切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 118 -124. doi: 10.3877/cma.j.issn.1674-134X.2024.01.015

综述

肩袖损伤修复的生物材料选择及动物模型评价
李帝均1, 王斌2,()   
  1. 1. 310006 杭州,浙江大学医学院第一附属医院;030001 太原,山西医科大学第二医院
    2. 310006 杭州,浙江大学医学院第一附属医院
  • 收稿日期:2023-05-05 出版日期:2024-02-01
  • 通信作者: 王斌
  • 基金资助:
    国家自然科学基金(81802204); 浙江省自然科学基金(LTGY23H060007)

Application of biomaterials in rotator cuff injury based on animal models

Dijun Li1, Bin Wang2,()   

  1. 1. Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan 030001, China
    2. Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
  • Received:2023-05-05 Published:2024-02-01
  • Corresponding author: Bin Wang
引用本文:

李帝均, 王斌. 肩袖损伤修复的生物材料选择及动物模型评价[J]. 中华关节外科杂志(电子版), 2024, 18(01): 118-124.

Dijun Li, Bin Wang. Application of biomaterials in rotator cuff injury based on animal models[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2024, 18(01): 118-124.

肩袖损伤可由创伤、肩峰下撞击、退变等各种外在或内在因素作用下产生,局部疼痛、功能受限等是肩袖损伤患者的主要症状。目前肩袖损伤通常采取手术修复,术后大部分患者功能得到改善,但修复后组织发生再撕裂概率高。组织工程材料技术出现发展为骨科软组织修复提供了巨大潜力,本文通过回顾临床前研究文献,结合肩袖损伤病理改变,总结常用动物类型及其优缺点,同时分析常见肩袖修补生物材料;旨在为临床前动物研究提供参考,以加快临床研究转化。

Rotator cuff injury can be produced by various external or internal factors such as trauma, subacromial impingement, and degeneration. Patients with rotator cuff injuries typically experience local pain and functional limitations. At the moment, rotator cuff injuries are often treated surgically, and the majority of patients experience increased function following surgery, but there is a high risk of the repaired tissue rupturing again. Orthopedic soft tissue restoration has a lot of potential with the development of tissue engineering materials. This article evaluated the preclinical research literature, listed the most often employed animal types, discussed their benefits and drawbacks in relation to the pathological rotator cuff injury alterations, and examined prominent rotator cuff repair biomaterials. In order to hasten the translation of clinical investigations, it intended to serve as a reference for preclinical animal experiments.

表1 不同动物模型优缺点[15,16,22,23]
Table 1 Advantages and disadvantages of various animal models
表2 天然生物衍生材料在肩袖补片修复中的应用研究
Table 2 The application of naturally derived biomaterials in the patches repair of rotator cuff
作者及年份 研究材料 动物模型 研究结果
Oame 2012[26] 脱细胞肌腱切片+骨髓间质细胞 与无骨髓间充质干细胞的肌腱切片相比,细胞种子复合材料中肌腱调节蛋白、Ⅲ型胶原、MMP3和MMP13表达升高,Ⅰ型胶原表达较低。骨髓间充质干细胞可以在多层复合材料中存活,表达一种肌腱表型,并在体内增强肌腱的代谢
Ide 2009[11] 无细胞真皮基质补片 大鼠 无细胞真皮基质补片组的标本比对照组的标本肌腱成熟评分更高,显示出更高的生物力学性能
Lee 2017[12] 脱细胞尸体真皮基质+重组人骨形成蛋白2 使用富含重组人骨形成蛋白2涂层的脱细胞真皮补片不仅显著改善了新骨的形成,还改善了肌腱极限抗拉强度等生物力学性能
Smith 2020[27] 牛胶原补片、脱细胞异种真皮基质、羊膜基质支架 与对照组相比较,生物支架可以有效地促进冈上肌腱撕裂的愈合。且脱细胞的人同种异体真皮基质和羊膜基质支架可能比牛胶原蛋白补片更有优势
Hee 2011[28] 重组人血小板源样生长因子-BB+I型胶原基质 与对照组比较,观察到最终失败负荷显著增加,在组织学上也表现出肌腱-骨的增加,能够改善羊肩袖修复模型的生物力学强度和解剖外观
Peterson 2015[29] 肽碱性成纤维细胞生长因子模拟物+Ⅰ胶原涂层 在经过处理的绵羊中,富含更多的肌腱样修复组织,同时力学性能更强。新的支架和肽生长因子能有效地改善肌腱愈合
Learn 2019[30] 电化学排列的胶原蛋白线编织生物纺织支架+间充质干细胞 所有组生物力学性能提高,富含干细胞组具有更高硬度。与天然肌腱相比,所有支架组细胞都增加。免疫组化显示所有组均存在Ⅰ和Ⅲ型胶原
Sevivas 2018[31] 电纺角蛋白基支架+间充质干细胞 大鼠 细胞能够在体外支架中保持很好的活力及密度。实验中发现组织学及生物力学性能得到明显改善
Zhu 2019[24] 胶原支架 大鼠 胶原支架在体外可促进人肌腱来源细胞的增殖生长。与对照组比较,在体内使用支架改善了组织学评分,但是在力学检测效果差异无统计学意义
表3 合成聚合物材料在肩袖补片修复中的应用研究
Table 3 The application of synthetic materials in the patches repair of rotator cuff
作者、年份 研究材料 动物模型 研究结果
Reifenrath 2020[36] 电纺壳聚糖包覆的聚己聚糖纤维支架+转化生长因子-β3 大鼠 与未负载转化生长因子-β3支架比较,负载该因子的支架生物力学更接近天然肌腱组织,组织学差异不大
Huang 2020[37] 核原蛋白+明胶甲基丙烯酰水凝胶支架 修复肌腱的最终失效负荷和刚度均有所增加。软骨再生得到改善,在肌腱成熟评分更高
Romeo 2021[38] 聚乙醇酸-聚乳酸共ε己内酯 与对照组相比,支架治疗组显示类似于羊冈下肌腱的天然纤维软骨,存在明显的胶原纤维。生物力学显示支架治疗组最终失效负荷显著增加
Sun 2016[34] 聚乳酸-羟基乙酸+I型胶原+聚己内酯 在共电纺双纳米支架上接种成纤维细胞显示出更高的活力和胶原分泌,细胞具有更好矿化率。再生肌腱在12周时,共电纺双纳米支架的最大失效负荷与极限应力明显高于对照组
Tarafder 2019[39] 聚乳酸-羟基乙酸+聚己内酯+细胞因子 大鼠 在体外支架成功地引导了间充质干细胞的区域分化,形成了具有肌腱样、软骨样和骨样区域的多相组织。在动物体内促进肌腱和骨的整合愈合
Su 2019[40] 氧化石墨烯+聚乳酸-羟基乙酸 体外实验中加速了骨髓间充质干细胞的增殖,促进了骨髓间充质干细胞的成骨分化。在体内增加新骨和软骨生成,改善胶原蛋白排列和生物力学性能
Zhao 2014[41] 聚乳酸-羟基乙酸+b成纤维细胞生长因子 大鼠 与对照组相比,显著改善胶原蛋白组织,显著增加糖胺聚糖面积。生物力学显示静电纺丝纤维膜组比对照组有更大的最终失效负荷和刚度
Lipner 2015[42] 聚乳酸-羟基乙酸+脂肪间充质干细胞+骨形态发生蛋白2 大鼠 组织学上,所有组的愈合界面均以纤维血管瘢痕反应为主。但是与其他组相比,负载骨形态发生蛋白2的细胞支架组生物力学性能下降
Kimura 2003[32] 聚四氟乙烯 组织学分析显示,聚四氟乙烯纤维之间有纤维组织的生长。但在12~24周期间,在聚四氟乙烯-骨界面的边缘发现了异物反应
Huegel 2017[43] 聚己内酯+自体肌腱细胞 大鼠 治疗组显示出细胞数量增加,胶原蛋白组织增加,力学性能改善
表4 组织移植物材料在肩袖补片修复中的应用研究
Table 4 The application of graft in the repair of rotator cuff patches
作者及年份 研究材料 动物模型 研究结果
Sano 2002[46] 大腿外侧自体筋膜 移植后显示组织Ⅱ型和Ⅲ型胶原的分布与正常的冈上肌腱相似,细胞密度也随时间显著增加
Ficklscherer 2020[51] 跟腱囊的自体滑液囊组织 大鼠 与对照组相比,肌腱-骨界面的Ⅰ、Ⅱ、Ⅲ型胶原蛋白的比例明显高于对照组;整体刚度)和肌腱粘弹性显著改善
Sener 2004[52] 自体髌腱-骨、自体游离屈肌腱 与自体游离屈肌腱移植相比,自体髌腱-骨移植组拉伸力学恢复率更高,极限抗拉强度与正常肌腱相似;可观察到与组织完全相容
Mcadams 2007[53] 三角肌瓣联合自体阔筋膜 与单独移植阔筋膜相比,三角肌瓣组的重塑活动和新生血管明显增加,Ⅰ型胶原明显增加,移植物/皮瓣界面也有明显的交错
Li 2022[54] 胸腰椎筋膜 大鼠 与对照组比较,胸腰椎筋膜移植组肌腱成熟评分高,I型胶原的比例升高更显著。生物力学显示最终失效力明显高于对照组
Varvitsiotis 2014[47] 同种异体阔筋膜 6周后重塑活性增加,大量的胶原存在;同时机械强度增加,韧性也逐渐增加
Novakova 2018[55] 组织工程移植物肩袖 与仅缝合修复相比,组织工程移植物组中的模量显著增加;组织学显示出类似原生环境的再生
Liu 2019[50] 组织工程肌腱纤维软骨、骨髓间充质干细胞片 与对照组比较,材料与细胞结合组修复显示出更好的组织学评分,更大的新纤维软骨形成和胶原纤维组织;且最终失效载荷和极限应力明显优于对照组
[1]
Huegel J, Williams AA, Soslowsky LJ. Rotator cuff biology and biomechanics: a review of normal and pathological conditions[J/OL]. Curr Rheumatol Rep, 2015, 17(1): 476. DOI: 10.1007/s11926-014-0476-x.
[2]
徐达传,温广明,黄美贤. 肩袖的解剖学特点[J/CD]. 中华关节外科杂志(电子版), 2010, 4(1): 100-104.
[3]
Chevrier A, Hurtig MB, Lavertu M. Chitosan-platelet-rich plasma implants improve rotator cuff repair in a large animal model: pivotal study[J/OL]. Pharmaceutics, 2021, 13(11): 1955. DOI: 10.3390/pharmaceutics13111955.
[4]
Gulotta LV, Kovacevic D, Packer JD, et al. Adenoviral-mediated gene transfer of human bone morphogenetic protein-13 does not improve rotator cuff healing in a rat model[J]. Am J Sports Med, 2011, 39(1): 180-187.
[5]
Tashjian RZ. Epidemiology, natural history, and indications for treatment of rotator cuff tears[J]. Clin Sports Med, 2012, 31(4): 589-604.
[6]
Colvin AC, Egorova N, Harrison AK, et al. National trends in rotator cuff repair[J]. J Bone Joint Surg Am, 2012, 94(3): 227-233.
[7]
Zumstein MA, Lädermann A, Raniga S, et al. The biology of rotator cuff healing[J]. Orthop Traumatol Surg Res, 2017, 103(1S): S1-S10.
[8]
Lei T, Zhang T, Ju W, et al. Biomimetic strategies for tendon/ligament-to-bone interface regeneration[J]. Bioact Mater, 2021, 6(8): 2491-2510.
[9]
Doi N, Izaki T, Miyake S, et al. Intraoperative evaluation of blood flow for soft tissues in orthopaedic surgery using indocyanine green fluorescence angiography: a pilot study[J]. Bone Joint Res, 2019, 8(3): 118-125.
[10]
Zhao S, Su W, Shah V, et al. Biomaterials based strategies for rotator cuff repair[J]. Colloids Surf B Biointerfaces, 2017, 157: 407-416.
[11]
Ide J, Kikukawa K, Hirose J, et al. Reconstruction of large rotator-cuff tears with acellular dermal matrix grafts in rats[J]. J Shoulder Elbow Surg, 2009, 18(2): 288-295.
[12]
Lee KW, Lee JS, Kim YS, et al. Effective healing of chronic rotator cuff injury using recombinant bone morphogenetic protein-2 coated dermal patch in vivo[J]. J Biomed Mater Res B Appl Biomater, 2017, 105(7): 1840-1846.
[13]
Gladstone JN, Bishop JY, Lo IKY, et al. Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome[J]. Am J Sports Med, 2007, 35(5): 719-728.
[14]
Lieber RL, Ward SR. Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis[J]. Am J Physiol Cell Physiol, 2013, 305(3): C241-C252.
[15]
刘萍,朱威宠,刘骞.动物模型在肩袖损伤中的应用[J].中南大学学报医学版2021, 46(4): 426-431.
[16]
Deprés-Tremblay G, Chevrier A, Snow M, et al. Rotator cuff repair: a review of surgical techniques, animal models, and new technologies under development[J]. J Shoulder Elbow Surg, 2016, 25(12): 2078-2085.
[17]
Lebaschi A, Deng XH, Zong J, et al. Animal models for rotator cuff repair[J]. Ann N Y Acad Sci, 2016, 1383(1): 43-57.
[18]
Barton ER, Gimbel JA, Williams GR, et al. Rat supraspinatus muscle atrophy after tendon detachment[J]. J Orthop Res, 2005, 23(2): 259-265.
[19]
Warden SJ. Animal models for the study of tendinopathy[J]. Br J Sports Med, 2007, 41(4): 232-240.
[20]
Lui PP, Chan LS, Fu SC, et al. Expression of sensory neuropeptides in tendon is associated with failed healing and activity-related tendon pain in collagenase-induced tendon injury[J]. Am J Sports Med, 2010, 38(4): 757-764.
[21]
Edelstein L, Thomas SJ, Soslowsky LJ. Rotator cuff tears: what have we learned from animal models?[J]. J Musculoskelet Neuronal Interact, 2011, 11(2): 150-162.
[22]
李嘉,徐丛,顾建民,等. 肩袖损伤动物模型及其修复效果影响因素[J]. 山东医药2016, 56(16): 98-100.
[23]
许博洋,庞小娟,曾禹铭,等. 肩袖肌腱损伤诱导性动物模型构建评价及研究进展[J]. 中国实验动物学报2020, 28(4): 545-550.
[24]
Zhu M, Tay ML, Callon K, et al. Overlay repair with a synthetic collagen scaffold improves the quality of healing in a rat rotator cuff repair model[J]. J Shoulder Elbow Surg, 2019, 28(5): 949-958.
[25]
Roeder BA, Kokini K, Sturgis JE, et al. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure[J]. J Biomech Eng, 2002, 124(2): 214-222.
[26]
Omae H, Sun YL, An KN, et al. Engineered tendon with decellularized xenotendon slices and bone marrow stromal cells: an in vivo animal study[J]. J Tissue Eng Regen Med, 2012, 6(3): 238-244.
[27]
Smith MJ, Bozynski CC, Kuroki K, et al. Comparison of biologic scaffolds for augmentation of partial rotator cuff tears in a canine model[J]. J Shoulder Elbow Surg, 2020, 29(8): 1573-1583.
[28]
Hee CK, Dines JS, Dines DM, et al. Augmentation of a rotator cuff suture repair using rhPDGF-BB and a type I bovine collagen matrix in an ovine model[J]. Am J Sports Med, 2011, 39(8): 1630-1639.
[29]
Peterson DR, Ohashi KL, Aberman HM, et al. Evaluation of a collagen-coated, resorbable fiber scaffold loaded with a peptide basic fibroblast growth factor mimetic in a sheep model of rotator cuff repair[J]. J Shoulder Elbow Surg, 2015, 24(11): 1764-1773.
[30]
Learn GD, McClellan PE, Knapik DM, et al. Woven collagen biotextiles enable mechanically functional rotator cuff tendon regeneration during repair of segmental tendon defects in vivo[J]. J Biomed Mater Res B Appl Biomater, 2019, 107(6): 1864-1876.
[31]
Sevivas N, Teixeira FG, Portugal R, et al. Mesenchymal stem cell secretome improves tendon cell viability in vitro and tendon-bone healing in vivowhen a tissue engineering strategy is used in a rat model of chronic massive rotator cuff tear[J]. Am J Sports Med, 2018, 46(2): 449-459.
[32]
Kimura A, Aoki M, Fukushima S, et al. Reconstruction of a defect of the rotator cuff with polytetrafluoroethylene felt graft. Recovery of tensile strength and histocompatibility in an animal model[J]. J Bone Joint Surg Br, 2003, 85(2): 282-287.
[33]
Wang L, Zhu T, Kang Y, et al. Crimped nanofiber scaffold mimicking tendon-to-bone interface for fatty-infiltrated massive rotator cuff repair[J]. Bioact Mater, 2022, 16: 149-161.
[34]
Sun Y, Han F, Zhang P, et al. A synthetic bridging patch of modified co-electrospun dual nano-scaffolds for massive rotator cuff tear[J]. J Mater Chem B, 2016, 4(45): 7259-7269.
[35]
Smith LL, Niziolek PJ, Haberstroh KM, et al. Decreased fibroblast and increased osteoblast adhesion on nanostructured NaOH-etched PLGA scaffolds[J]. Int J Nanomedicine, 2007, 2(3): 383-388.
[36]
Reifenrath J, Wellmann M, Kempfert M, et al. TGF-β3 loaded electrospun polycaprolacton fibre scaffolds for rotator cuff tear repair: an in vivostudy in rats[J/OL]. Int J Mol Sci, 2020, 21(3): 1046. DOI: 10.3390/ijms21031046.
[37]
Huang C, Zhang X, Luo H, et al. Effect of kartogenin-loaded gelatin methacryloyl hydrogel scaffold with bone marrow stimulation for enthesis healing in rotator cuff repair[J]. J Shoulder Elbow Surg, 2021, 30(3): 544-553.
[38]
Romeo A, Easley J, DanR, et al. Rotator cuff repair using a bioresorbable nanofiber interposition scaffold: a biomechanical and histologic analysis in sheep[J]. J Shoulder Elbow Surg, 2022, 31(2): 402-412.
[39]
Tarafder S, Brito JA, Minhas S, et al. In situ tissue engineering of the tendon-to-bone interface by endogenous stem/progenitor cells[J/OL]. Biofabrication, 2019, 12(1): 015008. DOI: 10.1088/1758-5090/ab48ca.
[40]
Su W, Wang Z, Jiang J, et al. Promoting tendon to bone integration using graphene oxide-doped electrospun poly(lactic-co-glycolic acid) nanofibrous membrane[J]. Int J Nanomedicine, 2019, 14: 1835-1847.
[41]
Zhao S, Zhao J, Dong S, et al. Biological augmentation of rotator cuff repair using bFGF-loaded electrospun poly(lactide-co-glycolide) fibrous membranes[J]. Int J Nanomedicine, 2014, 9: 2373-2385.
[42]
Lipner J, Shen H, Cavinatto L, et al. In vivo evaluation of adipose-derived stromal cells delivered with a nanofiber scaffold for tendon-to-bone repair[J]. Tissue Eng Part A, 2015, 21(21-22): 2766-2774.
[43]
Huegel J, Kim DH, Cirone JM, et al. Autologous tendon-derived cell-seeded nanofibrous scaffolds improve rotator cuff repair in an age-dependent fashion[J]. J Orthop Res, 2017, 35(6): 1250-1257.
[44]
Longo UG, Lamberti A, Maffulli N, et al. Tendon augmentation grafts: a systematic review[J]. Br Med Bull, 2010, 94: 165-188.
[45]
Zeng C, Gao SG, Li H, et al. Autograft versus allograft in anterior cruciate ligament reconstruction: ameta-analysis of randomized controlled trials and systematic review of overlapping systematic reviews[J]. Arthroscopy, 2016, 32(1): 153-163.e18.
[46]
Sano H, Kumagai J, Sawai T. Experimental fascial autografting for the supraspinatus tendon defect: remodeling process of the grafted fascia and the insertion into bone[J]. J Shoulder Elbow Surg, 2002, 11(2): 166-173.
[47]
Varvitsiotis D, Papaspiliopoulos A, Vlachou V, et al. Fascia lata allograft bridging of a rotator cuff tear in a rabbit animal model[J]. Int J Shoulder Surg, 2014, 8(2): 39-46.
[48]
Stone KR, Abdel-Motal UM, Walgenbach AW, et al. Replacement of human anterior cruciate ligaments with pig ligaments: a model for anti-non-gal antibody response in long-term xenotransplantation[J]. Transplantation, 2007, 83(2): 211-219.
[49]
Marrale J, Morrissey MC, Haddad FS. A literature review of autograft and allograft anterior cruciate ligament reconstruction[J]. Knee Surg Sports Traumatol Arthrosc, 2007, 15(6): 690-704.
[50]
Liu Q, Yu Y, Reisdorf RL, et al. Engineered tendon-fibrocartilage-bone composite and bone marrow-derived mesenchymal stem cell sheet augmentation promotes rotator cuff healing in a non-weight-bearing canine model[J]. Biomaterials, 2019, 192: 189-198.
[51]
Ficklscherer A, Zhang AZ, Beer T, et al. The effect of autologous Achilles bursal tissue implants in tendon-to-bone healing of rotator cuff tears in rats[J]. J Shoulder Elbow Surg, 2020, 29(9): 1892-1900.
[52]
Sener M, Altay MA, Baki C, et al. The comparison of patellar tendon-bone autografting and free flexor-tendon autografting in infraspinatus defect of the shoulder: biomechanical and histological evaluation in a sheep model[J]. Knee Surg Sports Traumatol Arthrosc, 2004, 12(3): 235-240.
[53]
McAdams TR, Knudsen KR, Yalamanchi N, et al. Deltoid flap combined with fascia lata autograft for rotator cuff defects: a histologic study[J]. Knee Surg Sports Traumatol Arthrosc, 2007, 15(9): 1144-1149.
[54]
Li HS, Zhou M, Huang P, et al. Histologic and biomechanical evaluation of the thoracolumbar fascia graft for massive rotator cuff tears in a rat model[J]. J Shoulder Elbow Surg, 2022, 31(4): 699-710.
[55]
Novakova SS, Mahalingam VD, Florida SE, et al. Tissue-engineered tendon constructs for rotator cuff repair in sheep[J]. J Orthop Res, 2018, 36(1): 289-299.
[56]
Lu HH, Subramony SD, Boushell MK, et al. Tissue engineering strategies for the regeneration of orthopedic interfaces[J]. AnnBiomedEng, 2010, 38(6): 2142-2154.
[57]
Evans CH. Cytokines and the role they play in the healing of ligaments and tendons[J]. Sports Med, 1999, 28(2): 71-76.
[58]
Prabhath A, Vernekar VN, Sanchez E, et al. Growth factor delivery strategies for rotator cuff repair and regeneration[J]. Int J Pharm, 2018, 544(2): 358-371.
[59]
Heisterbach PE, Todorov A, Flückiger R, et al. Effect of BMP-12, TGF-β1 and autologous conditioned serum on growth factor expression in Achilles tendon healing[J]. Knee Surg Sports Traumatol Arthrosc, 2012, 20(10): 1907-1914.
[60]
Würgler-Hauri CC, Dourte LM, Baradet TC, et al. Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model[J]. J Shoulder Elbow Surg, 2007, 16(5 Suppl): S198-S203.
[1] 王旭, 钱航, 刘军, 时志斌, 党晓谦, 刘瑞宇. 肱骨近端骨折合并肩袖损伤对半肩关节置换术后的影响[J]. 中华关节外科杂志(电子版), 2024, 18(01): 8-16.
[2] 张骏, 李强, 孟柏屹, 李成宇. 关节镜松解联合肩袖修复治疗肩袖损伤合并继发冻结肩[J]. 中华关节外科杂志(电子版), 2024, 18(01): 1-7.
[3] 吴俊贤, 曾俊杰, 许有银, 苑博. 体外冲击波疗法辅助治疗肩袖修补术后关节僵硬[J]. 中华关节外科杂志(电子版), 2023, 17(04): 571-576.
[4] 施洪鑫, 唐志方, 郭民政, 浦路桥, 齐保闯, 任俊筱, 李川. 碘乙酸钠在鼠类骨关节炎造模的方法和作用探索[J]. 中华关节外科杂志(电子版), 2023, 17(04): 534-539.
[5] 周新, 张孝华, 周述清, 杨博文, 罗辑, 张中卒, 喻雅婷. 不同手术方式治疗不可修复型肩袖损伤效果的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(02): 232-242.
[6] 王普, 秦江辉, 陈东阳, 杨献峰, 蒋青. 核磁共振肩关节参数评估冈上肌腱损伤程度[J]. 中华关节外科杂志(电子版), 2023, 17(02): 173-178.
[7] 曾俊杰, 张绍龙, 马栋, 李玉民, 苑博. 单排缝合与Mason-Allen缝合治疗中小型肩袖损伤疗效对比[J]. 中华关节外科杂志(电子版), 2023, 17(02): 165-172.
[8] 杨晓龙, 张立智, 刘晓东. 非侵入性加压负载模型在膝骨关节炎研究中的应用[J]. 中华关节外科杂志(电子版), 2023, 17(01): 86-92.
[9] 袁涛, 钱洪, 杨少强, 赖圳登, 孟嘉, 江辉, 赵建宁, 包倪荣. 关节镜下全内缝合技术治疗冈上肌肌腱关节面撕裂[J]. 中华关节外科杂志(电子版), 2022, 16(05): 611-615.
[10] 年申生, 傅夏威, 汪滋民. 中老年人肩关节脱位合并肩袖损伤诊治[J]. 中华关节外科杂志(电子版), 2022, 16(04): 477-482.
[11] 李自愿, 陈志豪, 胡刚峰, 谢宗刚. 髋关节镜下治疗盂唇损伤的研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(04): 456-461.
[12] 陈曦, 刘畅, 李萍, 李雨航, 陈彦斌, 王昆. 肩峰下滑囊的解剖结构和功能与临床意义[J]. 中华关节外科杂志(电子版), 2022, 16(03): 337-342.
[13] 柴浩卜, 王俏杰, 张先龙. 具有骨免疫调节性能的骨科生物材料研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(01): 37-43.
[14] 胡健, 丁惠锋, 姜新华, 易诚青, 刘丙立. 肩袖层裂损伤的原因分析及治疗[J]. 中华关节外科杂志(电子版), 2021, 15(04): 487-491.
[15] 郭艳, 张明, 牛河源, 孟兴凯. 胰十二指肠切除后消化道重建的动物模型选择[J]. 中华普外科手术学杂志(电子版), 2023, 17(01): 101-104.
阅读次数
全文


摘要