[1] |
Mehdipour S, Qoreishi M, Keipourfard A. Comparison of clinical, functional, and radiological outcomes of total knee arthroplasty using conventional and patient-specific instrumentation[J]. Arch Bone Jt Surg, 2020, 8(5): 625-632.
|
[2] |
Sloan M, Premkumar A, ShethNP. Projected volume of primary total joint arthroplasty in the U.S., 2014 to 2030[J]. J Bone Joint Surg Am, 2018, 100(17): 1455-1460.
|
[3] |
王坤正,田润,杨佩. 对我国关节置换外科未来发展的几点思考[J]. 中华创伤骨科杂志,2020, 22(7): 553-555.
|
[4] |
van Dam PA, Verhoeven Y, Trinh XB, et al. RANK/RANKL signaling inhibition may improve the effectiveness of checkpoint blockade in cancer treatment[J]. Crit Rev Oncol Hematol, 2019, 133: 85-91.
|
[5] |
Pennanen P, Kallionpää RA, Peltonen S, et al. Signaling pathways in human osteoclasts differentiation: ERK1/2 as a key player[J]. Mol Biol Rep, 2021, 48(2): 1243-1254.
|
[6] |
Sharma AR, Jagga S, Chakraborty C, et al. Fibroblast-like-synoviocytes mediate secretion of pro-inflammatory cytokines via ERK and JNK MAPKs in Ti-particle-induced osteolysis[J/OL]. Materials, 2020, 13(16): 3628. DOI: 10.3390/ma13163628.
|
[7] |
Jagga S, Sharma AR, Lee YH, et al. Sclerostin-mediated impaired osteogenesis by fibroblast-like synoviocytes in the particle-induced osteolysis model[J/OL]. Front Mol Biosci, 2021, 8: 666295. DOI: 10.3389/fmolb.2021.666295.
|
[8] |
Cao X. RANKL-RANK signaling regulates osteoblast differentiation and bone formation[J/OL]. Bone Res, 2018, 6: 35. DOI: 10.1038/s41413-018-0040-9.
|
[9] |
谢忠建. 从OPG-RANKL-RANK通路到骨质疏松症分子靶向治疗[J]. 中华骨质疏松和骨矿盐疾病杂志,2022, 15(2): 126-134.
|
[10] |
刘鹏,邓亚鹏,曹国定,等. 人工关节置换术后假体无菌性松动的研究进展[J/CD]. 中华关节外科杂志(电子版), 2020, 14(3): 346-351.
|
[11] |
Wang L, Gao Z, Zhang J, et al. Netrin-1 regulates ERK1/2 signaling pathway and autophagy activation in wear particle-induced osteoclastogenesis[J]. Cell Biol Int, 2021, 45(3): 612-622.
|
[12] |
Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis[J]. Nature, 1999, 397(6717): 315-323.
|
[13] |
Bucay N, Sarosi I, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification[J]. Genes Dev, 1998, 12(9): 1260-1268.
|
[14] |
Xue JB, Zhan XL, Wang WJ, et al. OPG rs2073617 polymorphism is associated with upregulated OPG protein expression and an increased risk of intervertebral disc degeneration[J]. Exp Ther Med, 2016, 12(2): 702-710.
|
[15] |
Gau YC, Yeh TJ, Hsu CM, et al. Pathogenesis and treatment of myeloma-related bone disease[J/OL]. Int J Mol Sci, 2022, 23(6): 3112. DOI: 10.3390/ijms23063112.
|
[16] |
Guo YJ, PanWW, LiuSB, et al. ERK/MAPK signalling pathway and tumorigenesis[J]. Exp Ther Med, 2020, 19(3): 1997-2007.
|
[17] |
Koga Y, Tsurumaki H, Aoki-Saito H, et al. Roles of cyclic AMP response element binding activation in the ERK1/2 and p38 MAPK signalling pathway in central nervous system, cardiovascular system, osteoclast differentiation and mucin and cytokine production[J/OL]. Int J Mol Sci, 2019, 20(6): 1346. DOI: 10.3390/ijms20061346.
|
[18] |
Park HB, Baek KH. E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers[J/OL]. Biochim Biophys Acta Rev Cancer, 2022, 1877(3): 188736. DOI: 10.1016/j.bbcan.2022.188736.
|
[19] |
张晓非,吕震,王小泉,等. 人工关节假体周围无菌性松动的发生机制[J]. 天津医药,2020, 48(6): 572-576.
|
[20] |
Wei CM, Su YJ, Qin X, et al. Monocrotaline suppresses RANKL-induced osteoclastogenesis in vitro and prevents LPS-induced bone loss in vivo[J]. Cell Physiol Biochem, 2018, 48(2): 644-656.
|
[21] |
Aashaq S, Batool A, Andrabi KI. TAK1 mediates convergence of cellular signals for death and survival[J]. Apoptosis, 2019, 24(1-2): 3-20.
|
[22] |
Xu YR, Lei CQ. TAK1-TABs complex: acentral signalosome in inflammatory responses[J/OL]. Front Immunol, 2020, 11: 608976. DOI: 10.3389/fimmu.2020.608976.
|
[23] |
Ha°land E, Moen IN, Veidal E, et al. TAK1-inhibitors are cytotoxic for multiple myeloma cells alone and in combination with melphalan[J]. Oncotarget, 2021, 12(21): 2158-2168.
|
[24] |
Ge C, Xiao G, Jiang D, et al. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development[J]. J Cell Biol, 2007, 176(5): 709-718.
|
[25] |
Nam JS, Sharma AR, Jagga S, et al. Suppression of osteogenic activity by regulation of WNT and BMP signaling during titanium particle induced osteolysis[J]. J Biomed Mater Res A, 2017, 105(3): 912-926.
|
[27] |
Yang S, Liu G. Targeting the ras/raf/MEK/ERK pathway in hepatocellular carcinoma[J]. Oncol Lett, 2017, 13(3): 1041-1047.
|
[28] |
Li C, Wu Z, Yuan G, et al. Vx-11e protects against titanium-particle-induced osteolysis and osteoclastogenesis by supressing ERK activity[J]. Biochem Biophys Res Commun, 2019, 514(4): 1244-1250.
|
[29] |
Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation[J]. Nature, 2003, 423(6937): 337-342.
|
[30] |
O'Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease[J]. Immunity, 2012, 36(4): 542-550.
|
[31] |
Zhou S, Dai Q, Huang X, et al. STAT3 is critical for skeletal development and bone homeostasis by regulating osteogenesis[J/OL]. Nat Commun, 2021, 12(1): 6891. DOI: 10.1038/s41467-021-27273-w.
|
[32] |
Song F, Wei C, Zhou L, et al. Luteoloside prevents lipopolysaccharide-induced osteolysis and suppresses RANKL-induced osteoclastogenesis through attenuating RANKL signaling cascades[J]. J Cell Physiol, 2018, 233(2): 1723-1735.
|
[33] |
Yu B, Bai J, Shi J, et al. miR-106b inhibition suppresses inflammatory bone destruction of wear debris-induced periprosthetic osteolysis in rats[J]. J Cell Mol Med, 2020, 24(13): 7490-7503.
|
[34] |
Li HW, Zeng HS. Regulation of JAK/STAT signal pathway by miR-21 in the pathogenesis of juvenile idiopathic arthritis[J]. World J Pediatr, 2020, 16(5): 502-513.
|
[35] |
Salmena L, Carracedo A, Pandolfi PP. Tenets of PTEN tumor suppression[J]. Cell, 2008, 133(3): 403-414.
|
[36] |
Ghafouri-Fard S, Abak A, Shoorei H, et al. Regulatory role of microRNAs on PTEN signaling[J/OL]. Biomed Pharmacother, 2021, 133: 110986. DOI: 10.1016/j.biopha.2020.110986.
|
[37] |
Li M, Luo R, Yang W, et al. miR-363-3p is activated by MYB and regulates osteoporosis pathogenesis via PTEN/PI3K/AKT signaling pathway[J]. In Vitro Cell Dev Biol Anim, 2019, 55(5): 376-386.
|
[38] |
Lu K, Chen Q, Li M, et al. Programmed cell death factor 4 (PDCD4), a novel therapy target for metabolic diseases besides cancer[J]. Free Radic Biol Med, 2020, 159: 150-163.
|
[39] |
Dorrello NV, Peschiaroli A, Guardavaccaro D, et al. S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth[J]. Science, 2006, 314(5798): 467-471.
|
[40] |
Sugatani T, Vacher J, Hruska KA. A microRNA expression signature of osteoclastogenesis[J]. Blood, 2011, 117(13): 3648-3657.
|
[41] |
Zhang XY, Li HN, Chen F, et al. Icariin regulates miR-23a-3p-mediated osteogenic differentiation of BMSCs via BMP-2/Smad5/Runx2 and WNT/β-catenin pathways in osteonecrosis of the femoral head[J]. Saudi Pharm J, 2021, 29(12): 1405-1415.
|
[42] |
蒋昇源,李丹,姜建浩,等. 假体无菌性松动过程中Co2+对成骨前体细胞的生物学反应[J]. 中国组织工程研究,2021, 25(21): 3292-3299.
|
[43] |
Yang C, Liu W, Zhang X, et al. Naringin increases osteoprotegerin expression in fibroblasts from periprosthetic membrane by the Wnt/β-catenin signaling pathway[J/OL]. J Orthop Surg Res, 2020, 15(1): 600. DOI: 10.1186/s13018-020-02145-z.
|
[44] |
Liu M, Li Y, Yang ST. Effects of naringin on the proliferation and osteogenic differentiation of human amniotic fluid-derived stem cells[J]. J Tissue Eng Regen Med, 2017, 11(1): 276-284.
|
[45] |
Lv J, Sun X, Ma J, et al. Involvement of periostin-sclerostin-Wnt/β-catenin signaling pathway in the prevention of neurectomy-induced bone loss by naringin[J]. Biochem Biophys Res Commun, 2015, 468(4): 587-593.
|
[46] |
王秋霏,顾叶,彭育沁,等. 人工假体磨损颗粒作用下Wnt/β-catenin信号通路对成骨细胞的影响[J]. 中国组织工程研究,2021, 25(24): 3894-3901.
|
[47] |
陈检文,董立明,蒋科,等. 髋臼假体安装位置与无菌性松动的相关分析[J]. 中国矫形外科杂志,2022, 30(1): 28-32.
|
[48] |
Yin J, Yin Z, Lai P, et al. Pyroptosis in periprosthetic osteolysis[J/OL]. Biomolecules, 2022, 12(12): 1733. DOI: 10.3390/biom12121733.
|
[49] |
van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease[J]. Immunity, 2019, 50(6): 1352-1364.
|
[50] |
Bazrafkan M, Nikmehr B, Shahverdi A, et al. Lipid peroxidation and its role in the expression of NLRP1a and NLRP3genes in testicular tissue of male rats: a model of spinal cord injury[J]. Iran BiomedJ, 2018, 22(3): 151-159.
|
[51] |
彭芃,傅媛,邱俊雄,等. RIPK3在磨损颗粒激活巨噬细胞PRRs/NLRP3信号通路引起人工关节无菌性松动中的作用机制[J]. 中国科学:生命科学,2020, 50(10): 1121-1131.
|
[52] |
Ren H, Kong Y, Liu Z, et al. Selective NLRP3 (pyrin domain-containing protein 3) inflammasome inhibitor reduces brain injury after intracerebral hemorrhage[J]. Stroke, 2018, 49(1): 184-192.
|
[53] |
Yang J, Wise L, Fukuchi KI. TLR4 cross-talk with NLRP3 inflammasome and complement signaling pathways in Alzheimer’s disease[J/OL]. Front Immunol, 2020, 11: 724. DOI: 10.3389/fimmu.2020.00724.
|
[54] |
Boyce BF. Advances in osteoclast biology reveal potential new drug targets and new roles for osteoclasts[J]. J Bone Miner Res, 2013, 28(4): 711-722.
|
[55] |
Nakashima T, Hayashi M, Takayanagi H. New insights into osteoclastogenic signaling mechanisms[J]. Trends Endocrinol Metab, 2012, 23(11): 582-590.
|
[56] |
Xing L, Carlson L, Story B, et al. Expression of either NF-kappa B p50 or p52 in osteoclast precursors is required for IL-1-induced bone resorption[J]. J Bone Miner Res, 2003, 18(2): 260-269.
|
[57] |
Jämsen E, Pajarinen J, Kouri VP, et al. Tumor necrosis factor primes and metal particles activate the NLRP3 inflammasome in human primary macrophages[J]. Acta Biomater, 2020, 108: 347-357.
|
[58] |
Ping Z, Wang Z, Shi J, et al. Inhibitory effects of melatonin on titanium particle-induced inflammatory bone resorption and osteoclastogenesis via suppression of NF-κB signaling[J]. Acta Biomater, 2017, 62: 362-371.
|
[59] |
Gilbert W, Bragg R, Elmansi AM, et al. Stromal cell-derived factor-1 (CXCL12) and its role in bone and muscle biology[J/OL]. Cytokine, 2019, 123: 154783. DOI: 10.1016/j.cyto.2019.154783.
|
[60] |
Drynda A, Singh G, Buchhorn GH, et al. Metallic wear debris may regulate CXCR4 expression in vitro and in vivo[J]. J Biomed Mater Res A, 2015, 103(6): 1940-1948.
|
[61] |
Mizushima N, Levine B. Autophagy in human diseases[J]. N Engl J Med, 2020, 383(16): 1564-1576.
|
[62] |
Margeta M. Autophagy defects in skeletal myopathies[J]. Annu Rev Pathol, 2020, 15: 261-285.
|
[63] |
Hosokawa N, Hara T, Kaizuka T, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy[J]. Mol Biol Cell, 2009, 20(7): 1981-1991.
|
[64] |
Itakura E, Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins[J]. Autophagy, 2010, 6(6): 764-776.
|
[65] |
Lin HY, Ding JL, Peng YJ, et al. Proteomic and phosphoryproteomic investigations reveal that autophagy-related protein 1, a protein kinase for autophagy initiation, synchronously deploys phosphoregulation on the ubiquitin-like conjugation system in the mycopathogen Beauveria bassiana[J/OL]. mSystems, 2022, 7(1): e0146321. DOI: 10.1128/msystems.01463-21.
|
[66] |
Weidberg H, Shpilka T, Shvets E, et al. LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis[J]. Dev Cell, 2011, 20(4): 444-454.
|
[67] |
Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing[J]. EMBO J, 2000, 19(21): 5720-5728.
|
[68] |
Camuzard O, Breuil V, Carle GF, et al. Autophagy involvement in aseptic loosening of arthroplasty components[J]. J Bone Joint Surg Am, 2019, 101(5): 466-472.
|
[69] |
Wang J, Zhang Y, Cao J, et al. The role of autophagy in bone metabolism and clinical significance[J]. Autophagy, 2023, 19(9): 2409-2427.
|
[70] |
Zhang Y, Cui Y, Wang L, et al. Autophagy promotes osteoclast podosome disassembly and cell motility athrough the interaction of kindlin3 with LC3[J/OL]. Cell Signal, 2020, 67: 109505. DOI: 10.1016/j.cellsig.2019.109505.
|
[71] |
Zhang G, Wang Y, Tang G, et al. Puerarin inhibits the osteoclastogenesis by inhibiting RANKL-dependent and-independent autophagic responses[J/OL]. BMC Complement Altern Med, 2019, 19(1): 269. DOI: 10.1186/s12906-019-2691-5.
|
[72] |
Roy M, Roux S. Rab GTPases in osteoclastic bone resorption and autophagy[J/OL]. Int J Mol Sci, 2020, 21(20): 7655. DOI: 10.3390/ijms21207655.
|