[1] |
Little CB, Hunter DJ. Post-traumatic osteoarthritis: from mouse models to clinical trials[J]. Nat Rev Rheumatol, 2013, 9(8): 485-497.
|
[2] |
Loeser RF, Goldring SR, Scanzello CR, et al. Osteoarthritis: a disease of the joint as an organ[J]. Arthritis Rheum, 2012, 64(6): 1697-1707.
|
[3] |
徐卫东,李全. 骨关节炎的基础和临床研究热点[J/CD]. 中华关节外科杂志(电子版), 2016, 10(3): 240-242.
|
[4] |
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis[J]. Lancet, 2019, 393(10182): 1745-1759.
|
[5] |
Husa M, Liu-Bryan R, Terkeltaub R. Shifting HIFs in osteoarthritis[J]. Nat Med, 2010, 16(6): 641-644.
|
[6] |
Lin AC, Seeto BL, Bartoszko JM, et al. Modulating hedgehog signaling can attenuate the severity of osteoarthritis[J]. Nat Med, 2009, 15(12): 1421-1425.
|
[7] |
Ruiz D Jr, Koenig L, Dall TM, et al. The direct and indirect costs to society of treatment for end-stage knee osteoarthritis[J]. J Bone Joint Surg Am, 2013, 95(16): 1473-1480.
|
[8] |
Higashi H, Barendregt JJ. Cost-effectiveness of total hip and knee replacements for the Australian population with osteoarthritis: discrete-event simulation model[J/OL]. PLoS One, 2011, 6(9): e25403. DOI: 10.1371/journal.pone.0025403.
|
[9] |
Wallace DC. A mitochondrial bioenergetic etiology of disease[J]. J Clin Invest, 2013, 123(4): 1405-1412.
|
[10] |
Blanco FJ, Valdes AM, Rego-Pérez I. Mitochondrial DNA variation and the pathogenesis of osteoarthritis phenotypes[J]. Nat Rev Rheumatol, 2018, 14(6): 327-340.
|
[11] |
López-Armada MJ, Caramés B, Martín MA, et al. Mitochondrial activity is modulated by TNFalpha and IL-1beta in normal human chondrocyte cells[J]. Osteoarthritis Cartilage, 2006, 14(10): 1011-1022.
|
[12] |
Coryell PR, Diekman BO, Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis[J]. Nat Rev Rheumatol, 2021, 17(1): 47-57.
|
[13] |
Quiles JM, Gustafsson ÅB. Mitochondrial quality control and cellular proteostasis: two sides of the same coin[J/OL]. Front Physiol, 2020, 11: 515. DOI: 10.3389/fphys.2020.00515.
|
[14] |
Choong CJ, Okuno T, Ikenaka K, et al. Alternative mitochondrial quality control mediated by extracellular release[J]. Autophagy, 2021, 17(10): 2962-2974.
|
[15] |
Andreux PA, Houtkooper RH, Auwerx J. Pharmacological approaches to restore mitochondrial function[J]. Nat Rev Drug Discov, 2013, 12(6): 465-483.
|
[16] |
Green DR, Van Houten B. SnapShot: Mitochondrial quality control[J/OL]. Cell, 2011, 147(4): 950, 950.e1. DOI: 10.1016/j.cell.2011.10.036.
|
[17] |
Suliman HB, Piantadosi CA. Mitochondrial quality control as a therapeutic target[J]. Pharmacol Rev, 2016, 68(1): 20-48.
|
[18] |
Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging[J]. Mol Cell, 2016, 61(5): 654-666.
|
[19] |
Sun K, Jing X, Guo J, et al. Mitophagy in degenerative joint diseases[J]. Autophagy, 2021, 17(9): 2082-2092.
|
[20] |
Mao X, Fu P, Wang L, et al. Mitochondria: potential targets for osteoarthritis[J/OL]. Front Med, 2020, 7: 581402. DOI: 10.3389/fmed.2020.581402.
|
[21] |
Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies[J]. Nat Rev Drug Discov, 2018, 17(12): 865-886.
|
[22] |
Gallage S, Gil J. Mitochondrial dysfunction meets senescence[J]. Trends Biochem Sci, 2016, 41(3): 207-209.
|
[23] |
Habiballa L, Salmonowicz H, Passos JF. Mitochondria and cellular senescence: implications for musculoskeletal ageing[J]. Free Radic Biol Med, 2019, 132: 3-10.
|
[24] |
Blanco FJ, Rego I, Ruiz-Romero C. The role of mitochondria in osteoarthritis[J]. Nat Rev Rheumatol, 2011, 7(3): 161-169.
|
[25] |
Grünewald A, Kumar KR, Sue CM. New insights into the complex role of mitochondria in Parkinson’s disease[J]. Prog Neurobiol, 2019, 177: 73-93.
|
[26] |
Stotland A, Gottlieb RA. Mitochondrial quality control: easy come, easy go[J]. Biochim Biophys Acta, 2015, 1853(10 Pt B): 2802-2811.
|
[27] |
Coleman MC, Goetz JE, Brouillette MJ, et al. Targeting mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis[J/OL]. Sci Transl Med, 2018, 10(427): eaan5372. DOI: 10.1126/scitranslmed.aan5372.
|
[28] |
Li M, Luo X, Long X, et al. Potential role of mitochondria in synoviocytes[J]. Clin Rheumatol, 2021, 40(2): 447-457.
|
[29] |
Otte P. Basic cell metabolism of articular cartilage. Manometric studies[J]. Z Rheumatol, 1991, 50(5): 304-312.
|
[30] |
Jahr H, Gunes S, Kuhn AR, et al. Bioreactor-controlled physoxia regulates TGF-β signaling to alter extracellular matrix synthesis by human chondrocytes[J/OL]. Int J Mol Sci, 2019, 20(7): 1715. DOI: 10.3390/ijms20071715.
|
[31] |
Wang Y, Chen LY, Liu-Bryan R. Mitochondrial biogenesis, activity, and DNA isolation in chondrocytes[J]. Methods Mol Biol, 2021, 2245: 195-213.
|
[32] |
Liu H, Li Z, Cao Y, et al. Effect of chondrocyte mitochondrial dysfunction on cartilage degeneration: a possible pathway for osteoarthritis pathology at the subcellular level[J]. Mol Med Rep, 2019, 20(4): 3308-3316.
|
[33] |
Bolduc JA, Collins JA, Loeser RF. Reactive oxygen species, aging and articular cartilage homeostasis[J]. Free Radic Biol Med, 2019, 132: 73-82.
|
[34] |
Wang Y, Zhao X, Lotz M, et al. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α[J]. Arthritis Rheumatol, 2015, 67(8): 2141-2153.
|
[35] |
Ansari MY, Ahmad N, Haqqi TM. Oxidative stress and inflammation in osteoarthritis pathogenesis: role of polyphenols[J/OL]. Biomed Pharmacother, 2020, 129: 110452. DOI: 10.1016/j.biopha.2020.110452.
|
[36] |
Zhou S, Wen H, Cai W, et al. Effect of hypoxia/reoxygenation on the biological effect of IGF system and the inflammatory mediators in cultured synoviocytes[J]. Biochem Biophys Res Commun, 2019, 508(1): 17-24.
|
[37] |
Zahan OM, Serban O, Gherman C, et al. The evaluation of oxidative stress in osteoarthritis[J]. Med Pharm Rep, 2020, 93(1): 12-22.
|
[38] |
Arra M, Swarnkar G, Ke K, et al. LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis[J/OL]. Nat Commun, 2020, 11(1): 3427. DOI: 10.1038/s41467-020-17242-0.
|
[39] |
Anand SK, Sharma A, Singh N, et al. Entrenching role of cell cycle checkpoints and autophagy for maintenance of genomic integrity[J/OL]. DNA Repair, 2020, 86: 102748. DOI: 10.1016/j.dnarep.2019.102748.
|
[40] |
Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis[J]. Nat Rev Rheumatol, 2016, 12(7): 412-420.
|
[41] |
Hosseinzadeh A, Kamrava SK, Joghataei MT, et al. Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin[J]. J Pineal Res, 2016, 61(4): 411-425.
|
[42] |
Picca A, Lezza AMS. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: useful insights from aging and calorie restriction studies[J]. Mitochondrion, 2015, 25: 67-75.
|
[43] |
Kang C, Ji LL. Role of PGC-1α signaling in skeletal muscle health and disease[J]. Ann N Y Acad Sci, 2012, 1271(1): 110-117.
|
[44] |
Ji LL, Kang C. Role of PGC-1α in sarcopenia: etiology and potential intervention - a mini-review[J]. Gerontology, 2015, 61(2): 139-148.
|
[45] |
Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network[J]. Ageing Res Rev, 2012, 11(2): 230-241.
|
[46] |
Zhao X, Petursson F, Viollet B, et al. Peroxisome proliferator-activated receptor γ coactivator 1α and FoxO3A mediate chondroprotection by AMP-activated protein kinase[J]. Arthritis Rheumatol, 2014, 66(11): 3073-3082.
|
[47] |
Li Y, Xiao W, Wu P, et al. The expression of SIRT1 in articular cartilage of patients with knee osteoarthritis and its correlation with disease severity[J/OL]. J Orthop Surg Res, 2016, 11(1): 144. DOI: 10.1186/s13018-016-0477-8.
|
[48] |
Matsuzaki T, Matsushita T, Takayama K, et al. Disruption of Sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice[J]. Ann Rheum Dis, 2014, 73(7): 1397-1404.
|
[49] |
Batshon G, Elayyan J, Qiq O, et al. Serum NT/CT SIRT1 ratio reflects early osteoarthritis and chondrosenescence[J]. Ann Rheum Dis, 2020, 79(10): 1370-1380.
|
[50] |
Wang J, Li J, Song D, et al. AMPK: implications in osteoarthritis and therapeutic targets[J]. Am J Transl Res, 2020, 12(12): 7670-7681.
|
[51] |
He Y, Wu Z, Xu L, et al. The role of SIRT3-mediated mitochondrial homeostasis in osteoarthritis[J]. Cell Mol Life Sci, 2020, 77(19): 3729-3743.
|
[52] |
Petursson F, Husa M, June R, etal. Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes[J/OL]. Arthritis Res Ther, 2013, 15(4): R77. DOI: 10.1186/ar4254.
|
[53] |
Wang J, Wang K, Huang C, et al. SIRT3 activation by dihydromyricetin suppresses chondrocytes degeneration via maintaining mitochondrial homeostasis[J]. Int J Biol Sci, 2018, 14(13): 1873-1882.
|
[54] |
Chen Y, Wu YY, Si HB, et al. Mechanistic insights into AMPK-SIRT3 positive feedback loop-mediated chondrocyte mitochondrial quality control in osteoarthritis pathogenesis[J/OL]. Pharmacol Res, 2021, 166: 105497. DOI: 10.1016/j.phrs.2021.105497.
|
[55] |
Hill JW, Hu JJ, Evans MK. OGG1 is degraded by calpain following oxidative stress and cisplatin exposure[J]. DNA Repair, 2008, 7(4): 648-654.
|
[56] |
Satterstrom FK, Swindell WR, Laurent G, et al. Nuclear respiratory factor 2 induces SIRT3 expression[J]. Aging Cell, 2015, 14(5): 818-825.
|
[57] |
Soto-Hermida A, Fernández-Moreno M, Pértega-Díaz S, et al. Mitochondrial DNA haplogroups modulate the radiographic progression of Spanish patients with osteoarthritis[J]. Rheumatol Int, 2015, 35(2): 337-344.
|
[58] |
Alvarez-Garcia O, Matsuzaki T, Olmer M, et al. Regulated in development and DNA damage response 1 deficiency impairs autophagy and mitochondrial biogenesis in articular cartilage and increases the severity of experimental osteoarthritis[J]. Arthritis Rheumatol, 2017, 69(7): 1418-1428.
|
[59] |
Wang L, Shan H, Wang B, et al. Puerarin attenuates osteoarthritis via upregulating AMP-activated protein kinase/proliferator-activated receptor-γ coactivator-1 signaling pathway in osteoarthritis rats[J]. Pharmacology, 2018, 102(3-4): 117-125.
|
[60] |
Zhou Y, Liang X, Chang H, et al. Ampelopsin-induced autophagy protects breast cancer cells from apoptosis through Akt-mTOR pathway via endoplasmic reticulum stress[J]. Cancer Sci, 2014, 105(10): 1279-1287.
|
[61] |
Wang C, Gao Y, Zhang Z, et al. Safflower yellow alleviates osteoarthritis and prevents inflammation by inhibiting PGE2 release and regulating NF-κB/SIRT1/AMPK signaling pathways[J/OL]. Phytomedicine, 2020, 78: 153305. DOI: 10.1016/j.phymed.2020.153305.
|
[62] |
Li J, Zhang B, Liu WX, et al. Metformin limits osteoarthritis development and progression through activation of AMPK signalling[J]. Ann Rheum Dis, 2020, 79(5): 635-645.
|
[63] |
Westermann B. Mitochondrial fusion and fission in cell life and death[J]. Nat Rev Mol Cell Biol, 2010, 11(12): 872-884.
|
[64] |
Sesaki H, Jensen RE. Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape[J]. J Cell Biol, 1999, 147(4): 699-706.
|
[65] |
Tilokani L, Nagashima S, Paupe V, etal. Mitochondrial dynamics: overview of molecular mechanisms[J]. Essays Biochem, 2018, 62(3): 341-360.
|
[66] |
Blanco FJ, Fernández-Moreno M. Mitochondrial biogenesis: a potential therapeutic target for osteoarthritis[J]. Osteoarthritis Cartilage, 2020, 28(8): 1003-1006.
|
[67] |
Singh M, Denny H, Smith C, et al. Presynaptic loss of dynamin-related protein 1 impairs synaptic vesicle release and recycling at the mouse calyx of Held[J]. J Physiol, 2018, 596(24): 6263-6287.
|
[68] |
Lee H, Yoon Y. Mitochondrial fission and fusion[J]. Biochem Soc Trans, 2016, 44(6): 1725-1735.
|
[69] |
Shin HJ, Park H, Shin N, et al. Pink1-mediated chondrocytic mitophagy contributes to cartilage degeneration in osteoarthritis[J/OL]. J Clin Med, 2019, 8(11): 1849. DOI: 10.3390/jcm8111849.
|
[70] |
Wang B, Shao Z, Gu M, et al. Hydrogen sulfide protects against IL-1β-induced inflammation and mitochondrial dysfunction-related apoptosis in chondrocytes and ameliorates osteoarthritis[J]. J Cell Physiol, 2021, 236(6): 4369-4386.
|
[71] |
Qi H, Liu DP, Xiao DW, etal. Exosomes derived from mesenchymal stem cells inhibit mitochondrial dysfunction-induced apoptosis of chondrocytes via p38, ERK, and Akt pathways[J]. In Vitro Cell Dev Biol Anim, 2019, 55(3): 203-210.
|
[72] |
Wang FS, Kuo CW, Ko JY, et al. Irisin mitigates oxidative stress, chondrocyte dysfunction and osteoarthritis development through regulating mitochondrial integrity and autophagy[J/OL]. Antioxidants, 2020, 9(9): 810. DOI: 10.3390/antiox9090810.
|
[73] |
Wang C, Yang Y, Zhang Y, et al. Protective effects of metformin against osteoarthritis through upregulation of SIRT3-mediated PINK1/Parkin-dependent mitophagy in primary chondrocytes[J]. Biosci Trends, 2019, 12(6): 605-612.
|
[74] |
Yao X, Zhang J, Jing X, et al. Fibroblast growth factor 18 exerts anti-osteoarthritic effects through PI3K-AKT signaling and mitochondrial fusion and fission[J]. Pharmacol Res, 2019, 139: 314-324.
|
[75] |
Pernas L, Scorrano L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function[J]. Annu Rev Physiol, 2016, 78: 505-531.
|
[76] |
Filadi R, Pendin D, Pizzo P. Mitofusin 2: from functions to disease[J/OL]. Cell Death Dis, 2018, 9(3): 330. DOI: 10.1038/s41419-017-0023-6.
|
[77] |
Xu L, Wu Z, He Y, et al. MFN2 contributes to metabolic disorders and inflammation in the aging of rat chondrocytes and osteoarthritis[J]. Osteoarthritis Cartilage, 2020, 28(8): 1079-1091.
|
[78] |
Choi AMK, Ryter SW, Levine B. Autophagy in human health and disease[J]. N Engl J Med, 2013, 368(19): 1845-1846.
|
[79] |
Xu K, He Y, Moqbel SAA, et al. SIRT3 ameliorates osteoarthritis via regulating chondrocyte autophagy and apoptosis through the PI3K/Akt/mTOR pathway[J]. Int J Biol Macromol, 2021, 175: 351-360.
|
[80] |
Duan R, Xie H, Liu ZZ. The role of autophagy in osteoarthritis[J/OL]. Front Cell Dev Biol, 2020, 8: 608388. DOI: 10.3389/fcell.2020.608388.
|
[81] |
Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria[J]. Cell Death Differ, 2013, 20(1): 31-42.
|
[82] |
Esteban-Martínez L, Boya P. BNIP3L/NIX-dependent mitophagy regulates cell differentiation via metabolic reprogramming[J]. Autophagy, 2018, 14(5): 915-917.
|
[83] |
Peña-Blanco A, Haschka MD, Jenner A, et al. Drp1 modulates mitochondrial stress responses to mitotic arrest[J]. Cell Death Differ, 2020, 27(9): 2620-2634.
|
[84] |
Ansari MY, Khan NM, Ahmad I, etal. Parkin clearance of dysfunctional mitochondria regulates ROS levels and increases survival of human chondrocytes[J]. Osteoarthritis Cartilage, 2018, 26(8): 1087-1097.
|
[85] |
Zhang Z, Xu T, Chen J, et al. Parkin-mediated mitophagy as a potential therapeutic target for intervertebral disc degeneration[J/OL]. Cell Death Dis, 2018, 9(10): 980. DOI: 10.1038/s41419-018-1024-9.
|
[86] |
Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance[J]. Curr Biol, 2018, 28(4): R170-R185.
|
[87] |
Gladkova C, Maslen SL, Skehel JM, et al. Mechanism of parkin activation by PINK1[J]. Nature, 2018, 559(7714): 410-414.
|
[88] |
Yoshida K, Barr RJ, Galea-Soler S, et al. Reproducibility and diagnostic accuracy of Kellgren-Lawrence grading for osteoarthritis using radiographs and dual-energy X-ray absorptiometry images[J]. J Clin Densitom, 2015, 18(2): 239-244.
|
[89] |
An F, Zhang J, Gao P, et al. New insight of the pathogenesis in osteoarthritis: the intricate interplay of ferroptosis and autophagy mediated by mitophagy/chaperone-mediated autophagy[J/OL]. Front Cell Dev Biol, 2023, 11: 1297024. DOI: 10.3389/fcell.2023.1297024.
|
[90] |
Akasaki Y, Hasegawa A, Saito M, et al. Dysregulated FOXO transcription factors in articular cartilage in aging and osteoarthritis[J]. Osteoarthritis Cartilage, 2014, 22(1): 162-170.
|
[91] |
Mammucari C, Milan G, Romanello V, et al. FoxO3 controls autophagy in skeletal muscle in vivo[J]. Cell Metab, 2007, 6(6): 458-471.
|
[92] |
Yu W, Gao B, Li N, et al. Sirt3 deficiency exacerbates diabetic cardiac dysfunction: role of Foxo3A-Parkin-mediated mitophagy[J]. Biochim Biophys Acta BBA Mol Basis Dis, 2017, 1863(8): 1973-1983.
|
[93] |
Hu S, Zhang C, Ni L, et al. Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy[J/OL]. Cell Death Dis, 2020, 11(6): 481. DOI: 10.1038/s41419-020-2680-0.
|