切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (03) : 330 -335. doi: 10.3877/cma.j.issn.1674-134X.2025.03.010

综述

初级纤毛及刺猬蛋白信号通路在骨关节炎中的作用
周莹佳1, 李嘉欢2, 黎浩霖3, 乔永杰2,()   
  1. 1510515 广州,南方医科大学第一临床医学院
    2730050 兰州,解放军联勤保障部队第九四〇医院关节外科
    3510515 广州,南方医科大学生物医学工程学院
  • 收稿日期:2024-11-26 出版日期:2025-06-01
  • 通信作者: 乔永杰
  • 基金资助:
    甘肃省重点研发计划(25YFFA065); 甘肃省自然科学基金(22JR5RA009); 转化医学国家科学中心(上海)上海大学分中心(SUITM-202406); 甘肃省卫生健康行业科研项目(GS-62000000025-2024-068); 联勤保障部队第九四〇医院高层次人才培养工程(2024-G3-5); 兰州市科技计划项目(2023-ZD-170)

Roles of primary cilia and hedgehog signaling pathway in osteoarthritis

Yingjia Zhou1, Jiahuan Li2, Haolin Li3, Yongjie Qiao2,()   

  1. 1The First Clinical School of Medicine, Southern Medical University, Guangzhou 510515, China
    2Joint Surgery Department of No.940 Hospital of PLA Joint Logistics Support Force, Lanzhou 730050, China
    3School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
  • Received:2024-11-26 Published:2025-06-01
  • Corresponding author: Yongjie Qiao
引用本文:

周莹佳, 李嘉欢, 黎浩霖, 乔永杰. 初级纤毛及刺猬蛋白信号通路在骨关节炎中的作用[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 330-335.

Yingjia Zhou, Jiahuan Li, Haolin Li, Yongjie Qiao. Roles of primary cilia and hedgehog signaling pathway in osteoarthritis[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2025, 19(03): 330-335.

骨关节炎(OA)是中老年人群常见的骨科疾病之一,给患者生活质量带来严重影响,其病因及病理学机制尚不明确,目前尚无有效防治措施,因此深入研究OA的发病机制具有重要意义。初级纤毛是一种基于微管的细胞器,在器官发育和病理变化过程中的机械感觉、机械转导、极性维持和细胞行为中发挥重要作用。Hedgehog通路作为一条高度保守的细胞活动信号通路,在组织器官骨骼的形成发育以及疾病过程中有着重要调控作用。近年来,随着精准医学的进一步发展以及对于细胞和分子生物学的广泛深入研究,发现初级纤毛介导Hedgehog信号转导通路可影响软骨细胞的功能和退化。现将初级纤毛及Hedgehog信号通路与OA的关系进行综述,以期为临床治疗关节软骨损伤和OA提供精确的靶点以及新的思路。

Osteoarthritis (OA) is one of the common orthopaedic diseases in the middle-aged and elderly population, which has a serious impact on the quality of life of patients. The etiological and pathological mechanisms of OA are still unclear, and there is currently no effective preventive and curative measure, so in-depth study of the pathogenesis of osteoarthritis is of great significance. Primary cilia are microtubule-based organelles that play important roles in mechanosensation, mechanotransduction, polarity maintenance, and cellular behaviour during organ development and pathological changes. The hedgehog pathway, as a highly conserved signaling pathway for cellular activities, plays an important role in regulating the formation and development of the skeleton of tissues and organs, as well as in disease processes. In recent years, with the further development of precision medicine and extensive research in cell and molecular biology, it has been found that primary cilia mediate the hedgehog signaling pathway, which can affect the function and degeneration of chondrocytes. The relationship between primary cilia and hedgehog signaling pathway and OA is now reviewed, with the aim of providing precise targets and new ideas for the clinical treatment of articular cartilage injury and OA.

[1]
Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options[J]. Med Clin North Am, 2020, 104(2): 293-311.
[2]
Hunter DJ, March L, Chew M. Osteoarthritis in 2020 and beyond: a lancet commission[J]. Lancet, 2020, 396(10264): 1711-1712.
[3]
Zhang Y, Tawiah GK, Wu X, et al. Primary cilium-mediated mechanotransduction in cartilage chondrocytes[J]. Exp Biol Med, 2023, 248(15): 1279-1287.
[4]
Zhou H, Wu S, Ling H, et al. Primary Cilia: a cellular regulator of articular cartilage degeneration[J/OL]. Stem Cells Int, 2022, 2022: 2560441. DOI:10.1155/2022/2560441.
[5]
杨明义, 马尧, 许珂, 等. 软骨下骨硬化在骨关节炎发病机制中的作用研究[J/OL]. 中华关节外科杂志(电子版), 2020,14(5): 602-607.
[6]
Li X, Guo S, Su Y, et al. Role of primary cilia in skeletal disorders[J/OL]. Stem Cells Int, 2022, 2022: 6063423. DOI:10.1155/2022/6063423.
[7]
Zhou H, Zhang L, Chen Y, et al. Research progress on the hedgehog signalling pathway in regulating bone formation and homeostasis[J/OL]. Cell Prolif, 2022, 55(1): e13162. DOI:10.1111/cpr.13162.
[8]
Verbruggen SW, Sittichokechaiwut A, Reilly GC. Osteocytes and primary Cilia[J]. Curr Osteoporos Rep, 2023, 21(6): 719-730.
[9]
Chien A, Shih SM, Bower R, et al. Dynamics of the IFT machinery at the ciliary tip[J/OL]. eLife, 2017, 6: e28606. DOI:10.7554/eLife.28606.
[10]
Chinipardaz Z, Liu M, Graves DT, et al. Role of primary Cilia in bone and cartilage[J]. J Dent Res, 2022, 101(3): 253-260.
[11]
Wang Z, Wann AT, Thompson CL, et al. IFT88 influences chondrocyte actin organization and biomechanics[J]. Osteoarthritis Cartilage, 2016, 24(3): 544-554.
[12]
Irianto J, Ramaswamy G, Serra R, et al. Depletion of chondrocyte primary cilia reduces the compressive modulus of articular cartilage[J]. J Biomech, 2014, 47(2): 579-582.
[13]
Tiberio F, Parolini O, Lattanzi W. Ciliary signaling and mechanotransduction in the pathophysiology of craniosynostosis[J/OL]. Genes, 2021, 12(7): 1073. DOI:10.3390/genes12071073.
[14]
Chen Q, Shou P, Zheng C, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts?[J]. Cell Death Differ, 2016, 23(7): 1128-1139.
[15]
Yang J, Andre P, Ye L, et al. The hedgehog signalling pathway in bone formation[J]. Int J Oral Sci, 2015, 7(2): 73-79.
[16]
胡康一, 曹林忠, 尚征亚, 等. Hedgehog信号通路在激素性股骨头坏死作用机制中的研究进展[J]. 风湿病与关节炎, 2023,12(12): 62-67, 77.
[17]
Bangs F, Anderson KV. Primary cilia and mammalian hedgehog signaling[J/OL]. Cold Spring Harb Perspect Biol, 2017, 9(5): a028175. DOI:10.1101/cshperspect.a028175.
[18]
Kong JH, Siebold C, Rohatgi R. Biochemical mechanisms of vertebrate hedgehog signaling [J/OL]. Development, 2019, 146(10): dev166892. DOI:10.1242/dev.166892.
[19]
Kim J, Kato M, Beachy PA. Gli2 trafficking links hedgehog-dependent activation of smoothened in the primary cilium to transcriptional activation in the nucleus[J]. Proc Natl Acad Sci USA, 2009, 106(51): 21666-21671.
[20]
Rohatgi R, Milenkovic L, Scott MP. Patched1 regulates hedgehog signaling at the primary cilium[J]. Science, 2007, 317(5836): 372-376.
[21]
Rudolf AF, Kinnebrew M, Kowatsch C, et al. The morphogen sonic hedgehog inhibits its receptor patched by a pincer grasp mechanism[J]. Nat Chem Biol, 2019, 15(10): 975-982.
[22]
Zhang Z, Shen L, Law K, et al. Suppressor of fused chaperones gli proteins to generate transcriptional responses to sonic hedgehog signaling[J/OL]. Mol Cell Biol, 2017, 37(3): e00421-16. DOI:10.1128/MCB.00421-16.
[23]
Sigafoos AN, Paradise BD, Fernandez-Zapico ME. Hedgehog/GLI signaling pathway: transduction, regulation, and implications for disease[J/OL]. Cancers, 2021, 13(14): 3410. DOI:10.3390/cancers13143410.
[24]
Pietrobono S, Gagliardi S, Stecca B. Non-canonical hedgehog signaling pathway in cancer: activation of GLI transcription factors beyond smoothened [J/OL]. Front Genet, 2019, 10: 556. DOI:10.3389/fgene.2019.00556.
[25]
Gorojankina T. Hedgehog signaling pathway: a novel model and molecular mechanisms of signal transduction[J]. Cell Mol Life Sci, 2016, 73(7): 1317-1332.
[26]
Alman BA. The role of hedgehog signalling in skeletal health and disease[J]. Nat Rev Rheumatol, 2015, 11(9): 552-560.
[27]
Wang H, Zheng C, Lu W, et al. Hedgehog signaling orchestrates cartilage-to-bone transition independently of Smoothened[J]. Matrix Biol, 2022, 110: 76-90.
[28]
Li W, Zhu Z, He K, et al. Primary cilia in satellite cells are the mechanical sensors for muscle hypertrophy[J/OL]. Proc Natl Acad Sci USA, 2022, 119(24): e2103615119. DOI:10.1073/pnas.2103615119.
[29]
Zhang Y, Tawiah GK, Zhang Y, et al. HDAC6 inhibition regulates substrate stiffness-mediated inflammation signaling in chondrocytes[J]. Acta Biochim Biophys Sin, 2023, 55(12): 1987-1998.
[30]
Ma R, Kutchy NA, Chen L, et al. Primary cilia and ciliary signaling pathways in aging and age-related brain disorders[J/OL]. Neurobiol Dis, 2022, 163: 105607. DOI:10.1016/j.nbd.2021.105607.
[31]
Jenks AD, Vyse S, Wong JP, et al. Primary cilia mediate diverse kinase inhibitor resistance mechanisms in cancer[J]. Cell Rep, 2018, 23(10): 3042-3055.
[32]
McGlashan SR, Cluett EC, Jensen CG, et al. Primary cilia in osteoarthritic chondrocytes: from chondrons to clusters[J]. Dev Dyn, 2008, 237(8): 2013-2020.
[33]
Shea CA, Murphy P. The primary cilium on cells of developing skeletal rudiments; distribution, characteristics and response to mechanical stimulation[J/OL]. Front Cell Dev Biol, 2021, 9: 725018. DOI:10.3389/fcell.2021.725018.
[34]
Wan Y, Szabo-Rogers HL. Chondrocyte polarity during endochondral ossification requires protein-protein interactions between prickle1 and dishevelled2/3[J]. J Bone Miner Res, 2021, 36(12): 2399-2412.
[35]
Chery DR, Han B, Zhou Y, et al. Decorin regulates cartilage pericellular matrix micromechanobiology[J]. Matrix Biol, 2021, 96: 1-17.
[36]
Wu S, Zhou H, Ling H, et al. LIPUS regulates the progression of knee osteoarthritis in mice through primary cilia-mediated TRPV4 channels[J]. Apoptosis, 2024, 29(5-6): 785-798.
[37]
Meng H, Fu S, Ferreira MB, et al. YAP activation inhibits inflammatory signaling and cartilage breakdown associated with reduced primary cilia expression[J]. Osteoarthritis Cartilage, 2023, 31(5): 600-612.
[38]
Ho EK, Stearns T. Hedgehog signaling and the primary Cilium: implications for spatial and temporal constraints on signaling[J/OL]. Development, 2021, 148(9): dev195552. DOI:10.1242/dev.195552.
[39]
Chang CF, Ramaswamy G, Serra R. Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms of early osteoarthritis [J]. Osteoarthritis Cartilage, 2012, 20(2): 152-161.
[40]
Coveney CR, Zhu L, Miotla-Zarebska J, et al. Role of ciliary protein intraflagellar transport protein 88 in the regulation of cartilage thickness and osteoarthritis development in mice[J]. Arthritis Rheumatol, 2022, 74(1): 49-59.
[41]
Hafsia N, Forien M, Renaudin F, et al. Galectin 3 deficiency alters chondrocyte primary cilium formation and exacerbates cartilage destruction via mitochondrial apoptosis[J/OL]. Int J Mol Sci, 2020, 21(4): 1486. DOI:10.3390/ijms21041486.
[42]
Kitami M, Kaku M, Thant L, et al. A loss of primary cilia by a reduction in mTOR signaling correlates with age-related deteriorations in condylar cartilage[J]. Geroscience, 2024, 46(6): 5995-6007.
[43]
Coveney CR, Samvelyan HJ, Miotla-Zarebska J, et al. Ciliary IFT88 protects coordinated adolescent growth plate ossification from disruptive physiological mechanical forces[J]. J Bone Miner Res, 2022, 37(6): 1081-1096.
[1] 姚放鸣, 谷邦宁, 杨旭辉, 曾子俊, 吴佳威, 何敏聪, 何晓铭, 魏秋实, 何伟, 刘文刚. 下肢肌肉分布与内翻型膝骨关节炎进展及肌少症的相关性[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 292-301.
[2] 王浩浩, 席刚, 杨家驹, 翁铭捷, 张民. 术前膝关节冠状面力线对牛津单髁术后力线的影响分析[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 156-161.
[3] 王春久, 田向东, 谭冶彤, 薛志鹏, 张伟, 刘昂. 单平面胫骨高位截骨联合关节镜治疗内翻型膝骨关节炎[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 185-192.
[4] 陈博, 李向毅. 骨关节炎中软骨细胞铜死亡的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 207-213.
[5] 王玺玉, 赵俊杰, 黄鹏飞, 张兆坤, 赵宇昊, 赵海燕. 基质金属蛋白酶响应性水凝胶在骨关节炎的应用[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 76-81.
[6] 林晓东, 周宜, 章家皓, 赵传喜, 刘军, 刘文刚. 如何在中度外翻膝关节置换中实现假体功能性对线[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 116-121.
[7] 覃辉, 钟珊, 白凡, 李陈良, 罗伦. 关节镜术后冲击波干预对膝关节炎患者的影响[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 729-735.
[8] 谢云港, 范长海, 刘荣顺, 邓瑞晨. 不同术式治疗内侧间室膝骨关节炎的疗效[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 720-728.
[9] 孙银松, 王德华, 周鹭, 雷一霆, 魏嘉莹, 贺尧, 董明非, 赵辰, 黄伟, 厉轲. 机器人辅助功能对线与手工机械对线全膝置换的早期疗效[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 709-719.
[10] 黄晓芳, 刘澍雨, 黄子荣, 胡艳, 梁家敏, 朱伟民. 软骨细胞来源外泌体对于软骨损伤修复的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 751-758.
[11] 刘健, 李嘉欢, 张凯, 谭飞, 王静, 邓泽群, 林志强, 周胜虎. 磷脂酰肌醇-3激酶/蛋白激酶B通路在骨关节炎的作用[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 759-764.
[12] 杨美平, 侯宇, 曾小龙, 廖少君, 林定坤. 膝骨关节炎与神经调控[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 785-789.
[13] 罗丽, 陈莉娜, 谢寒冰. PIK3CD 基因突变原发性免疫缺陷病合并原发性纤毛运动障碍1例并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(06): 685-691.
[14] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[15] 康清源, 张克石, 肖文韬, 谢培森, 东黎光, 袁平, 关振鹏. 在职钢铁工人群体膝关节骨关节炎流行情况及其可能的危险因素调查[J/OL]. 中华临床医师杂志(电子版), 2025, 19(04): 248-255.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?