat Rev Genet, 2016, 17(11): 679-692.
[20]
Wang Z, Deng H, Jin Y, et al. Circular RNAs: biology and clinical significance of breast cancer[J]. RNA Biol, 2023, 20(1): 859-874.
[21]
Mohanapriya R, Akshaya RL, Selvamurugan N. A regulatory role of circRNA-miRNA-mRNA network in osteoblast differentiation[J]. Biochimie, 2022, 193: 137-147.
[22]
Hao Y, Lu C, Zhang B, et al. CircPVT1 up-regulation attenuates steroid-induced osteonecrosis of the femoral head through regulating miR-21-5p-mediated Smad7/TGFβ signalling pathway[J]. J Cell Mol Med, 2021, 25(10): 4608-4622.
[23]
Hua X, Yu L, Zhu H, et al. Research progress of circRNAs in bone-related diseases[J/OL]. Front Oncol, 2025, 15: 1481322. DOI: 10.3389/fonc.2025.1481322.
[24]
Gao M, Zhang Z, Sun J, et al. The roles of circRNA-miRNA-mRNA networks in the development and treatment of osteoporosis[J/OL]. Front Endocrinol, 2022, 13: 945310. DOI: 10.3389/fendo.2022.945310.
[25]
Li Q, Yao H, Wang Y, et al. circPRKAA1 activates a Ku80/Ku70/SREBP-1 axis driving de novo fatty acid synthesis in cancer cells[J/OL]. Cell Rep, 2022, 41(8): 111707. DOI: 10.1016/j.celrep.2022.111707.
[26]
Chen G, Wang Q, Li Z, et al. Circular RNA CDR1as promotes adipogenic and suppresses osteogenic differentiation of BMSCs in steroid-induced osteonecrosis of the femoral head[J/OL]. Bone, 2020, 133: 115258. DOI: 10.1016/j.bone.2020.115258.
[27]
Yao T, Wang L, Ding ZF, et al. hsa_circ_0058122 knockdown prevents steroid-induced osteonecrosis of the femoral head by inhibiting human umbilical vein endothelial cells apoptosis via the miR-7974/IGFBP5 axis[J/OL]. J Clin Lab Anal, 2022, 36(4): e24134. DOI: 10.1002/jcla.24134.
[28]
Zhang J, Cao J, Liu Y, et al. Advances in the pathogenesis of steroid-associated osteonecrosis of the femoral head [J/OL]. Biomolecules, 2024, 14(6): 667. DOI: 10.3390/biom14060667.
[29]
Peng P, He W, Zhang YX, et al. CircHIPK3 promotes bone microvascular endothelial cell proliferation, migration and angiogenesis by targeting miR-7 and KLF4/VEGF signaling in steroid-induced osteonecrosis of the femoral head [J]. Adv Clin Exp Med, 2023, 32(1): 43-55.
[30]
Kuang MJ, Xing F, Wang D, et al. CircUSP45 inhibited osteogenesis in glucocorticoid-induced osteonecrosis of femoral head by sponging miR-127-5p through PTEN/AKT signal pathway: Experimental studies[J]. Biochem Biophys Res Commun, 2019, 509(1): 255-261.
[31]
Moura SR, Fernandes MJ, Santos SG, et al. Circular RNAs: promising targets in osteoporosis[J]. Curr Osteoporos Rep, 2023, 21(3): 289-302.
[32]
Almalki WH, Almujri SS. The dual roles of circRNAs in Wnt/β-Catenin signaling and cancer progression[J/OL]. Pathol Res Pract, 2024, 255: 155132. DOI: 10.1016/j.prp.2024.155132.
[33]
Hu F, Peng Y, Fan X, et al. Circular RNAs: implications of signaling pathways and bioinformatics in human cancer[J]. Cancer Biol Med, 2023, 20(2): 104-128.
[34]
Xue C, Li G, Zheng Q, et al. The functional roles of the circRNA/Wnt axis in cancer [J/OL]. Mol Cancer, 2022, 21(1): 108. DOI: 10.1186/s12943-022-01582-0.
[35]
Tian Y, Lai T, Li Z, et al. Role of non-coding RNA intertwined with the Wnt/β-catenin signaling pathway in endometrial cancer (Review)[J/OL]. Mol Med Rep, 2023, 28(2). DOI: 10.3892/mmr.2023.13037. DOI: 10.3892/mmr.2023.13037.
[36]
Qi L, Yan Y, Chen B, et al. Research progress of circRNA as a biomarker of sepsis: a narrative review[J/OL]. Ann Transl Med, 2021, 9(8): 720. DOI: 10.21037/atm-21-1247.
[37]
Wong R, Zhang Y, Zhao H, et al. Circular RNAs in organ injury: recent development[J/OL]. J Transl Med, 2022, 20(1): 533. DOI: 10.1186/s12967-022-03725-9.
[38]
Kim KM, Park SJ, Jung S-H, et al. miR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1[J]. J Bone Miner Res, 2012, 27(8): 1669-1679.
[1] 姜明霞, 李俏, 徐兵河. 局部晚期HER-2阳性乳腺癌的新辅助治疗[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(03): 129-138.
[2] 中国康复医学会骨与关节康复专业委员会, 中国中医药研究促进会骨伤科分会, 程立明, 李泰贤, 何伟, 刘又文, 何海军, 王卫国, 钱东阳, 王荣田, 陈卫衡. 股骨头坏死血管介入治疗中国专家共识[J/OL]. 中华关节外科杂志(电子版), 2025, 19(06): 654-660.
[3] 张耀林, 徐永清. 蚓激酶治疗股骨头坏死的作用机制及应用研究[J/OL]. 中华关节外科杂志(电子版), 2025, 19(06): 728-734.
[4] 张耀林, 王腾, 杨曦, 罗欢, 徐永清. 骨形态发生蛋白2在股骨头坏死保髋治疗的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 472-477.
[5] 林志强, 李嘉欢, 张凯, 李文帅, 刘健, 邓泽群, 乔永杰, 周胜虎. 骨髓间充质干细胞在激素性股骨头坏死发病机制的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 464-471.
[6] 翟禹樵, 鲜思平, 陈明灿, 蒋珊. 动力交叉钉治疗股骨颈骨折后早期股骨头坏死风险预测[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 402-408.
[7] 何玥, 吴玉梅. 《老年宫颈癌规范化诊疗中国专家共识(2024年版)》解读[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(04): 395-402.
[8] 林小娟, 李清丽. 晚期/复发性子宫内膜癌的分子靶向治疗联合免疫治疗的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(04): 386-394.
[9] 赵颖, 尹晓宇, 步华磊. 卵巢癌的分子诊疗临床应用现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(04): 380-385.
[10] 马小杰, 张贵慧, 李润泽, 王秋入, 陈带领, 马清伟, 张磊, 陈长军. 对硒代甲硫氨酸逆转糖皮质激素介导的成骨细胞凋亡和成骨阻抑治疗大鼠激素性股骨头坏死的机制探索[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 412-420.
[11] 李洁, 孙培伟, 胡婉珍, 曾舜, 陆漪琳, 刘忠. 进展期胃癌生物标志物研究热点的文献计量学可视化分析[J/OL]. 中华普通外科学文献(电子版), 2025, 19(06): 376-382.
[12] 安霞, 石玉生, 宋智心. 结直肠癌早期筛查的实验室检测策略及临床价值分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 446-448.
[13] 赵晨皓, 张序东, 杨浚沫, 周何. 血清肿瘤标志物对结直肠癌患者术后复发的预测效能研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 467-470.
[14] 余辉, 王双兰, 吴庆能, 杨昌其, 彭峰扬, 郭灯亮, 张艺, 崔丽, 吴佳佳. 血清骨保护素与慢性阻塞性肺疾病骨丢失和骨质疏松诊断的关系[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 546-551.
[15] 王宁, 郁越, 于冠宇, 杨彦勇, 张卫. RNA结合蛋白在肿瘤DNA损伤反应中的作用及机制[J/OL]. 中华诊断学电子杂志, 2025, 13(03): 165-170.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?