切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (02) : 209 -214. doi: 10.3877/cma.j.issn.1674-134X.2024.02.008

综述

辅助性T细胞17/调节性T细胞平衡在骨关节炎的作用
赵俊杰1, 王玺玉1, 黄鹏飞1, 张兆坤1, 蒲彦川2, 赵海燕1,()   
  1. 1. 730000 兰州大学第一临床医学院;730000 兰州大学第一医院骨科
    2. 730000 兰州大学第一临床医学院;733000 甘肃省武威市人民医院骨科
  • 收稿日期:2023-11-17 出版日期:2024-04-01
  • 通信作者: 赵海燕
  • 基金资助:
    国家自然科学基金项目(82060394); 兰州市人才创新创业项目(2020-RC-45); 州大学第一医院院内基金(ldyyyn2022-73)

Research progress on role of T helper cell 17/ regulatory T cells balance in osteoarthritis

Junjie Zhao1, Xiyu Wang1, Pengfei Huang1, Zhaokun Zhang1, Yanchuan Pu2, Haiyan Zhao1,()   

  1. 1. The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; Department of Orthopaedics, The First Hospital of Lanzhou University, Lanzhou 730000, China
    2. The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; Department of Orthopaedics, Wuwei People’s Hosptial, Wuwei 733000, China
  • Received:2023-11-17 Published:2024-04-01
  • Corresponding author: Haiyan Zhao
引用本文:

赵俊杰, 王玺玉, 黄鹏飞, 张兆坤, 蒲彦川, 赵海燕. 辅助性T细胞17/调节性T细胞平衡在骨关节炎的作用[J/OL]. 中华关节外科杂志(电子版), 2024, 18(02): 209-214.

Junjie Zhao, Xiyu Wang, Pengfei Huang, Zhaokun Zhang, Yanchuan Pu, Haiyan Zhao. Research progress on role of T helper cell 17/ regulatory T cells balance in osteoarthritis[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2024, 18(02): 209-214.

骨关节炎是世界上最常见的关节疾病,是以关节软骨破坏、滑膜炎症和软骨下骨重塑为特征的慢性炎症性疾病,骨免疫失调在骨关节炎的发病机制中也得到了充分的认识。辅助性T细胞17(Th17)和调节性T细胞(Treg)作为重要的免疫细胞在维持免疫自稳中发挥重要作用。Th17细胞可以通过促进骨吸收、造成软骨降解、加重滑膜炎症导致骨关节炎的进展,而Treg细胞则可以促进成骨、抑制炎症缓解骨关节炎。Th17细胞和Treg细胞之间存在着紧密的平衡关系,并且Th17/Treg细胞的失衡会加重骨关节炎病情。因此,本文对Th17/Treg细胞平衡在骨关节炎中的研究进展进行综述,有望为骨关节炎的免疫调节治疗提供新的治疗思路。

Osteoarthritis, the most prevalent joint disease on a global scale, is a persistent inflammatory ailment characterized by the deterioration of articular cartilage, inflammation of the synovial membrane, and remodeling of the bone beneath the cartilage surface. Moreover, immune-related dysfunctions in the bone have also been associated with the development of osteoarthritis. T helper cell 17 (Th17) and regulatory T cells (Treg), both vital components of the immune system, play a crucial role in maintaining the equilibrium of immune responses. Th17 cells have the ability to stimulate the breakdown of bone, which consequently leads to cartilage degradation and exacerbated inflammation of the synovial membrane, thereby contributing to the advancement of osteoarthritis. Conversely, Treg cells have the ability to promote bone formation, inhibit inflammation, and alleviate symptoms associated with osteoarthritis. Maintaining a balance between Th17 and Treg cells is of utmost importance, as an imbalance in the ratio of Th17 to Treg cells can further deteriorate the condition of osteoarthritis. As a result, this manuscript offered a comprehensive overview of the current state of research pertaining to the equilibrium between Th17 and Treg cells in osteoarthritis, with the intention of providing novel insights for the development of immunomodulatory treatments for this condition.

[1]
Glyn-Jones S, Palmer AJR, Agricola R, et al. Osteoarthritis[J]. Lancet, 2015, 386(9991): 376-387.
[2]
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis[J]. Lancet, 2019, 393(10182): 1745-1759.
[3]
Motta F, Barone E, Sica A, et al. Inflammaging and osteoarthritis[J]. Clin Rev Allergy Immunol, 2023, 64(2): 222-238.
[4]
Li YS, Luo W, Zhu SA, et al. T cells in osteoarthritis: alterations and beyond[J/OL]. Front Immunol, 2017, 8: 356. DOI: 10.3389/fimmu.2017.00356.
[5]
Amaya-Uribe L, Rojas M, Azizi G, et al. Primary immunodeficiency and autoimmunity: a comprehensive review[J]. J Autoimmun, 2019, 99: 52-72.
[6]
Damasceno LEA, Prado DS, Veras FP, et al. PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine-tuning STAT3 activation[J/OL]. J Exp Med, 2020, 217(10): e20190613. DOI: 10.1084/jem.20190613.
[7]
Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases[J]. Semin Immunopathol, 2019, 41(3): 283-297.
[8]
Storelli E, Cassina N, Rasini E, et al. Do Th17 lymphocytes and IL-17 contribute to Parkinson’s disease? A systematic review of available evidence[J/OL]. Front Neurol, 2019, 10: 13. DOI: 10.3389/fneur.2019.00013.
[9]
Agalioti T, Cortesi F, Gagliani N. TH17 cell immune adaptation[J/OL]. Curr Opin Immunol, 2023, 83: 102333. DOI: 10.1016/j.coi.2023.102333.
[10]
McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease[J]. Immunity, 2019, 50(4): 892-906.
[11]
Wu B, Wan Y. Molecular control of pathogenic Th17 cells in autoimmune diseases[J/OL]. Int Immunopharmacol, 2020, 80: 106187. DOI: 10.1016/j.intimp.2020.106187.
[12]
Rosshirt N, Trauth R, Platzer H, et al. Proinflammatory T cell polarization is already present in patients with early knee osteoarthritis[J/OL]. Arthritis Res Ther, 2021, 23(1): 37. DOI: 10.1186/s13075-020-02410-w.
[13]
Walsh MC, Choi Y. Regulation of T cell-associated tissues and T cell activation by RANKL-RANK-OPG[J]. J Bone Miner Metab, 2021, 39(1): 54-63.
[14]
Zhu L, Hua F, Ding W, et al. The correlation between the Th17/Treg cell balance and bone health[J/OL]. Immun Ageing, 2020, 17: 30. DOI: 10.1186/s12979-020-00202-z.
[15]
Shui XL, Lin W, Mao CW, et al. Blockade of IL-17 alleviated inflammation in rat arthritis and MMP-13 expression[J]. Eur Rev Med Pharmacol Sci, 2017, 21(10): 2329-2337.
[16]
Park HL, Lee SM, Min JK, et al. IK acts as an immunoregulator of inflammatory arthritis by suppressing TH17 cell differentiation and macrophage activation[J/OL]. Sci Rep, 2017, 7: 40280. DOI: 10.1038/srep40280.
[17]
Mimpen JY, Baldwin MJ, Cribbs AP, et al. Interleukin-17A causes osteoarthritis-like transcriptional changes in human osteoarthritis-derived chondrocytes and synovial fibroblasts in vitro[J/OL]. Front Immunol, 2021, 12: 676173. DOI: 10.3389/fimmu.2021.676173.
[18]
Jiang L, Zhou X, Xiong Y, et al. Association between interleukin-17A/F single nucleotide polymorphisms and susceptibility to osteoarthritis in a Chinese population[J/OL]. Medicine, 2019, 98(12): e14944. DOI: 10.1097/MD.0000000000014944.
[19]
Liu SC, Hsieh HL, Tsai CH, et al. CCN2 facilitates IL-17 production and osteoclastogenesis in human osteoarthritis synovial fibroblasts by inhibiting miR-655 expression[J]. J Bone Miner Res, 2022, 37(10): 1944-1955.
[20]
Na HS, Park JS, Cho KH, et al. Interleukin-1-interleukin-17 signaling axis induces cartilage destruction and promotes experimental osteoarthritis[J/OL]. Front Immunol, 2020, 11: 730. DOI: 10.3389/fimmu.2020.00730.
[21]
李文金,薛庆云. 白细胞介素家族炎性细胞因子在骨关节炎中的研究进展[J/OL]. 中华关节外科杂志(电子版), 2023, 17(3): 348-353.
[22]
Shan Y, Qi C, Liu Y, et al. Increased frequency of peripheral blood follicular helper T cells and elevated serum IL-21 levels in patients with knee osteoarthritis[J]. Mol Med Rep, 2017, 15(3): 1095-1102.
[23]
Yi C, Yi Y, Wei J, et al. Targeting IL-22 and IL-22R protects against experimental osteoarthritis[J]. Cell Mol Immunol, 2021, 18(5): 1329-1331.
[24]
Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol, 1995, 155(3): 1151-1164.
[25]
Ohkura N, Sakaguchi S. Transcriptional and epigenetic basis of Treg cell development and function: its genetic anomalies or variations in autoimmune diseases[J]. Cell Res, 2020, 30(6): 465-474.
[26]
Fischer L, Herkner C, Kitte R, et al. Foxp3regulatory T cells in bone and hematopoietic homeostasis[J/OL]. Front Endocrinol, 2019, 10: 578. DOI: 10.3389/fendo.2019.00578.
[27]
Sakaguchi S, Mikami N, Wing JB, et al. Regulatory T cells and human disease[J]. Annu Rev Immunol, 2020, 38: 541-566.
[28]
Bozec A, Zaiss MM. T regulatory cells in bone remodelling[J]. Curr Osteoporos Rep, 2017, 15(3): 121-125.
[29]
Kang IH, Baliga UK, Chatterjee S, et al. Quantitative increase in T regulatory cells enhances bone remodeling in osteogenesis imperfecta[J/OL]. iScience, 2022, 25(9): 104818. DOI: 10.1016/j.isci.2022.104818.
[30]
Ragni E, Colombini A, Viganò M, et al. Cartilage protective and immunomodulatory features of osteoarthritis synovial fluid-treated adipose-derived mesenchymal stem cells secreted factors and extracellular vesicles-embedded miRNAs[J/OL]. Cells, 2021, 10(5): 1072. DOI: 10.3390/cells10051072.
[31]
Penatti A, Facciotti F, de Matteis R, et al. Differences in serum and synovial CD4 T cells and cytokine profiles to stratify patients with inflammatory osteoarthritis and rheumatoid arthritis[J/OL]. Arthritis Res Ther, 2017, 19(1): 103. DOI: 10.1186/s13075-017-1305-1.
[32]
Okamoto K, Takayanagi H. Effect of T cells on bone[J/OL]. Bone, 2023, 168: 116675. DOI: 10.1016/j.bone.2023.116675.
[33]
Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis[J/OL]. Mediators Inflamm, 2014, 2014: 561459. DOI: 10.1155/2014/561459.
[34]
Li S, Wan J, Anderson W, et al. Downregulation of IL-10 secretion by Treg cells in osteoarthritis is associated with a reduction in Tim-3 expression[J]. Biomedecine Pharmacother, 2016, 79: 159-165.
[35]
Oh S, Rankin AL, Caton AJ. CD4CD25 regulatory T cells in autoimmune arthritis[J]. Immunol Rev, 2010, 233(1): 97-111.
[36]
Levescot A, Chang MH, Schnell J, et al. IL-1β-driven osteoclastogenic Tregs accelerate bone erosion in arthritis[J/OL]. JClinInvest, 2021, 131(18): e141008. DOI: 10.1172/JCI141008.
[37]
Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology[J]. Cell Mol Immunol, 2023, 20(9): 1002-1022.
[38]
Park SH, Jung HJ, Kim TS. IL-33 changes CD25hi Tregs to Th17 cells through a dendritic cell-mediated pathway[J]. Immunol Lett, 2020, 218: 5-10.
[39]
Fan X, Chi G, Yan L, et al. Treg-promoted new bone formation through suppressing TH17 by secreting interleukin-10 in ankylosing spondylitis[J/OL]. Spine, 2019, 44(23): E1349-E1355. DOI: 10.1097/BRS.0000000000003169.
[40]
Knochelmann HM, Dwyer CJ, Bailey SR, et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity[J]. Cell Mol Immunol, 2018, 15(5): 458-469.
[41]
Rosshirt N, Hagmann S, Tripel E, et al. A predominant Th1 polarization is present in synovial fluid of end-stage osteoarthritic knee joints: analysis of peripheral blood, synovial fluid and synovial membrane[J]. Clin Exp Immunol, 2019, 195(3): 395-406.
[42]
Atabaki M, Shariati-Sarabi Z, Tavakkol-Afshari J, et al. Significant immunomodulatory properties of curcumin in patients with osteoarthritis; a successful clinical trial in Iran[J/OL]. Int Immunopharmacol, 2020, 85: 106607. DOI: 10.1016/j.intimp.2020.106607.
[43]
Nedunchezhiyan U, Varughese I, Sun AR, et al. Obesity, inflammation, and immune system in osteoarthritis[J/OL]. Front Immunol, 2022, 13: 907750. DOI: 10.3389/fimmu.2022.907750.
[44]
Jhun J, Min HK, Na HS, et al. Combinatmarion treatment with Lactobacillus acidophilus LA-1, vitamin B, and curcumin ameliorates the progression of osteoarthritis by inhibiting the pro-inflammatory mediators[J]. Immunol Lett, 2020, 228: 112-121.
[45]
Kwon JY, Lee SH, Na HS, et al. Kartogenin inhibits pain behavior, chondrocyte inflammation, and attenuates osteoarthritis progression in mice through induction of IL-10[J/OL]. Sci Rep, 2018, 8(1): 13832. DOI: 10.1038/s41598-018-32206-7.
[46]
Ye X, Lu Q, Yang A, et al. MiR-206 regulates the Th17/Treg ratio during osteoarthritis[J/OL]. Mol Med, 2021, 27(1): 64. DOI: 10.1186/s10020-021-00315-1.
[47]
Li X, Xiao S, Li F, et al. Max interacting protein 1 induces IL-17-producing T helper/regulatory T imbalance in osteoarthritis by upregulating tectonic family member 2[J/OL]. Tissue Cell, 2022, 78: 101906. DOI: 10.1016/j.tice.2022.101906.
[48]
Liu Z, Liu H, Li D, et al. Comprehensive analysis of m6A RNA methylation modification patterns and the immune microenvironment in osteoarthritis[J/OL]. Front Immunol, 2023, 14: 1128459. DOI: 10.3389/fimmu.2023.1128459.
[49]
Gao H, Peng L, Li C, et al. Salidroside alleviates cartilage degeneration through NF-κB pathway in osteoarthritis rats[J]. Drug Des Devel Ther, 2020, 14: 1445-1454.
[50]
Guo M, Liu H, Yu Y, et al. Lactobacillus rhamnosus GG ameliorates osteoporosis in ovariectomized rats by regulating the Th17/Treg balance and gut microbiota structure[J/OL]. Gut Microbes, 2023, 15(1): 2190304. DOI: 10.1080/19490976.2023.2190304.
[1] 刘鹏, 罗天, 许珂媛, 邓红美, 李瑄, 唐翠萍. 八段锦对膝关节炎疗效的初步步态分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 590-595.
[2] 苏介茂, 齐岩松, 王永祥, 魏宝刚, 马秉贤, 张鹏飞, 魏兴华, 徐永胜. 关节镜手术在早中期膝骨关节炎治疗的应用进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 646-652.
[3] 谢佳乐, 李琦, 芦升升, 姜劲松. 内侧膝骨关节炎伴胫股关节冠状半脱位的手术治疗[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 653-657.
[4] 许银峰, 盛璞义, 余世明, 张阳春. 偏心性髋臼旋转截骨术治疗发育性髋关节发育不良[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 568-574.
[5] 庄若语, 杭明辉, 李文华, 张霆, 侯炜. 膝骨关节炎半定量磁共振评分研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 545-552.
[6] 李志文, 李远志, 李华, 方志远. 糖皮质激素治疗膝骨关节炎疗效的网状Meta分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 484-496.
[7] 王冰, 孙海宁, 于秀淳, 周珂, 翟凯, 苗族康. 膝骨关节炎的活动衬垫型单髁置换疗效与假体生存率[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 337-345.
[8] 张江礼, 刘金辉, 潘西庆, 刘光源, 范虓. 全膝关节置换应用智能辅助手术导航系统治疗膝骨关节炎[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 346-351.
[9] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[10] 陈松, 黄玲巧, 余清卿, 魏志鑫, 付琰. 单细胞RNA测序技术在骨关节炎软骨中的研究应用[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 363-371.
[11] 王颉, 周游. 二甲双胍治疗骨关节炎的机制及其研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 372-378.
[12] 杨士慷, 曹光磊. 膝骨关节炎三种术式患者满意度的术前影响因素[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 390-397.
[13] 蒋政, 郑楠, 毛彦杰, 何阿祥, 林蔚铭, 郭瀚, 刘语嫣, 臧慧, 王聪, 刘万军. 关于胫骨高位截骨术后髌股关节变化的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 398-404.
[14] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[15] 高广涵, 张耀南, 石磊, 王林, 王飞, 郑子天, 王鸿禹, 郭民政, 薛庆云. 膝骨关节炎患者前交叉韧带功能影像学影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 301-307.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?