切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (04) : 472 -477. doi: 10.3877/cma.j.issn.1674-134X.2025.04.009

综述

骨形态发生蛋白2在股骨头坏死保髋治疗的研究进展
张耀林1,2, 王腾1, 杨曦1, 罗欢1, 徐永清1,()   
  1. 1650032 昆明,中国人民解放军联勤保障部队第920医院骨科
    2661199 蒙自,昆明医科大学附属红河医院创伤外科
  • 收稿日期:2024-12-26 出版日期:2025-08-01
  • 通信作者: 徐永清
  • 基金资助:
    云南省创伤骨科临床医学中心(第二期)

Research progress of bone morphogenetic protein 2 in hip preservation treatment for femoral head necrosis

Yaolin Zhang1,2, Teng Wang1, Xi Yang1, Huan Luo1, Yongqing Xu1,()   

  1. 1The 920th Hospital of the People’s Liberation Army Joint Logistic Support Force, Kunming 650032, China
    2The Hong-he Affiliated Hospital of Kunming Medical University The department of Trauma Surgery, Mengzi 661199, China
  • Received:2024-12-26 Published:2025-08-01
  • Corresponding author: Yongqing Xu
引用本文:

张耀林, 王腾, 杨曦, 罗欢, 徐永清. 骨形态发生蛋白2在股骨头坏死保髋治疗的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 472-477.

Yaolin Zhang, Teng Wang, Xi Yang, Huan Luo, Yongqing Xu. Research progress of bone morphogenetic protein 2 in hip preservation treatment for femoral head necrosis[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2025, 19(04): 472-477.

股骨头坏死(ONFH)是一种由血供中断引起的骨组织坏死,常导致股骨头塌陷和髋关节功能丧失。对年轻患者而言,保髋手术因其减少髋关节置换手术的风险和功能受限,成为重要选择。近年来,骨形态发生蛋白2(BMP2)因其在骨生成中的关键作用,逐渐成为治疗ONFH的创新策略。BMP2能够促进成骨和血管生成,通过局部递送系统与骨修复材料结合,显著提升ONFH保髋治疗的效果。与股方肌骨瓣移植术联合使用,BMP2在加速骨再生、提高手术疗效方面展现了独特优势,为新兴治疗方法提供了强有力的支持。

Osteonecrosis of the femoral head (ONFH) is a necrosis of bone tissue caused by interrupted blood supply, often leading to femoral head collapse and loss of hip joint function. For young patients, hip preservation surgery has become an important option as it reduces the risk of hip replacement surgery and functional limitations. In recent years, bone morphogenetic protein 2 (BMP2) has gradually become an innovative strategy for treating femoral head necrosis due to its key role in bone formation. BMP2 can promote osteogenesis and angiogenesis, significantly enhancing the effectiveness of hip preservation treatment for femoral head necrosis when combined with bone repair materials through local delivery systems. When used in conjunction with quadratus femoris muscle-bone flap transplantation, BMP2 has demonstrated unique advantages in accelerating bone regeneration and improving surgical efficacy, providing strong support for emerging treatment methods.

[1]
Li L, Zhao S, Leng Z, et al. Pathological mechanisms and related markers of steroid-induced osteonecrosis of the femoral head [J/OL]. Ann Med, 2024, 56(1): 2416070.DOI:10.1080/07853890.2024.2416070.
[2]
Walsh DW, Godson C, Brazil DP, et al. Extracellular BMP-antagonist regulation in development and disease: tied up in knots [J]. Trends Cell Biol, 2010, 20(5): 244-256.
[3]
Murphy J, Pak S, Shteynman L, et al. Mechanisms and preventative strategies for persistent pain following knee and hip joint replacement surgery: a narrative review[J/OL]. Int J MolSci, 2024, 25(9): 4722. DOI:10.3390/ijms25094722.
[4]
朱诗白, 张啸天, 陈曦, 等.股骨头坏死的保髋治疗[J/OL]. 中华关节外科杂志(电子版), 2020, 14 (06):741-746.
[5]
Mo L, Li J, Wang Z, et al. Influence of less invasive hip preservation surgery on subsequent hip arthroplasty for osteonecrosis of the femoral head [J]. J Hip Preserv Surg, 2022, 9(3): 197-205.
[6]
Rainov NG, Schneiderhan R, Haritonov D. Triangular titanium implants for sacroiliac joint fusion[J/OL]. Acta Neurochir, 2024, 166(1): 462. DOI:10.1007/s00701-024-06357-8.
[7]
Goyal S, Shrivastav S, Ambade R, et al. New technique of reverse bone grafting with core decompression and enriching with regenerative medicine techniques for grade 2 and grade 3 avascular necrosis of both hips [J/OL]. Cureus, 2023, 15(12): e51425. DOI:10.7759/cureus.51425.
[8]
徐永清, 浦路桥, 李川, 等. 保留后上支持动脉的股方肌骨瓣治疗股骨头坏死的临床研究 [J/OL]. 中华关节外科杂志(电子版), 2022, 16 (06):664-669.
[9]
杨飞, 曲彦隆, 杨鹏. 骨形态发生蛋白对人工关节周围诱导成骨的影响 [J/OL]. 中华关节外科杂志(电子版), 2011, 5(6): 770-773.
[10]
Xu X, Hui W, Liu N, et al. Effects of ergosteroside combined risedronate on fracture healing and BMP-2, BMP-7 and VEGF expression in rats[J/OL]. Acta Cir Bras, 2021, 36(11): e361107. DOI:10.1590/ACB361107.
[11]
Gao H, Wang X. Serum miRNA-142 and BMP-2 are markers of recovery following hip replacement surgery for femoral neck fracture[J/OL]. ExpTher Med, 2020, 20(5): 105. DOI:10.3892/etm.2020.9235.
[12]
Urist MR. Bone: formation by autoinduction. 1965[J]. Clin Orthop Relat Res, 2002(395): 4-10.
[13]
Ripamonti U, Petit JC. Bone morphogenetic proteins, cementogenesis, myoblastic stem cells and the induction of periodontal tissue regeneration [J]. Cytokine Growth Factor Rev, 2009, 20(5-6): 489-499.
[14]
李明军, 冯玉娇, 齐保闯, 等. 负载rh-BMP2的羟基磷灰石人工骨治疗胫骨平台骨折骨缺损的临床疗效研究[J]. 生物骨科材料与临床研究, 2023, 20(6): 56-61.
[15]
Li Z, Wang W, Xu H, et al. Effects of altered CXCL12/CXCR4 axis on BMP2/Smad/Runx2/Osterix axis and osteogenic gene expressions during osteogenic differentiation of MSCs [J]. Am J Transl Res, 2017, 9(4): 1680-1693.
[16]
Qiu WX, Ma XL, Lin X, et al. Deficiency of Macf1 in osterix expressing cells decreases bone formation by Bmp2/Smad/Runx2 pathway[J]. J Cell Mol Med, 2020, 24(1): 317-327.
[17]
Xu HJ, Liu XZ, Yang L, et al. Runx2 overexpression promotes bone repair of osteonecrosis of the femoral head (ONFH)[J]. Mol Biol Rep, 2023, 50(6): 4769-4779.
[18]
Li T, Xiao K, Xu Y, et al. Identification of long non-coding RNAs expressed during the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells obtained from patients with ONFH [J]. Int J Mol Med, 2020, 46(5): 1721-1732.
[19]
Leknes KN, Yang J, Qahash M, et al. Alveolar ridge augmentation using implants coated with recombinant human bone morphogenetic protein-2: radiographic observations [J]. Clin Oral Implants Res, 2008, 19(10): 1027-1033.
[20]
Högel F, Militz M, Bühren V, et al. Percutaneous administration of recombinant human bone morphogenetic protein-7 (rhBMP-7) after callus distraction. Two case reports [J]. Unfallchirurg, 2011, 114(2): 167-171.
[21]
Zhu XX, Meng XY, Chen G, et al. Nesfatin-1 enhances vascular smooth muscle calcification through facilitating BMP-2 osteogenic signaling[J/OL]. Cell Commun Signal, 2024, 22(1): 488. DOI:10.1186/s12964-024-01873-7.
[22]
Liu K, Meng CX, Lv ZY, et al. Enhancement of BMP-2 and VEGF carried by mineralized collagen for mandibular bone regeneration [J]. Regen Biomater, 2020, 7(4): 435-440.
[23]
Chen WC, Chung CH, Lu YC, et al. BMP-2 induces angiogenesis by provoking integrin α6 expression in human endothelial progenitor cells [J]. BiochemPharmacol, 2018, 150: 256-266.
[24]
Rong K, Li X, Jiang W, et al. Alendronate alleviated femoral head necrosis and upregulated BMP2/EIF2AK3/EIF2A/ATF4 pathway in liquid nitrogen treated rats [J]. Drug Des Devel Ther, 2021, 15: 1717-1724.
[25]
Rifas L. T-cell cytokine induction of BMP-2 regulates human mesenchymal stromal cell differentiation and mineralization [J]. J Cell Biochem, 2006, 98(4): 706-714.
[26]
Wang Z, Zhang Y, Suo Y, et al. Cannulated screw internal fixation combined with Quadratusfemoris muscle bone flap transplantation in the treatment of femoral neck fracture in young adults [J]. Minerva Pediatr, 2022, 74(3): 383-385.
[27]
Kanakaris NK, Giannoudis PV. Clinical applications of bone morphogenetic proteins: current evidence[J]. J Surg Orthop Adv, 2008, 17(3): 133-146.
[28]
Wang XJ, Zhang ZH, Li L, et al. Quadratusfemoris muscle pedicle bone flap transplantation in the treatment of femoral neck fracture for Chinese young and middle-aged patients: a systematic review and meta-analysis [J]. Chin J Traumatol, 2017, 20(6): 347-351.
[29]
Chen S, Fu K, Cai Q, et al. Development of a risk-predicting score for hip preservation with bone grafting therapy for osteonecrosis[J/OL]. iScience, 2024, 27(4): 109332.DOI:10.1016/j.isci.2024.109332.
[30]
Chun YS, Lee DH, Won TG, et al. Cell therapy for osteonecrosis of femoral head and joint preservation [J/OL]. J Clin Orthop Trauma, 2021, 24: 101713.DOI:10.1016/j.jcot.2021.101713.
[31]
Chae DS, Han S, Lee MK, et al. BMP-2 genome-edited human MSCs protect against cartilage degeneration via suppression of IL-34 in collagen-induced arthritis [J/OL]. Int J Mol Sci, 2023, 24(9): 8223. DOI:10.3390/ijms24098223.
[32]
Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review [J]. Bioact Mater, 2017, 2(4): 224-247.
[33]
Haider A, Kim S, Huh MW, et al. BMP-2 grafted nHA/PLGA hybrid nanofiber scaffold stimulates osteoblastic cells growth[J/OL]. Biomed Res Int, 2015, 2015: 281909.DOI:10.1155/2015/281909.
[34]
Bedair TM, Lee CK, Kim DS, et al. Magnesium hydroxide-incorporated PLGA composite attenuates inflammation and promotes BMP2-induced bone formation in spinal fusion[J/OL]. J Tissue Eng, 2020, 11: 2041731420967591.DOI:10.1177/2041731420967591.
[35]
Ma C, Park MS, Alves do Monte F, et al. Local BMP2 hydrogel therapy for robust bone regeneration in a porcine model of Legg-Calvé-Perthes disease[J/OL]. NPJ Regen Med, 2023, 8(1): 50. DOI:10.1038/s41536-023-00322-2.
[36]
Zhang Y, Yang S, Zhou W, et al. Addition of a synthetically fabricated osteoinductive biphasic calcium phosphate bone graft to BMP2 improves new bone formation[J]. Clin Implant Dent Relat Res, 2016, 18(6): 1238-1247.
[37]
Dong R, Kang M, Qu Y, et al. Incorporating hydrogel (with low polymeric content) into 3D-printed PLGA scaffolds for local and sustained release of BMP2 in repairing large segmental bone defects[J/OL]. Adv Healthc Mater, 2025, 14(2): e2403613. DOI:10.1002/adhm.202403613.
[38]
李子荣, 孙伟, 史振才, 等. 加入和未加骨形态发生蛋白2的打压植骨术治疗股骨头坏死[J]. 中国骨与关节外科, 2012, 5(5): 377-381.
[39]
Lou J, Meyer C, Chen A, et al. Immobilization of BMP-2 in porous hydrogels to spatially regulate osteogenesis[J]. J Control Release, 2025, 379: 944-950.
[40]
Huang CC, Kang M, Lu Y, et al. Functionally engineered extracellular vesicles improve bone regeneration[J]. Acta Biomater, 2020, 109: 182-194.
[41]
Zheng Z, Yin W, Zara JN, et al. The use of BMP-2 coupled–Nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects[J]. Biomaterials, 2010, 31(35): 9293-9300.
[42]
Darjanki CM, Hananta JS, Prahasanti C, et al. Expression of VEGF and BMP-2 in Osteoblast cells exposed to a combination of polymethylmethacrylate (PMMA) and hydroxyapatite (HAp)[J]. J Oral Biol Craniofac Res, 2023, 13(2): 243-248.
[43]
Dashtimoghadam E, Fahimipour F, Tongas N, et al. Microfluidic fabrication of microcarriers with sequential delivery of VEGF and BMP-2 for bone regeneration[J/OL]. Sci Rep, 2020, 10(1): 11764. DOI:10.1038/s41598-020-68221-w.
[44]
Vantucci CE, Krishan L, Cheng A, et al. BMP-2 delivery strategy modulates local bone regeneration and systemic immune responses to complex extremity trauma[J]. Biomater Sci, 2021, 9(5): 1668-1682.
[45]
Sharma S, Sapkota D, Xue Y, et al. Delivery of VEGFA in bone marrow stromal cells seeded in copolymer scaffold enhances angiogenesis, but is inadequate for osteogenesis as compared with the dual delivery of VEGFA and BMP2 in a subcutaneous mouse model[J/OL]. Stem Cell Res Ther, 2018, 9(1): 23. DOI:10.1186/s13287-018-0778-4.
[46]
Freeman FE, Pitacco P, Van Dommelen LHA, et al. Development of a 3D bioprinted scaffold with spatio-temporally defined patterns of BMP-2 and VEGF for the regeneration of large bone defects[J/OL]. Bio Protoc, 2021, 11(21): e4219. DOI:10.21769/BioProtoc.4219.
[47]
Guo T, Yuan X, Li X, et al. Bone regeneration of mouse critical-sized calvarial defects with human mesenchymal stem cell sheets co-expressing BMP2 and VEGF[J]. J Dent Sci, 2023, 18(1): 135-144.
[48]
Geng Y, Duan H, Xu L, et al. BMP-2 and VEGF-A modRNAs in collagen scaffold synergistically drive bone repair through osteogenic and angiogenic pathways[J/OL]. Commun Biol, 2021, 4(1): 82. DOI:10.1038/s42003-020-01606-9.
[49]
Liu Z, Xu Z, Wang X, et al. Preparation and biocompatibility of core-shell microspheres for sequential, sustained release of BMP-2 and VEGF[J/OL]. Biomed Res Int, 2022, 2022: 4072975.DOI:10.1155/2022/4072975.
[1] 何淳诺, 田志敏, 张浩强, 李焕玺, 庄凯鹏, 乔永杰, 周胜虎, 甄平. Salter骨盆截骨联合股骨近端截骨治疗儿童髋关节发育不良[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 391-401.
[2] 翟禹樵, 鲜思平, 陈明灿, 蒋珊. 动力交叉钉治疗股骨颈骨折后早期股骨头坏死风险预测[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 402-408.
[3] 虞兵兵, 王婷婷, 方俊霖, 罗莹莹, 阳鹏, 郭云, 袁丁, 沈忠园, 黄英如. 氨甲环酸改善股骨粗隆间骨折内固定围术期失血的Meta分析[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 427-444.
[4] 林志强, 李嘉欢, 张凯, 李文帅, 刘健, 邓泽群, 乔永杰, 周胜虎. 骨髓间充质干细胞在激素性股骨头坏死发病机制的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 464-471.
[5] 张雨, 艾克热木·艾尔肯, 李强强, 蒋青, 陈东阳. 机器人辅助导航前入路全髋关节置换治疗重度髋关节脱位[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 267-274.
[6] 张建桂, 杨塍尧, 贾绍茂. 两种股骨柄假体对全髋关节置换术围手术期影响[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 275-282.
[7] 中华医学会骨科学分会关节外科学组. 髋膝关节置换手术止血中国专家共识[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 131-142.
[8] 姚舜禹, 樊沛, 张波, 祝杰生. 髋膝关节置换术10年趋势的卫生经济学单中心分析[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 143-150.
[9] 高志祥, 赵超, 姚凯, 于伟, 刘利娟, 贾乐, 孔向东, 肖聪. 两种止血药在全髋关节置换术围手术期的应用[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 7-12.
[10] 皮颖, 张强, 黄志荣. 80 岁以上股骨颈骨折患者术后1 年死亡率的预测因素[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 13-20.
[11] 刘嘉颖, 刘康妍, 梁江声, 杨远良, 苏嘉. 骨疏康联合抗骨质疏松药促进老年髋部脆性骨折术后愈合[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 21-26.
[12] 李科佶, 诸源江, 李培玉. 瑞马唑仑复合全麻对老年髋部骨折患者术后谵妄及血清Aβ-42、Tau蛋白的影响[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(04): 231-236.
[13] 古鹏, 马扬程, 吴文正, 罗列良, 郑楚荣, 王鸿泽, 郑晓辉, 姜自伟, 欧阳崇志. 老年股骨粗隆间骨折患者PFNA内固定术后下地负重时机对早期髋关节功能的影响[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(03): 139-146.
[14] 窦海伟, 哈巴西·卡肯, 艾尼瓦尔·达毛拉, 米尔阿里木·木尔提扎, 赵巍, 它依尔江·举来提, 王利. 基于多准则决策的半髋关节置换术与PFNA治疗外侧壁粉碎股骨转子间骨折风险-效益评价[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(01): 14-21.
[15] 王晓伟, 杨红梅, 高杰, 征华勇, 刘智, 孙天胜. 麻醉方式选择对髋部骨折患者预后的影响[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(01): 39-45.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?