切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (05) : 597 -608. doi: 10.3877/cma.j.issn.1674-134X.2025.05.010

综述

软骨组织工程应用脱细胞干细胞基质的研究进展
魏志鑫1, 宋本静2, 蒋丽2, 余清卿2, 谢庆云2, 廖冬发2, 陈松2,3,()   
  1. 1610031 成都,西南交通大学医学院
    2610083 成都,西南交通大学医学院·西部战区总医院骨科
    3610083 成都,四川省组织应激损伤与功能修复重点实验室
  • 收稿日期:2025-01-27 出版日期:2025-10-01
  • 通信作者: 陈松
  • 基金资助:
    四川省自然科学基金面上项目(2024NSFSC0673); 成都市医学科研课题(202433); 四川省中医药管理局科学技术研究专项项目(25MSZX489)

Research progress of decellularized stem cell matrix and its applications in cartilage tissue engineering

Zhixin Wei1, Benjing Song2, Li Jiang2, Qingqing Yu2, Qingyun Xie2, Dongfa Liao2, Song Chen2,3,()   

  1. 1College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
    2Department of Orthopaedics, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
    3Tissue Stress Injury and Functional Repair Key Laboratory of Sichuan Province, Chengdu 610083, China
  • Received:2025-01-27 Published:2025-10-01
  • Corresponding author: Song Chen
引用本文:

魏志鑫, 宋本静, 蒋丽, 余清卿, 谢庆云, 廖冬发, 陈松. 软骨组织工程应用脱细胞干细胞基质的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(05): 597-608.

Zhixin Wei, Benjing Song, Li Jiang, Qingqing Yu, Qingyun Xie, Dongfa Liao, Song Chen. Research progress of decellularized stem cell matrix and its applications in cartilage tissue engineering[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2025, 19(05): 597-608.

关节软骨因缺乏血管和神经,其损伤后的自我修复能力极其有限,干细胞组织工程技术为其再生提供了新的治疗前景。间充质干细胞(MSCs)来源有限,在体外扩增过程中易发生复制性衰老,伴随成软骨分化潜能下降。脱细胞干细胞基质(DSCM)是一种新兴的天然活性生物材料,已被证实可促进MSCs增殖,增强其成软骨分化能力,同时抑制复制性衰老与炎症反应,在软骨组织工程中有广泛应用前景。DSCM在软骨修复中的效果受细胞来源、制备方法及使用形式等因素的影响,且其在小动物模型中已成功实现促进软骨再生,展现出良好的临床转化潜力。本文综述了体外扩增的MSCs所沉积的DSCM在调控MSCs增殖、成软骨分化潜能、复制性衰老及炎症反应方面的研究进展及其潜在的分子机制,旨在为干细胞组织工程技术在软骨损伤修复中的应用提供新的思路和策略。

Articular cartilage has limited self-healing capacity due to the absence of blood vessels and nerves. Stem cell-based tissue engineering offers promising therapies for cartilage repair, but mesenchymal stem cell (MSC) sources are limited, and replicative senescence and decreased chondrogenic differentiation potential occur during in vitro expansion. Decellularized stem cell matrix (DSCM), a bioactive material, enhances MSC proliferation, chondrogenic differentiation, and resistance to replicative senescence and inflammation, making it a promising tool in cartilage tissue engineering. The regenerative efficacy of DSCM in cartilage repair is modulated by variables such as the cell source, fabrication techniques, and modes of application. Notably, its successful application in promoting cartilage regeneration in small animal models underscores its substantial potential for clinical translation. This review highlighted the impact of DSCM deposited by expanded MSCs in vitro on MSC proliferation, chondrogenic differentiation, replicative senescence, and inflammatory response, providing insights into its potential for cartilage repair through stem cell-based tissue engineering.

表1 DSCM中主要成分及其在软骨再生中的生物学功能
Table 1 Major components of DSCM and their biological functions in cartilage regeneration
图1 DSCM与细胞相互作用对其固有特性及成软骨分化潜能的影响注:DSCMs-脱细胞干细胞基质;IL-白细胞介素;TNF-肿瘤坏死因子;iNOS-诱导型一氧化氮合酶
Figure 1 Effect of DSCM interaction with cells on their intrinsic properties and chondrogenic potential.
表2 DSCM预处理策略对靶向细胞软骨生成分化潜能的影响
Table 2 Impact of DSCM preconditioning strategies on the chondrogenic potential of target cells
DSCM来源 靶细胞 结果
成人SDSCs、ADSCs、UDSCs[25,36,47,48] 成人SDSCs SDSCs经过DSCMs预处理后,在成软骨过程中SOX9、COL2A1等相关软骨基因表达更高,同时COL1A1、COL10A1等相关肥大基因表达也进一步上调。
猪SDSCs[3,49] 猪NPCs、SDSCs 细胞经DSCM预处理后,成软骨相关基因COL2A1表达更高,同时肥大基因ALPL表达亦上调。
成人和胎儿SDSCs[32,40,50] 胎儿SDSCs 胎儿细胞经成人或胎儿DSCM预处理后,成软骨过程中COL2A1、ACAN等基因表达均提升,且经成人DSCM预处理后,这些基因的表达进一步增强。
成人IFPSCs(转染或未转染hTERT、SV40LT过表达)[29,31] 成人IFPSCs IFPSCs经DSCM预处理后,成软骨诱导时SOX9、COL2A1等成软骨基因表达显著上调,同时肥大基因COL10A1表达亦显著提高。
兔IFPSCs、成人SDSCs、ADSCs、UDSCs[22,26] 兔IFPSCs 兔IFPSCs经DSCM预处理后,在成软骨诱导过程中,SOX9和ACAN等成软骨基因表达显著上调。
成人BMSCs、UDSCs[28,39] 成人BMSCs BMSCs经DSCM预处理后,其成软骨潜能增强,特别是在UDSCs产生的DSCM预处理下,成软骨诱导过程中成软骨相关基因表达最高。
猪SDSCs[42] 猪NPCs 猪NPCs在DSCM上扩增后,软骨诱导过程中SOX9、COL2A1、ACAN等成软骨基因表达升高,同时肥大化基因COL10A1也上调。
猪、人、兔BMSCs[44,45,46] 猪、人、兔软骨细胞 软骨细胞经DSCMs预处理后,成软骨基因合成增强,同时抑制纤维化相关基因COL1A1的表达。
成人ADSCs(转染或未转染SV40LT过表达)[30] 成人ADSCs ADSCs经过DSCM预处理后,在成软骨诱导过程中,SOX9、COL2A1、ACAN等成软骨基因表达未显著上调,与Plastic对照组相比无明显差异
成人BMSCs、UDSCs[28] 成人UDSCs UDSCs在成软骨过程中,无论是否经过DSCMs预处理,其形成的软骨球在成软骨诱导时逐渐缩小,最终消失。
图2 DSCM影响细胞成软骨过程的关键分子机制,重点涉及WNT和MAPK信号通路注:DSCM-脱细胞干细胞基质;ERK-细胞外调节蛋白激酶;JnK- c-Jun氨基末端激酶;Cyclin-细胞周期蛋白;SIRT-沉默信息调控因子
Figure 2 Key molecular mechanisms of DSCM affecting chondrogenesis, with emphasis on WNT and MAPK signaling pathways
图3 DSCM的制备、DSCM预处理策略,以及DSCM衍生支架在软骨修复和再生中的应用注:DSCMs-脱细胞干细胞基质;ECM-细胞外基质
Figure 3 DSCM preparation, DSCM preconditioning strategies, and the application of DSCM derived scaffolds in cartilage repair and regeneration
[1]
Kane P, Frederick R, Tucker B, et al. Surgical restoration/repair of articular cartilage injuries in athletes[J]. Phys Sportsmed, 2013, 41(2): 75-86.
[2]
Lee CR, Grodzinsky AJ, Hsu HP, et al. Effects of harvest and selected cartilage repair procedures on the physical and biochemical properties of articular cartilage in the canine knee[J]. J Orthop Res, 2000, 18(5): 790-799.
[3]
Pei M, He F, Li J, et al. Repair of large animal partial-thickness cartilage defects through intraarticular injection of matrix-rejuvenated synovium-derived stem cells[J]. Tissue Eng Part A, 2013, 19(9-10): 1144-1154.
[4]
Zhou L, Chen X, Liu T, et al. SIRT1-dependent anti-senescence effects of cell-deposited matrix on human umbilical cord mesenchymal stem cells[J/OL]. J Tissue Eng Regen Med, 2018, 12(2): e1008-e1021. DOI:10.1002/term.2422.
[5]
He F, Pei M. Extracellular matrix enhances differentiation of adipose stem cells from infrapatellar fat pad toward chondrogenesis[J]. J Tissue Eng Regen Med, 2013, 7(1): 73-84.
[6]
Sart S, Jeske R, Chen X, et al. Engineering stem cell-derived extracellular matrices: decellularization, characterization, and biological function [J]. Tissue Eng Part B Rev, 2020, 26(5): 402-422.
[7]
Sun Y, Yan L, Chen S, et al. Functionality of decellularized matrix in cartilage regeneration: a comparison of tissue versus cell sources[J]. Acta Biomater, 2018, 74: 56-73.
[8]
张姝江, 王瑛, 陈艺, 等. 生物力学在关节软骨修复中的作用[J/OL]. 中华关节外科杂志(电子版), 2018, 12(6): 842-848.
[9]
Liu X, Zhou L, Chen X, et al. Culturing on decellularized extracellular matrix enhances antioxidant properties of human umbilical cord-derived mesenchymal stem cells[J]. Mater Sci Eng C Mater Biol Appl, 2016, 61: 437-448.
[10]
He F, Liu X, Xiong K, et al. Extracellular matrix modulates the biological effects of melatonin in mesenchymal stem cells[J]. J Endocrinol, 2014, 223(2): 167-180.
[11]
Cai R, Nakamoto T, Kawazoe N, et al. Influence of stepwise chondrogenesis-mimicking 3D extracellular matrix on chondrogenic differentiation of mesenchymal stem cells[J]. Biomaterials, 2015, 52: 199-207.
[12]
Theocharis AD, Skandalis SS, Gialeli C, et al. Extracellular matrix structure[J]. Adv Drug Deliv Rev, 2016, 97: 4-27.
[13]
Choi SH, Lee K, Han H, et al. Prochondrogenic effect of decellularized extracellular matrix secreted from human induced pluripotent stem cell-derived chondrocytes[J]. Acta Biomater, 2023, 167: 234-248.
[14]
Lu Z, Doulabi BZ, Huang C, et al. Collagen type II enhances chondrogenesis in adipose tissue-derived stem cells by affecting cell shape[J]. Tissue Eng Part A, 2010, 16(1): 81-90.
[15]
Jiang Y, Tuan RS. Bioactivity of human adult stem cells and functional relevance of stem cell-derived extracellular matrix in chondrogenesis[J/OL]. Stem Cell Res Ther, 2023, 14(1): 160. DOI:10.1186/s13287-023-03392-7.
[16]
Feng Y, Jiang Z, Chen C, et al. Laminin expression profiles of osteogenic-and chondrogenic-induced dECM sheets[J/OL]. Biomater Adv, 2025, 169: 214127. DOI:10.1016/j.bioadv.2024.214127.
[17]
Wagenseil JE, Mecham RP. New insights into elastic fiber assembly[J]. Birth Defects Res C Embryo Today, 2007, 81(4): 229-240.
[18]
Kjellén L, Lindahl U. Specificity of glycosaminoglycan-protein interactions[J]. Curr Opin Struct Biol, 2018, 50: 101-108.
[19]
Wang B, Lu Z, Gao G, et al. Distinct role of perlecan in mesenchymal tissue regeneration via genetic and epigenetic modification[J/OL]. Chem Eng J, 2025, 508: 161103. DOI:10.1016/j.cej.2025.161103.
[20]
Kim BS, Kim H, Gao G, et al. Decellularized extracellular matrix: a step towards the next generation source for bioink manufacturing[J/OL]. Biofabrication, 2017, 9(3): 034104. DOI:10.1088/1758-5090/aa7e98.
[21]
Chen XD, Dusevich V, Feng JQ, et al. Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts[J]. J Bone Miner Res, 2007, 22(12): 1943-1956.
[22]
Lu Z, Zhou S, Vaida J, et al. Unfavorable contribution of a tissue-engineering cartilage graft to osteochondral defect repair in young rabbits[J/OL]. Front Cell Dev Biol, 2020, 8: 595518. DOI:10.3389/fcell.2020.595518.
[23]
Wang YS, Chu WH, Zhai JJ, et al. High quality repair of osteochondral defects in rats using the extracellular matrix of antler stem cells[J]. World J Stem Cells, 2024, 16(2): 176-190.
[24]
Pérez-Castrillo S, González-Fernández ML, López-González ME, et al. Effect of ascorbic and chondrogenic derived decellularized extracellular matrix from mesenchymal stem cells on their proliferation, viability and differentiation [J]. Ann Anat, 2018, 220: 60-69.
[25]
Li J, Narayanan K, Zhang Y, et al. Role of lineage-specific matrix in stem cell chondrogenesis [J]. Biomaterials, 2020, 231: 119681. DOI:10.1016/j.biomaterials.2019.119681.
[26]
Pei M, Pei YA, Zhou S, et al. Matrix from urine stem cells boosts tissue-specific stem cell mediated functional cartilage reconstruction[J]. Bioact Mater, 2022, 23: 353-367.
[27]
Li J, Hansen KC, Zhang Y, et al. Rejuvenation of chondrogenic potential in a young stem cell microenvironment[J]. Biomaterials, 2014, 35(2): 642-653.
[28]
Pei M, Li J, Zhang Y, et al. Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells[J]. Cell Tissue Res, 2014, 356(2): 391-403.
[29]
Wang Y, Pei YA, Sun Y, et al. Stem cells immortalized by hTERT perform differently from those immortalized by SV40LT in proliferation, differentiation, and reconstruction of matrix microenvironment[J]. Acta Biomater, 2021, 136: 184-198.
[30]
Pei YA, Mikaeiliagah E, Wang B, etal. The matrix microenvironment influences but does not dominate tissue-specific stem cell lineage differentiation[J/OL]. Mater Today Bio, 2023, 23: 100805. DOI:10.1016/j.mtbio.2023.100805.
[31]
Wang Y, Hu G, Hill RC, et al. Matrix reverses immortalization-mediated stem cell fate determination[J/OL]. Biomaterials, 2021, 265: 120387. DOI:10.1016/j.biomaterials.2020.120387.
[32]
Pei YA, Patel J, Pei M. Extracellular matrix tunes the regenerative potential of fetal stem cells[J/OL]. Appl Sci, 2024, 14(5): 1932 DOI:10.3390/app14051932.
[33]
Pei M, He F, Wei L. Three-dimensional cell expansion substrate for cartilage tissue engineering and regeneration: acomparison in decellularized matrix deposited by synovium-derived stem cells and chondrocytes[J/OL]. J Tissue Sci Eng, 2011, 2(2): DOI:10.4172/2157-7552.1000104.
[34]
Pizzute T, Zhang Y, He F, et al. Ascorbate-dependent impact on cell-derived matrix in modulation of stiffness and rejuvenation of infrapatellar fat derived stem cells toward chondrogenesis[J/OL]. Biomed Mater, 2016, 11(4): 045009. DOI:10.1088/1748-6041/11/4/045009.
[35]
Lu Z, Yan L, Pei M. Commentary on 'Surface markers associated with chondrogenic potential of human mesenchymal stromal/stem cells’[J]. F1000Res, 2020, 9: F1000FacultyRev-F1000FacultyR37.
[36]
Zhang Y, Li J, Davis ME, et al. Delineation of in vitro chondrogenesis of human synovial stem cells following preconditioning using decellularized matrix[J]. Acta Biomater,2015, 20: 39-50.
[37]
Zhang Y, Pizzute T, Li J, et al. Sb203580 preconditioning recharges matrix-expanded human adult stem cells for chondrogenesis in an inflammatory environment-A feasible approach for autologous stem cell based osteoarthritic cartilage repair [J]. Biomaterials, 2015, 64: 88-97.
[38]
Wang Y, Fu Y, Yan Z, et al. Impact of fibronectin knockout on proliferation and differentiation of human infrapatellar fat pad-derived stem cells[J/OL]. Front Bioeng Biotechnol, 2019, 7: 321. DOI:10.3389/fbioe.2019.00321.
[39]
Pei M, He F, Kish VL. Expansion on extracellular matrix deposited by human bone marrow stromal cells facilitates stem cell proliferation and tissue-specific lineage potential[J]. Tissue Eng Part A, 2011, 17(23-24): 3067-3076.
[40]
Li J, He F, Pei M. Chondrogenic priming of human fetal synovium-derived stem cells in an adult stem cell matrix microenvironment[J]. Genes Dis, 2015, 2(4): 337-346.
[41]
He F, Chen X, Pei M. Reconstruction of an in vitro tissue-specific microenvironment to rejuvenate synovium-derived stem cells for cartilage tissue engineering [J]. Tissue Eng Part A, 2009, 15(12): 3809-3821.
[42]
He F, Pei M. Rejuvenation of nucleus pulposus cells using extracellular matrix deposited by synovium-derived stem cells[J]. Spine, 2012, 37(6): 459-469.
[43]
Ng CP, Sharif ARM, Heath DE, et al. Enhanced ex vivo expansion of adult mesenchymal stem cells by fetal mesenchymal stem cell ECM[J]. Biomaterials, 2014, 35(13): 4046-4057.
[44]
Pei M, He F. Extracellular matrix deposited by synovium-derived stem cells delays replicative senescent chondrocyte dedifferentiation and enhances redifferentiation[J]. J Cell Physiol, 2012, 227(5): 2163-2174.
[45]
Yang Y, Lin H, Shen H, et al. Mesenchymal stem cell-derived extracellular matrix enhances chondrogenic phenotype of and cartilage formation by encapsulated chondrocytes in vitro and in vivo[J]. Acta Biomater, 2018, 69: 71-82.
[46]
Yan J, Chen X, Pu C, et al. Synovium stem cell-derived matrix enhances anti-inflammatory properties of rabbit articular chondrocytes via the SIRT1 pathway[J/OL]. Mater Sci Eng C Mater Biol Appl, 2020, 106: 110286. DOI:10.1016/j.msec.2019.110286.
[47]
Zhang W, Yang J, Zhu Y, et al. Extracellular matrix derived by human umbilical cord-deposited mesenchymal stem cells accelerates chondrocyte proliferation and differentiation potential in vitro[J]. Cell Tissue Bank, 2019, 20(3): 351-365.
[48]
Pei M, Zhang Y, Li J, et al. Antioxidation of decellularized stem cell matrix promotes human synovium-derived stem cell-based chondrogenesis[J]. Stem Cells Dev, 2013, 22(6): 889-900.
[49]
Pei M, Shoukry M, Li J, et al. Modulation of in vitro microenvironment facilitates synovium-derived stem cell-based nucleus pulposus tissue regeneration[J]. Spine, 2012, 37(18): 1538-1547.
[50]
Li J, He F, Pei M. Creation of an in vitro microenvironment to enhance human fetal synovium-derived stem cell chondrogenesis[J]. Cell Tissue Res, 2011, 345(3): 357-365.
[51]
Knuth CA, Andres Sastre E, Fahy NB, et al. Collagen type X is essential for successful mesenchymal stem cell-mediated cartilage formation and subsequent endochondral ossification[J]. Eur Cell Mater, 2019, 38: 106-122.
[52]
Thakkar S, Ghebes CA, Ahmed M, etal. Mesenchymal stromal cell-derived extracellular matrix influences gene expression of chondrocytes[J/OL]. Biofabrication, 2013, 5(2): 025003. DOI:10.1088/1758-5082/5/2/025003.
[53]
Levorson EJ, Mountziaris PM, Hu O, et al. Cell-derived polymer/extracellular matrix composite scaffolds for cartilage regeneration, Part 1: investigation of cocultures and seeding densities for improved extracellular matrix deposition[J]. Tissue Eng Part C Methods, 2014, 20(4): 340-357.
[54]
Tang C, Jin C, Xu Y, et al. Chondrogenic differentiation could be induced by autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffolds without exogenous growth factor[J]. Tissue Eng Part A, 2016, 22(3-4): 222-232.
[55]
Antich C, Jiménez G, de Vicente J, et al. Development of a biomimetic hydrogel based on predifferentiated mesenchymal stem-cell-derived ECM for cartilage tissue engineering[J/OL]. Adv Healthc Mater, 2021, 10(8): e2001847. DOI:10.1002/adhm.202001847.
[56]
Lu H, Hoshiba T, Kawazoe N, et al. Cultured cell-derived extracellular matrix scaffolds for tissue engineering[J]. Biomaterials, 2011, 32(36): 9658-9666.
[57]
钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J/OL]. 中华关节外科杂志(电子版), 2023, 17(3): 368-375.
[58]
Almeida HV, Dikina AD, Mulhall KJ, et al. Porous scaffolds derived from devitalized tissue engineered cartilaginous matrix support chondrogenesis of adult stem cells[J]. ACS Biomater Sci Eng, 2017, 3(6): 1075-1082.
[59]
Dikina AD, Almeida HV, Cao M, et al. Scaffolds derived from ECM produced by chondrogenically induced human MSC condensates support human MSC chondrogenesis[J]. ACS Biomater Sci Eng, 2017, 3(7): 1426-1436.
[60]
Wei B, Xu Y, Tang C, etal. An injectable active hydrogel based on BMSC-derived extracellular matrix for cartilage regeneration enhancement [J/OL]. Biomater Adv, 2024, 160: 213857. DOI:10.1016/j.bioadv.2024.213857.
[61]
Wang Z, Han L, Sun T, etal. Extracellular matrix derived from allogenic decellularized bone marrow mesenchymal stem cell sheets for the reconstruction of osteochondral defects in rabbits [J]. Acta Biomater, 2020, 118: 54-68.
[62]
Chun J, Moon JH, Kwack KH, et al. Single-cell RNA sequencing reveals the heterogeneity of adipose tissue-derived mesenchymal stem cells under chondrogenic induction [J]. BMB Rep, 2024, 57(5): 232-237.
[63]
Cho J, Park JJ, Seo E, et al. Self-assembled organoid-tissue modules for scalable organoid engineering: Application to chondrogenic regeneration [J]. Acta Biomater, 2025, 197: 152-166.
[1] 黄宇阳, 李永生, 罗程, 何奕君, 潘骞. 微孔水凝胶与双细胞因子协同促软骨分化的实验研究[J/OL]. 中华关节外科杂志(电子版), 2025, 19(05): 560-569.
[2] 许珂, 杨雪娜, 程仕强, 侯卫坤, 刘林, 彭侃, 文嫣, 贾雨萌, 张峰, 许鹏. 成人发育性髋关节发育不良的单细胞染色质可及性图谱[J/OL]. 中华关节外科杂志(电子版), 2025, 19(05): 570-579.
[3] 陈波波, 王冠乔, 王宏煜, 侯建业, 田野. 骨代谢指标与关节软骨损伤Outerbridge分级的相关性研究[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 418-426.
[4] 黄鹏飞, 赵俊杰, 张兆坤, 王玺玉, 赵宇昊, 赵海燕. 硫酸软骨素及其衍生生物材料在骨关节炎治疗的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 456-463.
[5] 林志强, 李嘉欢, 张凯, 李文帅, 刘健, 邓泽群, 乔永杰, 周胜虎. 骨髓间充质干细胞在激素性股骨头坏死发病机制的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 464-471.
[6] 陈博, 李向毅. 骨关节炎中软骨细胞铜死亡的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 207-213.
[7] 安春晓, 彭丽娜, 张献, 张广美. 微小RNA 与子宫内膜异位症的相关研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(01): 73-77.
[8] 姚丹娜, 肖宇杰, 冯蓉琴, 孙盼盼, 魏莱, 王洪涛. 脂肪干细胞治疗慢性创面优化策略的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 447-451.
[9] 金方, 汤宋佳, 韩春茂, 王新刚, 张惟. 脂肪组织及其衍生物在皮肤修复与再生中的应用[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(04): 352-357.
[10] 彭巍, 刘旭, 刘佳琦. 脱细胞细胞外基质在皮肤损伤修复中的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 169-173.
[11] 靳顺欣, 庞嘉越成, 肖仕初. 基于上皮嵴微结构的移植物在促进创面愈合中的作用机制与临床应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 174-178.
[12] 郝金锦, 王欢欢, 郑少祥, 陈文亮. 脂联素在结直肠癌中的作用[J/OL]. 中华普通外科学文献(电子版), 2025, 19(01): 61-65.
[13] 李晓, 张娇娇, 董友玉, 张在鹏, 蔡萌萌, 徐峰波. 间充质干细胞在再生医学中的基础研究与临床应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 229-237.
[14] 梁瑶瑶, 邬绿莹, 陈津. 负载干细胞外泌体水凝胶治疗糖尿病足溃疡的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 112-119.
[15] 李浩楠, 左建林, 徐琪博, 张栋捷, 李玮峰, 宗辰旭, 肖建林. Agili-C®治疗膝关节骨软骨损伤的研究进展[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(05): 315-320.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?