切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (02) : 215 -224. doi: 10.3877/cma.j.issn.1674-134X.2024.02.009

综述

线粒体质量控制在骨关节炎中的研究进展
王泽华1, 郭子瑊1, 陈帅1, 狄靖凯1, 闫泽辉1, 冯腾达1, 毛兴佳2, 向川1,()   
  1. 1. 030001 太原,山西医科大学第二医院骨科
    2. 310058 杭州,浙江大学基础医学院
  • 收稿日期:2023-10-27 出版日期:2024-04-01
  • 通信作者: 向川
  • 基金资助:
    国家自然科学基金(81972075)

Advances in strategies for regulating extracellular vesicle formation and biological function

Zehua Wang1, Zijian Guo1, Shuai Chen1, Jingkai Di1, Zehui Yan1, Tengda Feng1, Xingjia Mao2, Chuan Xiang1,()   

  1. 1. Department of Orthopedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001, China
    2. School of basic medical science, Zhejiang University, Hangzhou 310058, China
  • Received:2023-10-27 Published:2024-04-01
  • Corresponding author: Chuan Xiang
引用本文:

王泽华, 郭子瑊, 陈帅, 狄靖凯, 闫泽辉, 冯腾达, 毛兴佳, 向川. 线粒体质量控制在骨关节炎中的研究进展[J]. 中华关节外科杂志(电子版), 2024, 18(02): 215-224.

Zehua Wang, Zijian Guo, Shuai Chen, Jingkai Di, Zehui Yan, Tengda Feng, Xingjia Mao, Chuan Xiang. Advances in strategies for regulating extracellular vesicle formation and biological function[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2024, 18(02): 215-224.

骨关节炎(OA)是一种多因素导致的退行性骨骼肌肉疾病关节疾病,发病率和致残率较高,严重影响患者的生活质量,临床上现有的非手术治疗手段对OA的延缓和逆转效果有限,晚期的OA患者均不可避免地要接受全关节置换。线粒体是细胞的能量代谢中心,参与细胞内的多种生物反应过程并发挥着重要作用,线粒体质量控制(MQC)是一种细胞内源性保护程序,能够通过多维度调节线粒体的形态、数量、质量和功能来限制线粒体损伤,对于维持线粒体网格的稳态以及线粒体功能的正常发挥有重要意义。越来越多的研究表明,MQC与包括OA在内的多种年龄退行性疾病密切相关,并可能成为这些疾病潜在的治疗靶点。本文总结概述了OA软骨细胞中与线粒体功能障碍相关的异常MQC调控策略,并讨论了目前与MQC相关的具有临床转化潜力的分子策略,以期能够为OA的诊断和治疗提供新思路。

Osteoarthritis (OA) is a multifactorial degenerative musculoskeletal disease joint disease with high morbidity and disability, which seriously affects the quality of life of patients. Clinically available non-surgical treatments have limited effects on the delay and reversal of OA, and patients with advanced OA inevitably have to undergo total joint replacement. Mitochondria are the energy metabolism center of the cell, participating in a variety of intracellular biological reaction processes and playing an important role. Mitochondrial quality control (MQC) is a kind of cellular endogenous protection program, which is able to regulate the morphology, quantity, quality, and function of the mitochondria in a multidimensional manner to limit mitochondrial damage, and it is important for the maintenance of mitochondrial lattice homeostasis as well as the normal play of the mitochondrial function. A growing number of studies have shown that MQC is closely associated with a variety of age-degenerative diseases, including OA, and may be a potential therapeutic target for these diseases. This paper summarized and outlined the aberrant MQC regulatory strategies associated with mitochondrial dysfunction in OA chondrocytes and discussed the current molecular strategies associated with MQC that have clinical translational potential, with the aim of providing new ideas for the diagnosis and treatment of OA.

图1 OA(骨关节炎)患者的MQC(线粒体质量控制)的三个主要过程及参与OA进展的关键分子
Figure 1 Three main processes of MQC of OA patients and key molecules involved in OA process
表1 OA中线粒体生物发生的关键调控分子
Table 1 Key regulatory molecules of mitochondrial biogenesis in OA
表2 OA中线粒体动力学的关键调控分子
Table 2 Key regulatory molecules of mitochondrial dynamics in OA
表3 OA中与线粒体自噬有关的潜在调控通路
Table 3 Potential regulatory pathways related to mitochondrial autophagy in OA
[1]
Little CB, Hunter DJ. Post-traumatic osteoarthritis: from mouse models to clinical trials[J]. Nat Rev Rheumatol, 2013, 9(8): 485-497.
[2]
Loeser RF, Goldring SR, Scanzello CR, et al. Osteoarthritis: a disease of the joint as an organ[J]. Arthritis Rheum, 2012, 64(6): 1697-1707.
[3]
徐卫东,李全. 骨关节炎的基础和临床研究热点[J/CD]. 中华关节外科杂志(电子版), 2016, 10(3): 240-242.
[4]
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis[J]. Lancet, 2019, 393(10182): 1745-1759.
[5]
Husa M, Liu-Bryan R, Terkeltaub R. Shifting HIFs in osteoarthritis[J]. Nat Med, 2010, 16(6): 641-644.
[6]
Lin AC, Seeto BL, Bartoszko JM, et al. Modulating hedgehog signaling can attenuate the severity of osteoarthritis[J]. Nat Med, 2009, 15(12): 1421-1425.
[7]
Ruiz D Jr, Koenig L, Dall TM, et al. The direct and indirect costs to society of treatment for end-stage knee osteoarthritis[J]. J Bone Joint Surg Am, 2013, 95(16): 1473-1480.
[8]
Higashi H, Barendregt JJ. Cost-effectiveness of total hip and knee replacements for the Australian population with osteoarthritis: discrete-event simulation model[J/OL]. PLoS One, 2011, 6(9): e25403. DOI: 10.1371/journal.pone.0025403.
[9]
Wallace DC. A mitochondrial bioenergetic etiology of disease[J]. J Clin Invest, 2013, 123(4): 1405-1412.
[10]
Blanco FJ, Valdes AM, Rego-Pérez I. Mitochondrial DNA variation and the pathogenesis of osteoarthritis phenotypes[J]. Nat Rev Rheumatol, 2018, 14(6): 327-340.
[11]
López-Armada MJ, Caramés B, Martín MA, et al. Mitochondrial activity is modulated by TNFalpha and IL-1beta in normal human chondrocyte cells[J]. Osteoarthritis Cartilage, 2006, 14(10): 1011-1022.
[12]
Coryell PR, Diekman BO, Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis[J]. Nat Rev Rheumatol, 2021, 17(1): 47-57.
[13]
Quiles JM, Gustafsson ÅB. Mitochondrial quality control and cellular proteostasis: two sides of the same coin[J/OL]. Front Physiol, 2020, 11: 515. DOI: 10.3389/fphys.2020.00515.
[14]
Choong CJ, Okuno T, Ikenaka K, et al. Alternative mitochondrial quality control mediated by extracellular release[J]. Autophagy, 2021, 17(10): 2962-2974.
[15]
Andreux PA, Houtkooper RH, Auwerx J. Pharmacological approaches to restore mitochondrial function[J]. Nat Rev Drug Discov, 2013, 12(6): 465-483.
[16]
Green DR, Van Houten B. SnapShot: Mitochondrial quality control[J/OL]. Cell, 2011, 147(4): 950, 950.e1. DOI: 10.1016/j.cell.2011.10.036.
[17]
Suliman HB, Piantadosi CA. Mitochondrial quality control as a therapeutic target[J]. Pharmacol Rev, 2016, 68(1): 20-48.
[18]
Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging[J]. Mol Cell, 2016, 61(5): 654-666.
[19]
Sun K, Jing X, Guo J, et al. Mitophagy in degenerative joint diseases[J]. Autophagy, 2021, 17(9): 2082-2092.
[20]
Mao X, Fu P, Wang L, et al. Mitochondria: potential targets for osteoarthritis[J/OL]. Front Med, 2020, 7: 581402. DOI: 10.3389/fmed.2020.581402.
[21]
Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies[J]. Nat Rev Drug Discov, 2018, 17(12): 865-886.
[22]
Gallage S, Gil J. Mitochondrial dysfunction meets senescence[J]. Trends Biochem Sci, 2016, 41(3): 207-209.
[23]
Habiballa L, Salmonowicz H, Passos JF. Mitochondria and cellular senescence: implications for musculoskeletal ageing[J]. Free Radic Biol Med, 2019, 132: 3-10.
[24]
Blanco FJ, Rego I, Ruiz-Romero C. The role of mitochondria in osteoarthritis[J]. Nat Rev Rheumatol, 2011, 7(3): 161-169.
[25]
Grünewald A, Kumar KR, Sue CM. New insights into the complex role of mitochondria in Parkinson’s disease[J]. Prog Neurobiol, 2019, 177: 73-93.
[26]
Stotland A, Gottlieb RA. Mitochondrial quality control: easy come, easy go[J]. Biochim Biophys Acta, 2015, 1853(10 Pt B): 2802-2811.
[27]
Coleman MC, Goetz JE, Brouillette MJ, et al. Targeting mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis[J/OL]. Sci Transl Med, 2018, 10(427): eaan5372. DOI: 10.1126/scitranslmed.aan5372.
[28]
Li M, Luo X, Long X, et al. Potential role of mitochondria in synoviocytes[J]. Clin Rheumatol, 2021, 40(2): 447-457.
[29]
Otte P. Basic cell metabolism of articular cartilage. Manometric studies[J]. Z Rheumatol, 1991, 50(5): 304-312.
[30]
Jahr H, Gunes S, Kuhn AR, et al. Bioreactor-controlled physoxia regulates TGF-β signaling to alter extracellular matrix synthesis by human chondrocytes[J/OL]. Int J Mol Sci, 2019, 20(7): 1715. DOI: 10.3390/ijms20071715.
[31]
Wang Y, Chen LY, Liu-Bryan R. Mitochondrial biogenesis, activity, and DNA isolation in chondrocytes[J]. Methods Mol Biol, 2021, 2245: 195-213.
[32]
Liu H, Li Z, Cao Y, et al. Effect of chondrocyte mitochondrial dysfunction on cartilage degeneration: a possible pathway for osteoarthritis pathology at the subcellular level[J]. Mol Med Rep, 2019, 20(4): 3308-3316.
[33]
Bolduc JA, Collins JA, Loeser RF. Reactive oxygen species, aging and articular cartilage homeostasis[J]. Free Radic Biol Med, 2019, 132: 73-82.
[34]
Wang Y, Zhao X, Lotz M, et al. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α[J]. Arthritis Rheumatol, 2015, 67(8): 2141-2153.
[35]
Ansari MY, Ahmad N, Haqqi TM. Oxidative stress and inflammation in osteoarthritis pathogenesis: role of polyphenols[J/OL]. Biomed Pharmacother, 2020, 129: 110452. DOI: 10.1016/j.biopha.2020.110452.
[36]
Zhou S, Wen H, Cai W, et al. Effect of hypoxia/reoxygenation on the biological effect of IGF system and the inflammatory mediators in cultured synoviocytes[J]. Biochem Biophys Res Commun, 2019, 508(1): 17-24.
[37]
Zahan OM, Serban O, Gherman C, et al. The evaluation of oxidative stress in osteoarthritis[J]. Med Pharm Rep, 2020, 93(1): 12-22.
[38]
Arra M, Swarnkar G, Ke K, et al. LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis[J/OL]. Nat Commun, 2020, 11(1): 3427. DOI: 10.1038/s41467-020-17242-0.
[39]
Anand SK, Sharma A, Singh N, et al. Entrenching role of cell cycle checkpoints and autophagy for maintenance of genomic integrity[J/OL]. DNA Repair, 2020, 86: 102748. DOI: 10.1016/j.dnarep.2019.102748.
[40]
Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis[J]. Nat Rev Rheumatol, 2016, 12(7): 412-420.
[41]
Hosseinzadeh A, Kamrava SK, Joghataei MT, et al. Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin[J]. J Pineal Res, 2016, 61(4): 411-425.
[42]
Picca A, Lezza AMS. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: useful insights from aging and calorie restriction studies[J]. Mitochondrion, 2015, 25: 67-75.
[43]
Kang C, Ji LL. Role of PGC-1α signaling in skeletal muscle health and disease[J]. Ann N Y Acad Sci, 2012, 1271(1): 110-117.
[44]
Ji LL, Kang C. Role of PGC-1α in sarcopenia: etiology and potential intervention - a mini-review[J]. Gerontology, 2015, 61(2): 139-148.
[45]
Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network[J]. Ageing Res Rev, 2012, 11(2): 230-241.
[46]
Zhao X, Petursson F, Viollet B, et al. Peroxisome proliferator-activated receptor γ coactivator 1α and FoxO3A mediate chondroprotection by AMP-activated protein kinase[J]. Arthritis Rheumatol, 2014, 66(11): 3073-3082.
[47]
Li Y, Xiao W, Wu P, et al. The expression of SIRT1 in articular cartilage of patients with knee osteoarthritis and its correlation with disease severity[J/OL]. J Orthop Surg Res, 2016, 11(1): 144. DOI: 10.1186/s13018-016-0477-8.
[48]
Matsuzaki T, Matsushita T, Takayama K, et al. Disruption of Sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice[J]. Ann Rheum Dis, 2014, 73(7): 1397-1404.
[49]
Batshon G, Elayyan J, Qiq O, et al. Serum NT/CT SIRT1 ratio reflects early osteoarthritis and chondrosenescence[J]. Ann Rheum Dis, 2020, 79(10): 1370-1380.
[50]
Wang J, Li J, Song D, et al. AMPK: implications in osteoarthritis and therapeutic targets[J]. Am J Transl Res, 2020, 12(12): 7670-7681.
[51]
He Y, Wu Z, Xu L, et al. The role of SIRT3-mediated mitochondrial homeostasis in osteoarthritis[J]. Cell Mol Life Sci, 2020, 77(19): 3729-3743.
[52]
Petursson F, Husa M, June R, etal. Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes[J/OL]. Arthritis Res Ther, 2013, 15(4): R77. DOI: 10.1186/ar4254.
[53]
Wang J, Wang K, Huang C, et al. SIRT3 activation by dihydromyricetin suppresses chondrocytes degeneration via maintaining mitochondrial homeostasis[J]. Int J Biol Sci, 2018, 14(13): 1873-1882.
[54]
Chen Y, Wu YY, Si HB, et al. Mechanistic insights into AMPK-SIRT3 positive feedback loop-mediated chondrocyte mitochondrial quality control in osteoarthritis pathogenesis[J/OL]. Pharmacol Res, 2021, 166: 105497. DOI: 10.1016/j.phrs.2021.105497.
[55]
Hill JW, Hu JJ, Evans MK. OGG1 is degraded by calpain following oxidative stress and cisplatin exposure[J]. DNA Repair, 2008, 7(4): 648-654.
[56]
Satterstrom FK, Swindell WR, Laurent G, et al. Nuclear respiratory factor 2 induces SIRT3 expression[J]. Aging Cell, 2015, 14(5): 818-825.
[57]
Soto-Hermida A, Fernández-Moreno M, Pértega-Díaz S, et al. Mitochondrial DNA haplogroups modulate the radiographic progression of Spanish patients with osteoarthritis[J]. Rheumatol Int, 2015, 35(2): 337-344.
[58]
Alvarez-Garcia O, Matsuzaki T, Olmer M, et al. Regulated in development and DNA damage response 1 deficiency impairs autophagy and mitochondrial biogenesis in articular cartilage and increases the severity of experimental osteoarthritis[J]. Arthritis Rheumatol, 2017, 69(7): 1418-1428.
[59]
Wang L, Shan H, Wang B, et al. Puerarin attenuates osteoarthritis via upregulating AMP-activated protein kinase/proliferator-activated receptor-γ coactivator-1 signaling pathway in osteoarthritis rats[J]. Pharmacology, 2018, 102(3-4): 117-125.
[60]
Zhou Y, Liang X, Chang H, et al. Ampelopsin-induced autophagy protects breast cancer cells from apoptosis through Akt-mTOR pathway via endoplasmic reticulum stress[J]. Cancer Sci, 2014, 105(10): 1279-1287.
[61]
Wang C, Gao Y, Zhang Z, et al. Safflower yellow alleviates osteoarthritis and prevents inflammation by inhibiting PGE2 release and regulating NF-κB/SIRT1/AMPK signaling pathways[J/OL]. Phytomedicine, 2020, 78: 153305. DOI: 10.1016/j.phymed.2020.153305.
[62]
Li J, Zhang B, Liu WX, et al. Metformin limits osteoarthritis development and progression through activation of AMPK signalling[J]. Ann Rheum Dis, 2020, 79(5): 635-645.
[63]
Westermann B. Mitochondrial fusion and fission in cell life and death[J]. Nat Rev Mol Cell Biol, 2010, 11(12): 872-884.
[64]
Sesaki H, Jensen RE. Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape[J]. J Cell Biol, 1999, 147(4): 699-706.
[65]
Tilokani L, Nagashima S, Paupe V, etal. Mitochondrial dynamics: overview of molecular mechanisms[J]. Essays Biochem, 2018, 62(3): 341-360.
[66]
Blanco FJ, Fernández-Moreno M. Mitochondrial biogenesis: a potential therapeutic target for osteoarthritis[J]. Osteoarthritis Cartilage, 2020, 28(8): 1003-1006.
[67]
Singh M, Denny H, Smith C, et al. Presynaptic loss of dynamin-related protein 1 impairs synaptic vesicle release and recycling at the mouse calyx of Held[J]. J Physiol, 2018, 596(24): 6263-6287.
[68]
Lee H, Yoon Y. Mitochondrial fission and fusion[J]. Biochem Soc Trans, 2016, 44(6): 1725-1735.
[69]
Shin HJ, Park H, Shin N, et al. Pink1-mediated chondrocytic mitophagy contributes to cartilage degeneration in osteoarthritis[J/OL]. J Clin Med, 2019, 8(11): 1849. DOI: 10.3390/jcm8111849.
[70]
Wang B, Shao Z, Gu M, et al. Hydrogen sulfide protects against IL-1β-induced inflammation and mitochondrial dysfunction-related apoptosis in chondrocytes and ameliorates osteoarthritis[J]. J Cell Physiol, 2021, 236(6): 4369-4386.
[71]
Qi H, Liu DP, Xiao DW, etal. Exosomes derived from mesenchymal stem cells inhibit mitochondrial dysfunction-induced apoptosis of chondrocytes via p38, ERK, and Akt pathways[J]. In Vitro Cell Dev Biol Anim, 2019, 55(3): 203-210.
[72]
Wang FS, Kuo CW, Ko JY, et al. Irisin mitigates oxidative stress, chondrocyte dysfunction and osteoarthritis development through regulating mitochondrial integrity and autophagy[J/OL]. Antioxidants, 2020, 9(9): 810. DOI: 10.3390/antiox9090810.
[73]
Wang C, Yang Y, Zhang Y, et al. Protective effects of metformin against osteoarthritis through upregulation of SIRT3-mediated PINK1/Parkin-dependent mitophagy in primary chondrocytes[J]. Biosci Trends, 2019, 12(6): 605-612.
[74]
Yao X, Zhang J, Jing X, et al. Fibroblast growth factor 18 exerts anti-osteoarthritic effects through PI3K-AKT signaling and mitochondrial fusion and fission[J]. Pharmacol Res, 2019, 139: 314-324.
[75]
Pernas L, Scorrano L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function[J]. Annu Rev Physiol, 2016, 78: 505-531.
[76]
Filadi R, Pendin D, Pizzo P. Mitofusin 2: from functions to disease[J/OL]. Cell Death Dis, 2018, 9(3): 330. DOI: 10.1038/s41419-017-0023-6.
[77]
Xu L, Wu Z, He Y, et al. MFN2 contributes to metabolic disorders and inflammation in the aging of rat chondrocytes and osteoarthritis[J]. Osteoarthritis Cartilage, 2020, 28(8): 1079-1091.
[78]
Choi AMK, Ryter SW, Levine B. Autophagy in human health and disease[J]. N Engl J Med, 2013, 368(19): 1845-1846.
[79]
Xu K, He Y, Moqbel SAA, et al. SIRT3 ameliorates osteoarthritis via regulating chondrocyte autophagy and apoptosis through the PI3K/Akt/mTOR pathway[J]. Int J Biol Macromol, 2021, 175: 351-360.
[80]
Duan R, Xie H, Liu ZZ. The role of autophagy in osteoarthritis[J/OL]. Front Cell Dev Biol, 2020, 8: 608388. DOI: 10.3389/fcell.2020.608388.
[81]
Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria[J]. Cell Death Differ, 2013, 20(1): 31-42.
[82]
Esteban-Martínez L, Boya P. BNIP3L/NIX-dependent mitophagy regulates cell differentiation via metabolic reprogramming[J]. Autophagy, 2018, 14(5): 915-917.
[83]
Peña-Blanco A, Haschka MD, Jenner A, et al. Drp1 modulates mitochondrial stress responses to mitotic arrest[J]. Cell Death Differ, 2020, 27(9): 2620-2634.
[84]
Ansari MY, Khan NM, Ahmad I, etal. Parkin clearance of dysfunctional mitochondria regulates ROS levels and increases survival of human chondrocytes[J]. Osteoarthritis Cartilage, 2018, 26(8): 1087-1097.
[85]
Zhang Z, Xu T, Chen J, et al. Parkin-mediated mitophagy as a potential therapeutic target for intervertebral disc degeneration[J/OL]. Cell Death Dis, 2018, 9(10): 980. DOI: 10.1038/s41419-018-1024-9.
[86]
Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance[J]. Curr Biol, 2018, 28(4): R170-R185.
[87]
Gladkova C, Maslen SL, Skehel JM, et al. Mechanism of parkin activation by PINK1[J]. Nature, 2018, 559(7714): 410-414.
[88]
Yoshida K, Barr RJ, Galea-Soler S, et al. Reproducibility and diagnostic accuracy of Kellgren-Lawrence grading for osteoarthritis using radiographs and dual-energy X-ray absorptiometry images[J]. J Clin Densitom, 2015, 18(2): 239-244.
[89]
An F, Zhang J, Gao P, et al. New insight of the pathogenesis in osteoarthritis: the intricate interplay of ferroptosis and autophagy mediated by mitophagy/chaperone-mediated autophagy[J/OL]. Front Cell Dev Biol, 2023, 11: 1297024. DOI: 10.3389/fcell.2023.1297024.
[90]
Akasaki Y, Hasegawa A, Saito M, et al. Dysregulated FOXO transcription factors in articular cartilage in aging and osteoarthritis[J]. Osteoarthritis Cartilage, 2014, 22(1): 162-170.
[91]
Mammucari C, Milan G, Romanello V, et al. FoxO3 controls autophagy in skeletal muscle in vivo[J]. Cell Metab, 2007, 6(6): 458-471.
[92]
Yu W, Gao B, Li N, et al. Sirt3 deficiency exacerbates diabetic cardiac dysfunction: role of Foxo3A-Parkin-mediated mitophagy[J]. Biochim Biophys Acta BBA Mol Basis Dis, 2017, 1863(8): 1973-1983.
[93]
Hu S, Zhang C, Ni L, et al. Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy[J/OL]. Cell Death Dis, 2020, 11(6): 481. DOI: 10.1038/s41419-020-2680-0.
[1] 邓呈亮, 陈君哲, 章一新. 继发性肢体淋巴水肿的外科整合治疗[J]. 中华损伤与修复杂志(电子版), 2024, 19(03): 185-191.
[2] 周煦川, 马戈甲, 苏学峰, 王文飞, 秦傲霜, 刘宾. 规范化综合消肿治疗在亚临床期下肢淋巴水肿中的应用效果[J]. 中华损伤与修复杂志(电子版), 2024, 19(03): 192-197.
[3] 王季, 王淑婷, 肖聪慧, 廖鑫, 严鹭慧, 徐姗姗, 邓呈亮, 王玉龙. 采用综合消肿疗法联合淋巴管-静脉吻合术治疗继发性淋巴水肿的临床效果[J]. 中华损伤与修复杂志(电子版), 2024, 19(03): 198-203.
[4] 蒙燕, 唐如冰, 蒋奕, 陆华, 苏玉兰, 张琼, 何英煜. 基于多学科协作的预防性淋巴管-静脉吻合术在乳腺癌腋窝淋巴结清扫患者中的应用[J]. 中华损伤与修复杂志(电子版), 2024, 19(03): 204-207.
[5] 陈向军, 于丽, 王星, 梁俊青, 吴迪, 李志军. 采用不同方法联合放射治疗修复薄型瘢痕疙瘩的临床疗效分析[J]. 中华损伤与修复杂志(电子版), 2024, 19(03): 215-222.
[6] 沈皓, 张驰, 韩旻轩, 陆晓庆, 周愉, 周莉丽. 骨皮质切开术对正畸治疗牙根吸收影响的Meta分析[J]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 175-184.
[7] 杨林瑞, 陈仁吉. 言语治疗结合经颅磁刺激用于腭裂言语障碍康复的可行性分析[J]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 195-199.
[8] 刘连新, 孟凡征. 不断提高腹腔镜解剖性肝切除的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 355-358.
[9] 李娇娇, 张军, 徐顺. 全程新辅助治疗联合全直肠系膜切除术对局部进展期直肠癌预后的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 283-286.
[10] 王东阳, 林琳, 娄熙彬. SII对局部进展期胃癌nCRT+腹腔镜胃癌根治术后并发症及预后的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 315-318.
[11] 黄兴, 王蕾, 夏丹. 靶向免疫治疗时代下减瘤性肾切除术在转移性肾细胞癌治疗中的价值[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 208-213.
[12] 邓永豪, 曹嘉正. 长链非编码RNA与肾癌的关系及其在肾癌中的临床应用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 289-293.
[13] 杨竞, 周光文. 肝硬化门静脉高压症治疗后再出血危险因素分析及预测模型构建[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 296-301.
[14] 张燕, 许丁伟, 胡满琴, 李新成, 李翱, 黄洁. 胆囊癌免疫治疗的知识图谱可视化分析[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 319-327.
[15] 韦德令, 蒋佳君, 徐邦浩, 王继龙, 朱海, 卢婷婷, 张灵, 曾晶晶, 郭雅, 文张. 显微外科肝动脉重建在累及第一肝门胆管癌外科治疗的应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 350-356.
阅读次数
全文


摘要